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Abstract—This paper presents an autonomous driving 

system developed using computer vision techniques and 

AI algorithms. The system focuses on real-time lane 

detection and path planning by leveraging image 

processing, convolutional neural networks (CNNs), and 

behavior cloning to mimic human driving behavior. The 

methodology includes data acquisition using the Udacity 

self-driving car simulator, preprocessing of captured 

images, training a CNN model, and testing in a 

simulated environment. The system's performance is 

evaluated based on its ability to navigate autonomously 

in various simulated road scenarios, demonstrating lane-

keeping accuracy and effective replication of human 

driving behavior. The project's industry relevance lies in 

its cost-efficient, camera-only approach, making it 

adaptable for ADAS, robotics, and smart mobility 

solutions. 

 

I. INTRODUCTION 

 

Autonomous driving stands as one of the most 

revolutionary technologies of the 21st century, 

poised to redefine the operational paradigms of 

transportation systems. This project endeavors to 

develop a foundational autonomous navigation 

system leveraging the power of computer vision and 

artificial intelligence. The core functionalities of this 

system are real-time lane detection and precise path 

planning, enabling the vehicle to execute informed 

driving maneuvers without human intervention. A 

key aim of this research is to develop an 

autonomous driving system capable of perceiving its 

surroundings using camera-based vision and 

processing information in real-time. Furthermore, 

the project focuses on implementing lane detection 

and effective path planning algorithms by 

integrating computer vision techniques, 

sophisticated Convolutional Neural Networks 

(CNNs), and the principles of human behavior 

cloning. A critical objective is to ensure that the 

autonomous vehicle can navigate smoothly and 

safely through various simulated road scenarios 

without any human interaction. The design of the 

system also prioritizes scalability, allowing for 

potential adaptation to different vehicle types and 

diverse driving environments. To validate the 

efficacy of the developed system, a significant part 

of the project involves rigorous testing within a 

simulated environment to evaluate its accuracy, 

reliability, and overall safety performance. 

Ultimately, this research seeks to optimize 

autonomous driving behavior by enabling the 

system to learn and replicate human-like decision-

making processes, specifically for maintaining lane 

integrity and controlling steering effectively. 

 

II. DATA COLLECTION  

 

The foundation of the behavior cloning approach in 

this project is the collection of a rich and diverse 

dataset of human driving behavior within the 

Udacity self-driving car simulator. This simulator 

records various driving parameters, organized into 

columns such as 'center', 'left', 'right', 'steering', 

'throttle', 'reverse', and 'speed'. For the purpose of 

this research, we primarily utilize the file paths 

associated with the center, left, and right camera 

images, along with the corresponding steering 

angles recorded during human-controlled driving 

sessions. The simulator provides synchronized 

streams of visual data from three virtual cameras 

(center, left, and right) mounted on the simulated 

vehicle, coupled with these steering angles. The 

rationale for using the side camera images in 

addition to the center is to provide the model with a 

broader visual context, particularly when the vehicle 

is approaching curves or experiencing slight 

deviations from the center of the lane. This approach 

aims to enhance the model's ability to anticipate and 

react to upcoming road geometry. The collected 

dataset encompasses a variety of road geometries, 

including straightaways and curves, as well as 

different driving conditions, which are crucial for 

training a model capable of generalizing to unseen 

scenarios. 

 

A. Addressing Steering Angle Bias 

An initial analysis of the collected steering angle 

data revealed a significant bias towards zero values, 
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indicating a predominance of straight driving 

segments in the dataset. This imbalance can 

negatively impact the training process, leading to a 

model that is less adept at handling turns. To 

mitigate this bias and ensure a more balanced 

representation of driving maneuvers, a data 

balancing technique was employed. The distribution 

of steering angles was discretized into a predefined 

number of bins. For each bin, the number of data 

points exceeding a determined threshold was 

identified and a corresponding number of data 

points with near-zero steering angles were 

selectively removed. The following graph illustrates 

the issue: 

 
 

III. DATA AUGUMENTATION 

 

To enhance the robustness and generalization 

capability of the trained CNN model, several data 

augmentation techniques were applied to the 

training images. These augmentations introduce 

artificial variations in the training data, making the 

model less sensitive to specific conditions and more 

capable of handling unseen environments. The 

augmentation techniques employed include: 

 

A. Zoom 

Randomly zooms into the image, simulating 

variations in the perceived scale of objects on the 

road. This helps the model focus on different 

regions of interest and become scale-invariant to 

some extent. 

 
 

B. Pan (Translation) 

Randomly shifts the image horizontally and 

vertically within a small range. This simulates slight 

changes in the camera's viewpoint and helps the 

model learn features that are not strictly centered in 

the frame. 

 
 

C. Image Random Brightness 

Randomly adjusts the brightness of the image. This 

makes the model more resilient to variations in 

lighting conditions, such as shadows or bright 

sunlight. 

 
 

D. Image Flip (Horizontal Flip) 

Randomly flips the image horizontally 

simultaneously negates the steering values. Since 

turns (left or right) do not occur same number of 

times in the data, this augmentation helps the model 

learn to recognize them regardless of their 

occurrences. 

 
 

IV. IMAGE PREPROCESSING 

 

Prior to being fed into the CNN model, the captured 

images undergo a series of essential preprocessing 

steps, implemented by the img_preprocess function: 

 
These steps are crucial for preparing the images in a 

format that is optimal for the CNN:  
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A.  Region of Interest (ROI) Cropping: 

The first step crops the input image to focus on the 

relevant portion of the scene, specifically the road 

ahead. The top part of the image (sky, distant 

scenery) and the bottom part (hood of the car) are 

removed as they provide less pertinent information 

for lane detection and steering prediction. 

B.  Color Space Conversion: 

Then the image is converted from the RGB color 

space to the YUV color space. The Y channel 

represents luminance (brightness), while the U and 

V channels represent chrominance (color). This 

conversion is often beneficial in vision tasks as it 

separates the intensity information from the color 

information, potentially making the model less 

sensitive to color variations caused by lighting 

changes. 

C.  Gaussian Blurring: 

Then a Gaussian blur filter is applied to the image. 

This step helps to reduce high-frequency noise and 

smooth out the image, which can improve the 

robustness of subsequent feature extraction by the 

CNN. The (3, 3) kernel size specifies the extent of 

the blur, and 0 indicates that the standard deviation 

is automatically calculated. 

D.  Image Resizing: 

After that the processed image is resized to a 

dimension of 200 pixels in width and 66 pixels in 

height. This resizing is essential to ensure that all 

input images have a consistent size before being fed 

into the CNN, as the network architecture typically 

expects a fixed input shape. This step also helps in 

reducing the computational cost of training the 

model. 

E.  Normalization: 

The pixel values of the resized image are 

normalized by dividing them by 255. This scales the 

pixel values to the range of [0, 1]. Normalization 

helps in stabilizing the training process and can lead 

to faster convergence of the CNN model. 

 
These data collection and preprocessing steps are 

critical for creating a high-quality dataset that 

effectively trains the behavior cloning model to 

perform robust and accurate autonomous navigation. 

 

V. METHODOLOGY 

 

The methodology employed in this research 

involves training a Convolutional Neural Network 

(CNN) to predict steering angles from preprocessed 

images. The dataset, after the balancing procedure 

described in the Data Augumentation and Image 

Preprocessing section, is further partitioned into 

training and testing sets. This split is crucial for 

evaluating the model's ability to generalize to 

unseen data. The CNN model is trained on the 

training set, and its performance is assessed using 

the testing set. 

 

A.  CNN Model Architecture: 

The CNN architecture used in this research is as 

follows: 

 
The model uses the Adam optimizer with a learning 

rate of 1e-3 and is compiled with a mean squared 

error (MSE) loss function. 
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The model architecture consists of the following 

layers: 

i) Convolutional Layers: Four convolutional layers 

with 5x5 filters and strides of 2x2 (except the fourth 

layer) are used for feature extraction. The number of 

filters increases from 24 in the first layer to 64 in the 

fourth layer. ELU activation functions are applied 

after each convolutional layer. 

ii) Flatten Layer: The output of the final 

convolutional layer is flattened into a 1D vector. 

iii) Dense Layers: Three fully connected (dense) 

layers with 100, 50, and 10 neurons, respectively, 

are used. ELU activation functions are applied after 

the first two dense layers. 

iv) Output Layer: A single-neuron output layer 

predicts the steering angle. 

 

B.  Training: 

The training process involves feeding the CNN 

model with preprocessed images from the center, 

left, and right cameras as input. The model then 

predicts a steering angle based on the learned 

features from these images. This predicted steering 

angle is compared to the actual steering angle 

recorded during the human driving sessions. The 

difference between the predicted and actual steering 

angle constitutes the error. This error signal is then 

used to update the weights of the CNN through a 

process called backpropagation. The 

backpropagation algorithm adjusts the network's 

weights in a way that minimizes the error in 

subsequent predictions. This iterative process of 

feeding data, predicting, calculating error, and 

adjusting weights is repeated over multiple epochs 

until the model learns to accurately predict steering 

angles from the input images. 

The model is trained using a generator that yields 

batches of training data. The fit_generator function 

is used for training, with the following parameters: 

i) Batch size: 100 

ii) Steps per epoch: 300 

iii) Number of epochs: 2 

iv) Validation data generator 

v) Validation steps: 200 

vi) Verbose: 1 (displays training progress) 

vii) Shuffle: 1 (shuffles the training data) 

 
 

VI. RESULTS 

 

The training process resulted in a model that predicts 

steering angles. The training output shows the loss 

values for each epoch, indicating how well the 

model is learning. 

 
An image from the center camera is fed as input to 

the CNN. The network, having learned the 

relationship between visual features and steering 

commands during the training phase, processes 

this input image and outputs a predicted steering 

angle. This predicted steering angle is then used to 

control the virtual vehicle within the Udacity 

autonomous drive simulator, enabling it to 

navigate the simulated environment. 

 

The output indicates that the training loss 

decreased significantly from 0.2365 in the first 

epoch to 0.0625 in the second epoch, and the 

validation loss also decreased from 0.0597 to 

0.0396. This substantial reduction in both training 

and validation loss suggests that the model is 

learning effectively and generalizing well to the 

validation data. 

 



© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 179494   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      7605 

VII. CONCLUSION 

 

The successful training of a CNN model to predict 

steering angles based on visual input from the 

Udacity simulator demonstrates the feasibility of an 

end-to-end behavior cloning approach for 

autonomous driving. The significant reduction in 

both training and validation loss over the two 

epochs indicates that the model has learned to map 

image features to appropriate steering commands 

and exhibits reasonable generalization to unseen 

data. The illustrative accuracy metrics further 

suggest the model's potential for precise steering 

control. While these simulated results are promising, 

further evaluation on a more extensive dataset and 

in more complex simulated and real-world scenarios 

is necessary to fully assess the system's robustness 

and reliability. 

 

VIII.  INDUSTRY RELEVANCE 

 

This research focuses on developing a cost-efficient, 

camera-only autonomous driving system, reducing 

the need for expensive sensors like LiDAR and 

radar. Its modular design makes it adaptable for 

various applications, including Advanced Driver 

Assistance Systems (ADAS), robotics, and smart 

mobility solutions. The system's simplicity and 

scalability offer strong potential for real-world 

applications, academic research, and industry-

focused autonomous vehicle development. The 

behavior cloning approach allows for the rapid 

development of driving capabilities by learning 

directly from human demonstrations, potentially 

accelerating the deployment of autonomous systems 

in specific operational design domains. 

 

IX. SCOPE OF FUTURE RESEARCH 

 

A.  INCORPORATING ADVANCED PRE-

TRAINED MODELS 

Leveraging the power of transfer learning by 

incorporating advanced pre-trained models, such as 

those trained on large-scale image datasets (e.g., 

ImageNet) or even video datasets, could 

significantly enhance the feature extraction 

capabilities of the steering prediction model. Fine-

tuning these pre-trained architectures on the driving 

dataset could lead to improved accuracy and 

robustness, especially in handling diverse and 

challenging environmental conditions. 

 

B.  EXPANDING THE DATASET 

The performance of behavior cloning models is 

heavily reliant on the quality and diversity of the 

training data. Future work should focus on 

expanding the dataset to include a wider range of 

driving scenarios, including adverse weather 

conditions (rain, snow, fog), varying lighting 

conditions (night driving, glare), more complex 

traffic situations, and diverse road types (unpaved 

roads, construction zones). Additionally, exploring 

techniques for synthetic data generation could 

augment the real-world data and improve the 

model's generalization. 

 

C.  HYBRID APPROACH 

Combining behavior cloning with other autonomous 

driving techniques, such as model-based control or 

reinforcement learning, could lead to more robust 

and adaptable systems. For instance, a model-based 

component could handle low-level control, while 

behavior cloning provides high-level strategic 

decision-making. Reinforcement learning could be 

used to fine-tune the behavior cloned policy for 

improved safety and efficiency. 
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