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Abstract—Digitalization has emerged as a powerful 

force reshaping the competitive landscape across 

industries. This paper explores the theoretical 

underpinnings and conceptual pathways of business 

model transformation enabled by digital technologies. 

Drawing on business model theory, dynamic 

capabilities, and sociotechnical systems theory, the 

study examines how organizations adapt to digital 

disruption by reconfiguring value creation, delivery, 

and capture mechanisms. Through a synthesis of 

existing literature, the paper proposes a framework 

identifying key drivers, enablers, and constraints of 

digital transformation. Implications for managerial 

practice and future research directions are also 

discussed. 
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I. INTRODUCTION 

 

The digital revolution is transforming the way 

businesses create and deliver value. Technologies 

such as IoT, AI, big data analytics, and blockchain 

are not only changing operational efficiencies but 

also reshaping entire business models. Business 

model theory provides a lens to analyze these 

transformations and understand how digitalization 

drives innovation. This paper aims to explore 

theoretical insights into business model 

transformation by synthesizing current literature and 

proposing a conceptual framework that captures the 

key mechanisms of change. 

 

II. THEORETICAL BACKGROUND 

 

Business model theory defines the logic by which an 

organization creates, delivers, and captures value 

(Teece, 2010). In the digital age, business models 

are increasingly dynamic, evolving through 

feedback loops enabled by real-time data, customer 

interaction, and agile strategies. Dynamic 

capabilities (Teece et al., 1997) are crucial for 

sensing digital opportunities, seizing them, and 

transforming the organization. Sociotechnical 

systems theory also provides a valuable perspective 

by highlighting the interaction between 

technological infrastructures and social systems in 

enabling or constraining transformation (Bostrom & 

Heinen, 1977). 

 

III. DIGITALIZATION AS A CATALYST FOR 

BUSINESS MODEL CHANGE 

 

Digitalization enables new forms of value creation 

through product-service integration, ecosystem 

platforms, and data-driven personalization. For 

example, Industry 4.0 leverages connected devices 

and data analytics to support mass customization 

and operational intelligence. Such advancements 

disrupt traditional value chains, necessitating new 

organizational roles, capabilities, and partnerships 

(Iansiti & Lakhani, 2014). 

 

IV. CONCEPTUAL FRAMEWORK 

 

We propose a framework grounded in three 

theoretical pillars: 

1. Business Model Components: Digitalization 

alters value proposition, customer segments, 

channels, and revenue streams (Osterwalder & 

Pigneur, 2010). 

2. Dynamic Capabilities: Firms require sensing, 

seizing, and transforming capabilities to manage 

digital innovation (Teece, 2007). 

3. Sociotechnical Alignment: Alignment between 

digital technologies, human processes, and 

organizational structures is necessary for sustainable 

transformation. 

This framework identifies key drivers (e.g., data, 

connectivity), enablers (e.g., leadership, digital 

infrastructure), and constraints (e.g., legacy systems, 

cultural resistance) of transformation. 

 

V. DISCUSSION AND IMPLICATIONS 

 

The proposed framework enhances understanding of 

how digitalization reshapes business models. 
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Practically, it helps managers assess digital 

readiness, prioritize investment areas, and align 

technological initiatives with strategic objectives. 

For researchers, it opens pathways to investigate 

industry-specific variations, longitudinal 

transformations, and performance outcomes. A key 

to implementing Industry 4.0 is the digitization of 

multiple complex pieces of the pharmaceutical value 

chain with embedded cybersecurity. A critical 

concept in developing the so-called “smart factory” 

is the industrial internet of things (IoT), which is a 

type of cyber-physical system comprising 

interconnected computing devices, sensors, 

instruments, and equipment integrated online into a 

cohesive network (IEEE, 2021). The IoT requires 

data digitization, which is the transformation of 

previously manually captured data to digital device-

captured data. In pharmaceutical manufacturing this 

may include supply chain-related information such 

as raw materials variability and global tracking of 

materials across facilities (Sandle, 2019; Marcus 

Ehrhardt PB, 2016), manufacturing floor-related 

information such as operation procedures and 

operator work instructions (Jovanis, 2019), 

monitoring real-time operations by video (Marcus 

Ehrhardt PB, 2016), video-based training and 

centralizing quality event data for improved 

decision making (Jovanis, 2019). Full digital 

maturity, the process of gaining wisdom from these 

digitized data, is necessary to transform reactive 

operations into a fully integrated and digital 

ecosystem capable of proactive and predictive 

decision making (Grossman, 2018). This integration 

enables real-time connectedness both within a 

manufacturing facility (e.g., machine learning across 

unit operations) as well as outside the facility, as 

products “talk” back to their manufacturers using 

technologies that track environmental conditions, 

quality attributes, use, and performance of products 

(PwC, 2015, 2016). Together with AI algorithms 

focusing on machine learning and adaptive control 

(described below), the IoT would be disruptive in 

pharmaceutical manufacturing and product 

development (Biophorum/BPOG, 2017) (Fig. 3). 

 

AI includes a spectrum of sub-disciplines which 

take varied approaches to designing computer 

intelligence depending on the desired features and 

tasks to be performed. Such approaches involve 

handling large and disparate datasets with specific 

algorithms. Within the field of AI, and due to the 

advancements in available technology and software 

programming, machine learning (ML) and artificial 

neural networks (ANN) have emerged as two of the 

more advanced methods for prediction and risk 

management. In the hierarchical relationships of AI, 

ML is a sub-discipline of AI, and ANNs are a sub-

discipline of ML. ML primarily involves the ability 

of computers to learn a task by monitoring data and 

using statistical tools in order to derive some general 

knowledge from these data (via the development of 

mathematical relationships) without external input 

or prompt (McCarthy et al., 2004). It is worthwhile 

to note that ML algorithms can fall into one of three 

categories depending on how input data are utilized: 

supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning can 

include methods such as ANN or multivariate 

regression and classification analysis, which learn 

from and connect input data and outcomes. 

Supervised learning methods are commonly 

associated with process design and controls. 

Unsupervised learning draws inferences from input 

data without using outcomes to learn. Unsupervised 

learning approaches, such as dimension reduction or 

cluster analysis, are useful in identifying trends and 

anomalies associated with an operation. 

Reinforcement learning correlates actions with 

delayed outcomes so that decisions are associated 

with desired outcomes in the future. Reinforcement 

learning can be used where complex dynamics are 

involved; for example, plant operations, or logistics. 

While each of these ML approaches has the 

potential to enhance pharmaceutical manufacturing 

operations, supervised learning approaches are 

typically viewed to have less risk and uncertainty 

and have thus far gained the most traction. 

Supervised learning ML approaches such as ANN 

have seen steady progress in advanced 

manufacturing applications (Peres et al., 2016; 

Arinez et al., 2020). ANNs are modeled after the 

connectivity between the neurons and synapses of 

the human brain which utilize data-driven 

algorithms to determine a mathematical relationship 

between input and output variables. The design and 

structure of the ANN is such that individual nodes in 

one layer are connected via weighted connections to 

individual nodes in subsequent layers. ANN models 

can be developed and applied independently or, as is 

often the case, utilized in conjunction with other 

modeling techniques. ANN has been used for 

prediction and control in pharmaceutical 

development (Ekins, 2016; Korteby et al., 2016) and 

recently to perform risk-based analysis of 
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biomanufacturing processes (Shirazian et al., 2017; 

von Stosch et al., 2016a, 2016b), develop control 

schemes and perform fault detection for complex 

dynamic processes (Montague and Morris, 1994; 

Shimizu et al., 1998; Stanke and Hitzmann, 2013; 

Takahashi et al., 2015), and to predict outcomes for 

therapeutic drug pharmacokinetics and 

pharmacodynamics (Atobe et al., 2015; Lin et al., 

2015; Pavani et al., 2016; Yamamura, 2003). A 

significant advantage of ANN models is their utility 

in pattern recognition within a dataset – even with 

noisy or complex data with missing data points. 

Computer vision quality control, digital twins, 

predictive maintenance, real-time augmented reality, 

and collaborative robots are tools better enabled by 

AI (Fig. 3). AI should generally improve and 

optimize manufacturing processes while also 

reducing human intervention in the production of 

pharmaceuticals. Computer vision-based quality 

control uses images (for example, images of 

packaging, labels or glass vials) that are analyzed by 

software to detect deviations and to ensure images 

match the requirements of a given quality attribute 

of a product. Collaborative robots (i.e., cobots: 

groups of robots programmed to work together) act 

in collaboration through one or more integrated 

software programs in order to achieve a desired 

outcome through a series of steps such as packing, 

moving and sealing a box or taking a sample of 

material from process machinery, moving it to a 

different location, analyzing it, and sending 

information back to the process machinery controls 

(Fig. 3). 

 

The use of augmented reality may be useful in the 

areas of customer experience, discovery and 

research, maintenance, quality assurance, safety, 

packaging and training (Biophorum/BPOG, 2017; 

Stracquatanio, 2018; Fassbender, 2017).A digital 

twin is a digital replica of a physical process such as 

an operation, machine or activity used to better 

understand, evaluate, predict, and optimize its 

performance (Fig. 3). Digital twins can be based on 

empirical data (data-driven models) or integrate 

both empirical and mechanistic simulations to 

provide high resolution models together with real-

time or near real-time data from which to assess 

process performance. Such models outperform 

traditional process models both in terms of 

resolution and real-time feedback. For example, 

some companies outside pharma have employed 

digital twins in smart factories (Wilson, 2020; GE, 

2020) and inside pharma in smart processes 

(InSilico, 2020). Digital twins enable humans to 

better understand how deviations or disruptions may 

impact performance, and how related risks can be 

mitigated. 

 

VI. CONCLUSION 

 

Business model transformation through 

digitalization is a multifaceted process involving 

strategic, operational, and technological shifts. 

Grounding this transformation in theory provides 

robust insights into the dynamics of change. Future 

research can extend this framework through 

empirical validation and sectoral analysis. 
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