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Abstract- The paper deals with a spatially 

homogeneous and totally anisotropic Bianchi type-III 

cosmological model in the presence of Magnetized 

domain walls within the frame work of 𝒇(𝑹)theory of 

gravitation. We assume that 𝐅𝟏𝟑 is only the non-

vanishing component of𝐅𝐚𝐛.To obtain deterministic 

model, we assume relations 𝐁𝐧 = 𝐂and 𝝆 = 𝚸. The 

physical and geometrical aspects of the model are 

discussed. 
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I. INTRODUCTION 

 

Even after nearly a century, General Relativity (GR) 

remains our most reliable theory of gravity. GR 

allows us to derive straightforward cosmological 

models, such as the Friedman or Lemaitre models, 

which effectively describe the evolution of our 

Universe. So far, GR has successfully withstood 

every experimental test we have conducted. 

However, in recent decades, we have been 

compelled to introduce the concept of dark matter to 

explain astrophysical observations regarding the 

rotation curves of spiral galaxies. Furthermore, we 

have had to introduce the notion of dark energy to 

account for the accelerated expansion of the 

Universe, as suggested by the redshift of 

supernovae. Throughout history, there have been 

numerous attempts to modify GR for various 

reasons, such as the desire to quantize it and unify it 

with the other three elementary forces: 

electromagnetic, weak, and strong nuclear forces. 

One potential way to modify general relativity (GR) 

is by incorporating higher order invariants into the 

conventional Einstein-Hilbert action, resulting in 

what is known as higher-order theories of gravity. 

One specific class of these theories is referred to as 

𝑓(𝑅) gravity, which is derived from GR by 

including additional terms involving higher powers 

of the Ricci scalar into the standard GR actions. 

Domain walls are the two-dimensional objects that 

form when discrete symmetry is broken at phase 

transition. A network of domain walls effectively 

partitions the universe into various cells. Domain 

walls have some rather peculiar properties, for 

example, the gravitational field of a domain wall is 

repulsive rather than attractive. Thus, the study of 

domain walls is motivated by the fact that the 

properties of domain walls are object of intense 

investigation for different reasons. One is that 

domain walls are objects formed at the early stages 

of the universe (Kibble et al. [1]) and have been 

studied intensively due to their implications to 

cosmology. Other reason is that study of topological 

defects has wider applicability in many areas of 

physics. In cosmological area, defects have been put 

forward as a possible mechanism for structure 

formation (Vilenkin and Shellard [2]). Goetz [3], 

Mukherjee [4], Wang [5], Rahaman et al. [6], Reddy 

and Rao [7], Rahaman and Bera [8] and 

Chakraborty [9] have studied domain walls in 

alternative theories of gravitation in four and five 

dimensions. Adhav et al. [10,11] discussed four-

dimensional non-static domain walls in Brans–

Dicke theory and Saez–Ballester theory of 

gravitation respectively. Reddy et al. [12] 

investigated five-dimensional domain walls in Saez–

Ballester theory. Katore et al. [13] obtained Bianchi 

type-I cosmological model in Barber’s second self-

creation theory of gravitation for cosmic domain 

walls. 

So far, a considerable amount of work has been 

done on domain walls. Vilenkin [27], Isper and 

Sikivie [19], Windraw [28], Goetz [17], Mukherjee 

[24], Rahmann [25], Reddy and Subba Rao [26], 

Adhav et al. [14] are some of the authors who have 

investigated several aspects of domain walls. Also, 

the occurrence of magnetic fields on galactic scale is 

well established fact today, and their importance for 

a variety of astrophysical phenomena is generally 

acknowledged as pointed out by Zel’dovich et al. 

[29]. Harrison [18] has suggested that magnetic field 
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could have a cosmological origin. As a natural 

consequence, we should include magnetic field in 

the energy-momentum tensor of the universe. The 

presence of primordial magnetic fields in the early 

stage of the evolution of the universe has been 

discussed by Misner et al. [23], Asseo and Sol [15], 

Kim et al. [21], Melvin [22]. Also, Iwazaki [20] and 

Cea, P.,Tedesco [16] gives the interesting 

phenomena as the magnetization of domain walls 

and the dynamical generation of massive 

ferromagnetic domain walls. 

When the interaction of domain walls with other 

kind of matter is small then they get accelerated. If 

they are moving their effective equation of state 

becomes (Vilenkin, 1994; Kolb, 1990)Ρ =

(𝑉2 −
2

3
) 𝜌 [32, 33]. Bayaskar et al. (2009) [31] 

investigated the plane symmetric models of 

interacting fields in General Relativity. Patil et al. 

(2010) [30] have studied plane symmetric 

cosmological models of domain wall in General 

Relativity. Agrawal et al. (2017) [49] have studied 

magnetized Bianchi Type V cosmological model 

in,𝑓(𝑅, 𝑇) theory of gravity. 

The occurrence of magnetic fields on galactic scale 

is well-established fact today, and their importance 

for a variety of astrophysical phenomena is 

generally acknowledged as pointed out by 

Zeldovichet al. [34] Also Harrison [35] has 

suggested that magnetic field could have a 

cosmological origin. As a natural consequence, we 

should include magnetic fields in the energy-

momentum tensor of the early universe. The choice 

of anisotropic cosmological models in Einstein 

system of the field equations leads to the 

cosmological models more general than Robertson 

Walker model. The presence of primordial magnetic 

fields in the early stages of the evolution of the 

universe has been discussed by several authors. 

[36−48] Electric current exist due to the occurrence 

of magnetic field and strong magnetic fields can be 

created due to adiabatic compression in clusters of 

galaxies. Asseo and Sol[37] speculated the large-

scale inter galactic magnetic field and is of 

Primordial origin at present measure 10−8 G and 

gives rise to a density of order 10−35 gcm−3. The 

present- day magnitude of magnetic energy is very 

small in comparison with the estimated matter 

density; it might not have been negligible during 

early stage of evolution of the universe. Bianchi 

type-III space-time has a fundamental role in 

describing early stages of evolution of the universe. 

Motivated the situations discussed above, the paper 

is devoted to study the anisotropic Bianchi type III 

space-time in presence of magnetic field in the 

frame work of,𝑓(𝑅) theory of gravity. Here we have 

obtained an exact solution of Einstein’s field 

equations. The paper is organized as follows. Sect.2 

focuses on the,𝑓(𝑅) gravity Formalism and energy 

momentum tensor. The metric and the field 

equations are presented in Sect. 3. In Sect. 4, we 

deal with solution of the field equations with 

magnetized domain wall. In Sect. 5 we describe 

some physical and geometric properties of the 

model with brief discussion of the results. In Sect.6 

we discuss cosmological parameters in terms of 

redshift. Finally, in Sect. 7, concluding remarks are 

given. 

 

II. 𝑓(𝑅) GRAVITY FORMALISM AND 

METRIC 

𝑓(𝑅)Theories of gravity are extended theories of 

gravity which simplify to general relativity in the 

most elementary case of the function 𝑓(𝑅). The idea 

of understanding this theory stemmed in two ways – 

one by considering a variation of the Einstein-

Hilbert action with the metric (the metric 

formalism), and the other by varying the metric and 

an independent connection (called the Palatini 

formalism) [50]. Each of these methods describe a 

form of an extended theory of gravity by 

considering some function of the Ricci scalar – the 

field equations in each case (i.e. the field equations 

for an𝑓(𝑅) theory of gravity for some form of the 

function) can be derived by either of these two 

formalisms. The nature of the actions of,𝑓(𝑅) 

theories of gravity was first studied extensively in 

[51]. 

We consider a class of modified gravity in which 

modifies Einstein-Hilbert action by replacing Ricci 

curvature scalar, Rby an arbitrary function of 

curvature,𝑓(𝑅) as follows 

S = ∫ √−g (
f(R)

2
+ kLm) d4x                                       (1) 

Where gis the metric determinant, 𝐿𝑚is the matter 

Lagrangian 

The field equation of,𝑓(𝑅) is given by 

F(R)Rij −
1

2
 f(R)gij −  ∇i∇jF(R) + gijF(R) =

k2Tij                         (2) 
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Where,𝐹=
𝑑𝑓

𝑑𝑅
  

,∇ 𝑖𝑠 𝑎 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒,□=∇𝛼∇𝛼is the 

D’Alembertian, Tijis the matter energy-momentum 

tensor 

The standard FRW model is in good agreement with 

the present-day universe. However, it does not give 

a clear description of the early stage of evolution of 

the universe. Bianchi type models provide a 

physically realistic description of the initial 

universe. It is well known that, near the Big Bang, 

the universe is neither isotropic nor spherically 

symmetric. Thus, anisotropic models play an 

important role in cosmology. 

The energy momentum tensor for a system of 

domain walls and magnetic field is given by; 

Tbc
D =  ρ(gbc +  wbwc) +  pwbwc + Ebc   , 

                  wbwc = −1                        (3) 

Where ρ is energy density of domain walls, p is the 

pressure in the direction normal to the plane of the 

wall and 𝑤𝑏  is a unit space like vector in the same 

direction. and Ebcis the electromagnetic field tensor, 

which is given by Lichnerowicz et al. (1967) 

Ec
b =  µ̅ [|h|2 (ubuc + 

1

2
c) − hbhc]  

 (4) 

μ̅ is magnetic permeability,hbis magnetic flux vector 

defined as 

hb =
√−g

2μ̅
∈bcde f deuc   

    (5) 

In the above ubis the flow vector satisfying 

gbcUbUc = −1 

 

Fde is dual electromagnetic field tensor and ∈𝑏𝑐𝑑𝑒 is 

Levi-Civita tensor density 

The incident magnetic field is taken along y-axis. 

Hence,h2 ≠ 0, h1 =  h3  = h4 

The only non-vanishing component of Fab is F13 

The first sets of maxwell’s equation are given as: 

Fab;c + Fbc;a + Fca;b = 0 

Gives rise to 

F13 = L(Constant) 

Here F12 = F14 = F23 = F24 = F34 = Odue to 

assumption of infinite conductivity are explained by 

Roy.M(2000) 

For b = 2  equation (5) gives 

h2 = − 
BL

2μ̅AC
    (6) 

Since|h|2 = hahb = h2h2 = g22(h2)2 

We obtain 

|h|2= − 
L2

4μ̅2A2C2   (7) 

Using equation (6) and (7) in equation (4), The 

components of 𝐸𝑏
𝑎 for the line element (12) are 

given by; 

E1
1 = −

L2

8μ̅A2C2=-
𝐿1

𝐴2𝐶2,                                             

where 𝐿1= 
𝐿2

8𝜇̅
 

 

Similarly, E2
2 =

L1

A2C2 ,E3
3 = −

L1

A2C2 and 

E4
4 =

L1

A2C2  (8) 

T1 
1 = ρ +  E1

1  = ρ − 
L1

A2C2           (9) 

T2 
2 = −p +  E2

2  = −p +  
L1

A2C2      (10) 

 

Similarly, T3
3 = ρ − 

L1

A2C2and T4 
4  = ρ +  

L1

A2C2(11) 

 

III. METRIC AND FIELD EQUATION 

The spatially homogeneous and anisotropic Four-

dimensional Bianchi Type -III metric is given by, 

ds2 = dt2 − A2dx2 − B2e−2sxdy2 − C2 dz2(12) 

where A, B, C are the metric potentials and 

functions of cosmic time t only. 

For the metric (12), the field equation (2) together 

with (11) in co-moving co-ordinate leads to the 

following set of equation. 

F [
𝐴44

𝐴
+

𝐴4𝐵4

𝐴𝐵
+

𝐴4𝐶4

𝐴𝐶
−

𝑆2

𝐴2] −
𝑓

2
+

𝐵4

𝐵
𝐹4 +

𝐶4

𝐶
𝐹4 +

𝐹44= k2ρ −  
k2L1

A2C2 (13) 

F [
𝐵44

𝐵
+

𝐴4𝐵4

𝐴𝐵
+

𝐵4𝐶4

𝐵𝐶
−

𝑆2

𝐴2] −
𝑓

2
+

𝐴4

𝐴
𝐹4 +

𝐶4

𝐶
𝐹4 + 𝐹44= 

−k2p +  
k2L1

A2C2         (14) 

F [
𝐶44

𝐶
+

𝐴4𝐶4

𝐴𝐶
+

𝐵4𝐶4

𝐵𝐶
] −

𝑓

2
+

𝐴4

𝐴
𝐹4 +

𝐵4

𝐵
𝐹4 + 𝐹44=

   k2ρ − 
k2L1

A2C2 (15) 

F [
𝐴44

𝐴
+

𝐵44

𝐵
+

𝐶44

𝐶
] −

𝑓

2
+ [

𝐴4

𝐴
𝐹4 +

𝐵4

𝐵
𝐹4 +

𝐶4

𝐶
𝐹4]=k2ρ + 

k2L1

A2C2   (16) 

And 
𝐴4

𝐴
−

𝐵4

𝐵
= 0    

     (17) 

Solving equation (17), we get A = B 

above equation becomes: 

F [
𝐵44

𝐵
+

𝐵4
2

𝐵2 +
𝐵4𝐶4

𝐵𝐶
−

𝑆2

𝐵2] −
𝑓

2
+

𝐵4

𝐵
𝐹4 +

𝐶4

𝐶
𝐹4 + 𝐹44= 

k2ρ −  
k2L1

B2C2              (18) 

F [
𝐵44

𝐵
+

𝐵4
2

𝐵2 +
𝐵4𝐶4

𝐵𝐶
−

𝑆2

𝐵2] −
𝑓

2
+

𝐵4

𝐵
𝐹4 +

𝐶4

𝐶
𝐹4 + 𝐹44= 

−k2p +  
k2L1

B2C2            (19) 
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F [
𝐶44

𝐶
+ 2

𝐵4𝐶4

𝐵𝐶
] −

𝑓

2
+ 2

𝐵4

𝐵
𝐹4 + 𝐹44=   k2ρ −

 
k2L1

B2C2                (20) 

F [2
𝐵44

𝐵
+

𝐶44

𝐶
] −

𝑓

2
+ [2

𝐵4

𝐵
𝐹4 +

𝐶4

𝐶
𝐹4]=   k2ρ + 

k2L1

B2C2

  (21) 

               Equation (21) − (18) ,we get 

F [
𝐵44

𝐵
+

𝐶44

𝐶
−

𝐵4
2

𝐵2 −
𝐵4𝐶4

𝐵𝐶
+

𝑆2

𝐵2] +
𝐵4

𝐵
𝐹4 − 𝐹44 =

2𝑘2𝐿1

𝐵2𝐶2                             

(22) 

F [
𝐵44

𝐵
+

𝐵4
2

𝐵2 +
𝐵4𝐶4

𝐵𝐶
−

𝑆2

𝐵2] −
𝑓

2
+

𝐵4

𝐵
𝐹4 +

𝐶4

𝐶
𝐹4 + 𝐹44= 

−k2p +  
k2L1

B2C2           (23) 

F [
𝐶44

𝐶
+ 2

𝐵4𝐶4

𝐵𝐶
] −

𝑓

2
+ 2

𝐵4

𝐵
𝐹4 + 𝐹44=   k2ρ −

 
k2L1

B2C2                          (24) 

 

IV. SOLUTION AND THE MODEL 

 

We have two equations in ρ, p, B, C, F five 

unknown. Therefore, to obtain the solution of the 

field equation two more condition is required for 

consistency. 

Firstly, we assume the relation between metric 

potential  Bn = C   (25) 

Secondly, we assume that constant curvature scalar 

F(R) = R0 = constant = 1 

                    F4 = F44 = 0  (26) 

Using equation (25) and (26), equation (22) 

becomes, 

𝐵44

𝐵
+

𝐶44

𝐶
−

𝐵4
2

𝐵2 −
𝐵4𝐶4

𝐵𝐶
+

𝑆2

𝐵2 = 
2𝑘2𝐿1

𝐵2𝐶2  

𝐵44

𝐵
+

𝐶44

𝐶
−

𝐵4
2

𝐵2 −
𝐵4𝐶4

𝐵𝐶
+

𝑆2

𝐵2 = 
2𝑘2𝐿1

𝐵2(𝑛+1) 

𝐵44

𝐵
+ 𝑛(𝑛 − 1)

𝐵4
2

𝐵2 − 𝑛
𝐵44

𝐵
−

𝐵4
2

𝐵2 − 𝑛
𝐵4

2

𝐵2 +
𝑆2

𝐵2 = 

2𝑘2𝐿1

𝐵2(𝑛+1) 

(1 + 𝑛)
𝐵44

𝐵
+ [𝑛(𝑛 − 1) − 1 − 𝑛]

𝐵4
2

𝐵2 +
𝑆2

𝐵2 = 

2𝑘2𝐿1

𝐵2(𝑛+1) 

(1 + 𝑛)
𝐵44

𝐵
+ (𝑛2 − 2𝑛 − 1)

𝐵4
2

𝐵2 +
𝑆2

𝐵2 = 
2𝑘2𝐿1

𝐵2(𝑛+1) 

B44 +
(n2−2n−1)

n+1

B4
2

B
+

S2

B(n+1) = 
2k2L1

B2(n+1)(n+1)
 

2𝐵44 + [
2(𝑛2−2𝑛−1)

𝑛+1
]

𝐵4
2

𝐵
 = 

4k2L1

(n+1)B2(n+1) −
2S2

(n+1)B
 

𝑑

𝑑𝐵
(B4

2B
2(n2−2n−1)

n+1 ) = 
4𝑘2𝐿1

(𝑛+1)
B

2(n2−2n−1)

n+1
−2n−1 −

2𝑆2

(𝑛+1)
B

2(n2−2n−1)

n+1
−1

 

 

Integrating we get 

 

B4=[
4𝑘2𝐿1

(−6𝑛−2)𝐵2𝑛 −
𝑆2

(𝑛2−2𝑛−1)
+

𝐶𝐵
−2(𝑛2−2𝑛−1)

𝑛+1 ]

1
2⁄

 

dB

[
4k2L1

(−6n−2)B2n − 
S2

(n2−2n−1)
 + CB

−2(n2−2n−1)
n+1 ]

1
2⁄

= dt

    (27) 

Now, equation (27) can be solved by using 

distinct values of n and C, for that we have 

following cases. 

Case I: putting c = 0and n = 1 in equation (27) 

(k2 = s2 = 1) 
dB

[
4L1

−8B2−
1

−2
]
1

2⁄
= dt 

Integrating, we get 

B =
L

sin [cot−1(t)]
 

A =
L

sin [cot−1(t)]
and C = −

L

sin [cot−1(t)]
 

 

Case II: put c = 0 and n = -
1

2
 

dB

(
4L1

B(−1) −
1

1
4⁄
)

1
2⁄

= dt 

Integrating, we get, 

 B = L1t2 +
1

L1
            (28)                          

 A = L1t2 +
1

L1
  and  C = (L1t2 +

1

L1
)

−
1

2

     (29) 

From cases I and II it is clear that equation (27) 

cannot give definitive solution for any arbitrary 

values of n and C. Hence for C = 0 and n = -1/2 we 

have made out its solution. 

By using equation (28) and (29), the equation of 

metric can be written as, 

ds2 = dt2 −  (L1t2 +
1

L1

)
2

dx2

− (L1t +
1

L1

)
2

e−2Sxdy2

− (L1t +
1

L1

)
−1

dz2 

ds2  = dt2 − [
(L1t)2+1

L12
]

2

dx2 −

[
(L1t)2+1

L1
]

2

e−2Sxdy2 −
L1

(L1
2t+1)

dz2 (30) 

 

V. PHYSICAL AND GEOMETRICAL 

PROPERTIES OF THE MODEL 
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We discuss the Physical and kinematical properties 

of the cosmological model (30). For the line element 

(12) the energy density ρ and pressure p are given as 

follows: 

𝜌 =  
𝐿1

2[𝑆2 − 𝐾2(1 + 𝐿1
2𝑡2 )]

𝐾2(𝐿1
2𝑡2 + 1)

2  

𝑃 =  
𝐿1

2[𝑆2 − 3𝐾2(1 + 𝐿1
2𝑡2 )]

𝐾2(𝐿1
2𝑡2 + 1)

2  

Volume V = (ABC) 

V = (L1t2 +
1

L1

)

3
2⁄

 

 

Hubble parameter  H =
1

3
(

V4

V
) 

H =
L1

2 . t

(L1
2 t2 + 1)

 

Expansion scalar θ = 3H 

θ =
3L1

2 . t

(L1
2 t2 + 1)

 

 

Deceleration parameter      q =
d

dt
(

1

H
) − 1 

 

q = −
1

(L1
2 t2)

 

 

Anisotropy parameter       ∆=
1

3
∑ (

𝐻𝑖−𝐻

𝐻
)

2
3
𝑖=1  

∆= 2 

 

Shear scalar          σ2 =
3

2
H2∆ 

𝜎2 = 3
𝐿1

4𝑡2

(𝐿1
2𝑡2 +1)

2  

 

VI. COSMOLOGICAL PARAMETERS IN 

TERMS OF REDSHIFT 

The scale factor "𝑎" in terms of redshift parameter 𝑧 

is written as, 

𝑎0

𝑎
 =  (1 + 𝑧) 

 Here, take 𝑎0 = 1 , where 𝑎0 the present value of 

scale factor. 

𝑡(𝑧) =  [𝑘1(1 + 𝑧)−2 −  𝑘2]
1

2 

The parameter like deceleration, Hubble, density, 

pressure and EoS in terms of redshift can be written 

as; 

 𝑞(𝑧)  =  
 −(1 +𝑧)2

𝐿1 −(1 +𝑧)2 

 H(𝑧) =  (1 + 𝑧)[  −(1 + 𝑧)2 +  𝐿1]
1

2 

𝜌 =  
(1 + 𝑍)2 [𝛼2( 1 + 𝑍)2  − 𝑘2𝐿1]

𝑘2𝐿1
2  

𝑝 =  
(1 + 𝑍)2 [𝛼2( 1 + 𝑍)2  −  3𝑘2𝐿1]

𝑘2𝐿1
2  

𝜔 =  
[𝛼2( 1 + 𝑍)2  −  3𝑘2𝐿1]

[𝛼2( 1 + 𝑍)2  − 𝑘2𝐿1]
 

     The expansion scalar, shear scalar and volume in 

terms of redshift is given by, 

𝜃 = 3 (1 + 𝑧)[  −(1 + 𝑧)2 +  𝐿1]
1

2  

 𝜎2  =  3(1 + 𝑍)2 [−( 1 + 𝑍)2  +  𝐿1] 

   𝑉 =
1

(1+𝑍)3 

 
Fig. 1 Plot of Volume versus redshift z 

From fig.1 it is clear that the volume decreases in 

the past and increases in the future and present.               

 
Fig. 2 Plot of matter energy density (ρ)versus 

redshift z 

Fig. 2 shows that the evolution of energy density 

with respect to redshift 𝑧. 
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Fig. 3 Plot of matter energy pressure (p)versus 

redshift z 

Fig.3 reveals that the evolution of energy pressure 

with respect to redshift 𝑧. 

 
Fig. 4 Plot of Hubble parameter versus redshift z 

 
Fig. 5 Plot of Expansion scalar and Hubble 

parameter versus cosmic time t (Gyr) 

 
Fig. 6 Plot of Deceleration parameter versus red 

shift z. 

Fig.6 reveals that the sign of deceleration parameter 

is negative in the future and present and positive in 

the past. This shows that the universe is accelerating 

in the future and present and decelerating in the 

past. 

 
Fig. 7 Plot of EoS parameter versus red shift z. 

 
          Fig. 8 Plot of Shear scalar versus red shift z. 

 

VII. DISCUSSION AND CONCLUSION 

 

The expression of volume V shows that the model 

universe does not start from zero volume at the 

initial epoch. As time progresses, the universe 

expands and when t approaches infinity, the volume 

V also approaches infinity. Additionally, when t →

∞ , V →  ∞. 

The energy conditions pressure p ≥ 0 and 

density ρ ≥ 0 are satisfied for suitable constants. 

In the model, we found that the expansion scalar (𝜃) 

and Hubble parameter (Η) are infinite at timet = 0, 

indicating the maximum value of Hubble’s 

parameter and accelerated expansion of the 

universe. However, as time progresses, both (𝜃) and 

(Η) decrease gradually and eventually become zero 

when t → ∞ 

This implies that the universe expands with time, 

but the rate of expansion decreases as time 

increases. 
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The deceleration parameter (q) is related to the rate 

at which the expansion of the universe is slowing 

down. If q is negative, this means that the expansion 

of the universe is accelerating rather than slowing 

down. 

The model describes an accelerating model (q < 0). 

The mean anisotropic parameter ∆ is uniform 

throughout the evolution of the universe as it does 

not depend on t.Shear scalar σ are infinite at t = 0 

and tend to zero as time t approaches infinity. 

At the initial epoch of time the pressure and energy 

density have infinite values whereas the same 

quantities tend to zero as time t → ∞. In this 

case lim
𝑡→∞

(
𝜎

𝜃
) ≠ 0 is found to be constant. Hence 

derived model does not approach to isotropy. 

We have explored Bianchi type-III domain wall 

cosmological models with magnetic field in 

𝑓(𝑅)theory of gravity. We examined the models in 

the presence of electromagnetic field does not gives 

isotropic solution. 
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