
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 179809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8227

An Efficient Caching Scheme and Consistency

Maintenance in Hybrid P2p System

Ms. N. Sruthilaya1, Mr.S. Sundareshwaran2

1Assistant Professor, Department of MCA, Mohamed Sathak Engineering College.
2Final year MCA, Mohamed Sathak Engineering College

Abstract—It has been observed that transient failures are

common in IP backbone networks and there have been

several proposals based on local fast rerouting to provide

high network availability despite failures. While most of

these proposals are effective in handling single failures,

they either cause loops or drop packets in the case of

multiple independent failures. To ensure forwarding

continuity even with multiple failures, we propose

Localized On-demand Link State (LOLS) routing. Under

LOLS, each packet carries a blacklist, which is a minimal

set of failed links encountered along its path, and the next

hop is determined by excluding the blacklisted links. We

show that the blacklist can be reset when the packet

makes forward progress towards the destination and

hence can be encoded in a few bits. Furthermore,

blacklist-based forwarding entries at a router can be

precomputed for a given set of failures requiring

protection. While the LOLS approach is generic, this

paper describes how it can be applied to ensure

forwarding to all reachable destinations in case of any

two links or node failures.

Index Terms—Network Availability, Transient Failures,

Local Fast Rerouting, Link State Routing, Fault

Tolerance.

1.INTRODUCTION

The Internet is increasingly being used for mission

critical applications, and it is expected to be always

available. Unfortunately, service disruptions happen

even in well-managed networks due to link and node

failures. There have been some studies on frequency,

duration, and type of failures in an IP backbone

network. [2] reported that failures are common and

most of them are transient: 46% last less than a minute

and 86% last less than ten minutes. To support

emerging time-sensitive applications in today’s

Internet, these networks need to survive failures with

minimal service disruption. For example, a disruption

time of longer than 50 ms is considered intolerable for

mission-critical applications [4]. Therefore, providing

uninterrupted service availability despite transient

failures is a major challenge for service providers.

While most of the failures were observed to be single

failures, one study [2] has found that approximately

30% of unplanned failures (which constitute 80% of

all failures) involve multiple links, which is a

significant fraction that needs to be addressed.

Moreover, the extent of service disruption caused by

multiple failures can be quite significant. Hence, it is

important to devise schemes that protect the network

against not only single failures but also multiple

independent failures. Our work is motivated by this

need, which is also the focus of some of the recently

proposed routing schemes. The commonly deployed

link state routing protocols such as OSPF and ISIS are

designed to route around failed links, but they lack the

resiliency needed to support high availability [1]. The

remedies suggested in [8], [9] can achieve

convergence in less than one second. However,

bringing it down below the 50ms threshold runs the

risk of introducing routing instability due to hot-potato

routing, which can cause relatively small internal link-

state changes to trigger a large churn of external routes

[10]. MPLS [11] can handle transient failures

effectively with its label stacking capability. However,

we argue that it is not scalable to configure many

backups label switched paths for protection against

various combinations of multiple independent failures.

In [12], authors attempt to make MPLS based recovery

scalable to multiple failures but assume that probable

failure patterns based on past statistics on the network

failures are known to the MPLS control plane.

2. LITERATURE SURVEY

 Mastering Caching in Java: Key Concepts and

Implementation Details by Ahmet Temel Kundupoglu

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 179809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8228

(2025). This article provides an in-depth exploration

of caching techniques in Java applications, covering

essential concepts such as Time-to-Live (TTL), cache

invalidation, publish-subscribe caching, write-through

caching, distributed locking, and the Redlock

algorithm. Kundupoglu offers practical examples

using libraries like Caffeine, Guava, and Redisson,

demonstrating how to implement these caching

strategies to enhance application performance and

scalability.

Understanding Application-Level Caching in Web

Applications: A Comprehensive Introduction and

Survey of State-of-the-Art" by Jhonny Mertz and

Ingrid Nunes (2020). This comprehensive survey

delves into application-level caching within web

applications, emphasizing the integration of caching

logic directly into the application's codebase. The

authors discuss the benefits of this approach, such as

improved performance and scalability, and address

challenges like cache invalidation and consistency.

The paper also reviews adaptive caching solutions that

adjust to changing workloads to prevent performance

degradation over time.

Improving Java Performance and Energy Dissipation

through Efficient Code Caching by Yu Sun and Wei

Zhang (2009). Although published slightly earlier, this

study remains relevant as it investigates hardware-

based code catching strategies aimed at enhancing

Java application performance and reducing energy

consumption. The authors propose methods for

writing dynamically generated Java code directly into

the instruction cache, bypassing traditional pathways

that involve the data cache.

Ehcache: Java’s Open-Source Cache" (2022) by Greg

Luck.Ehcache offers features like in-memory data

storage, disk overflow, and distributed caching. Its

straightforward API and robust functionality make it a

popular choice for developers seeking to implement

caching in Java applications. Merits: 1. High

Performance: Ehcache is designed for high

performance and can handle large volumes of

data.Ehcache allows for flexible configuration,

including cache size, expiration policies, and cache

clustering. Ehcache's flexible configuration can also

make it complex to configure, especially for

beginners.Ehcache has a steep learning curve,

requiring significant time and effort to master.

Exploring Advanced Caching Patterns in Java by

Emily Chen (2023). This article examines

sophisticated caching patterns in Java, including read-

through, write-behind, and cache-aside strategies.

Chen discusses the scenarios where each pattern is

most effective and provides implementation examples

using modern Java frameworks. The article also

addresses common pitfalls in caching, such as cache

stampedes and data inconsistency, offering solutions to

mitigate these issues. Advanced caching patterns can

significantly improve the performance of Java

applications by reducing the number of database

queries and computations. Advanced caching patterns

can help Java applications handle increased traffic and

user loads without compromising performance.

2.1 EXISTING SYSTEM: The existing system

describes the concept does not describe how the packet

to redirected once node within the path is unavailable

or corrupted. This scheme uses a separate cache layer

to store data, and the application is responsible for

maintaining cache consistency.

This scheme uses a cache layer to store data, and the

cache is updated whenever data is read from the

underlying storage of multipath routing from the

source to root within the network. It also has various

techniques to handle data loss, delayed timing, loss of

acknowledgement.

But it did. When the energy of a sensor node is

exhausted, wireless sensor network leaks will appear,

and the failed nodes will not relay data to the other

nodes during transmission processing. Thus, the other

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 179809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8229

sensor nodes will be burdened with increased

transmission processing. This scheme uses a separate

cache layer to store data, and the application is

responsible for maintaining cache consistency. This

scheme uses a cache layer to store data, and the cache

is updated whenever data is read from the underlying

storage. This scheme uses a cache layer to store data,

and the cache is updated whenever data is written to

the underlying storage.

2.2 PURPOSE OF WORK

The purpose of this project is to design and develop an

efficient caching scheme and consistency maintenance

mechanism for Hybrid Peer-to-Peer (P2P) systems.

The goal is to improve the performance, scalability,

and reliability of Hybrid P2P systems by reducing

latency, minimizing data inconsistencies and ensuring

seamless data sharing among peers.

2.3 PROPOSED SYSTEM

We propose Fault Node Recovery. Under this

technique, each packet carries a blacklist, which is a

minimal set of failed links encountered along its path,

and the next hop is determined by excluding the

blacklisted links. We show that the blacklist can be

reset when the packet makes forward progress towards

the destination and hence can be encoded in a few bits.

This scheme combines the benefits of cache aside,

read-through, and write-through schemes to provide

an efficient and consistent caching mechanism. The

algorithm proposed in this paper is based on the GD

algorithm, with the goal of replacing fewer sensor

nodes that are inoperative or have depleted batteries,

and of reusing the maximum number of routes. These

optimizations will ultimately enhance the WSN

lifetime and reduce sensor node replacement cost. The

proposed scheme reduces the number of caches

missing and improves overall system performance.

The proposed scheme ensures cache consistency by

updating the cache layer whenever data is read or

written.

3.MODULES

3.1. Blacklist

Each packet carries a blacklist (a minimal set of

degraded links encountered along its path), and the

next hop is determined by excluding the blacklisted

links. A packet’s blacklist is initially empty and

remains empty when there is no discrepancy between

the current and the advertised states of links along its

path. But when a packet arrives at a node with a

degraded link adjacent to its next hop, that link is

added to the packet’s blacklist. The packet is then

forwarded to an alternate next hop. The packet’s

blacklist is reset to empty when the next hop makes

forward progress, i.e., the next hop has a shorter path

to the destination than any of the nodes traversed by

the packet.

3.2. Multipath Routing

Multipath routing is a promising routing scheme to

accommodate these requirements by using multiple

pairs of routes between a source and a destination.

Multipath routing is the routing technique of using

multiple alternative paths through a network, which

can yield a variety of benefits such as increased

bandwidth, or improved security. The multiple paths

computed might be overlapped, edge-disjointed or

node-disjointed with each other. Extensive research

has been done on multipath routing techniques.

3.3. Directed Diffusion Algorithm

The goal of the DD algorithm is to reduce the data

relay transmission counts for power management. The

DD algorithm is a query-driven transmission protocol.

The collected data is transmitted only if it matches the

query from the sink node. In the DD algorithm, the

sink node provides the queries in the form of attribute-

value pairs to the other sensor nodes by broadcasting

the query packets to the whole network. Subsequently,

the sensor nodes send the data back to the sink node

only when it fits the queries.

3.4. Grade Diffusion Algorithm

The GD algorithm not only creates the routing for each

sensor node but also identifies a set of neighbour nodes

to reduce the transmission loading. Each sensor node

can select a sensor node from the set of neighbour

nodes when its grade table lacks a node able to perform

the relay. The GD algorithm can also record some

information regarding the data relay. Then, a sensor

node can select a node with a lighter loading or more

available energy than the other nodes to perform the

extra relay operation. That is, the GD algorithm

updates the routing path in real time, and the event data

is thus sent to the sink node quickly and correctly.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 179809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8230

3.5. Fault Node Recovery

Fault node recovery (FNR) algorithm for WSNs based

on the grade diffusion algorithm combined with the

genetic algorithm. The FNR algorithm creates the

grade value, routing table, neighbor nodes, and

payload value for each sensor node using the grade

diffusion algorithm. In the FNR algorithm, the number

of nonfunctioning sensor nodes is calculated during

the wireless sensor network operation, The sensor

nodes transfer the event data to the sink node

according to the GD algorithm when events appear.

3.6. Fast Reroute

Techniques developed for fast recovery from multiple-

link failures provide more than one forwarding edge to

route a packet to a destination. Whenever the default

forwarding edge fails or a packet is received from the

node attached to the default forwarding edge for the

destination, the packets are rerouted on the backup

ports. In the authors present a framework for IP fast

reroute detailing three candidate solutions for IP fast

reroute that have all gained considerable attention.

When a forwarding link on a tree fails, the packet may

be switched to the other tree.

4. RESULT AND CONCLUSION

In real wireless sensor networks, the sensor nodes use

battery power supplies and thus have limited energy

resources. In addition to routing, it is important to

research the optimization of sensor node replacement,

reducing the replacement cost, and reusing the most

routing paths when some sensor nodes are

nonfunctional. This paper proposes a fault node

recovery algorithm for WSN based on the grade

diffusion algorithm combined with a genetic

algorithm. The FNR algorithm requires replacing

fewer sensor nodes and reuses the most routing paths,

increasing the WSN lifetime and reducing the

replacement cost. In the simulation, the proposed

algorithm increases the number of active nodes up to

8.7 times. The number of active nodes is enhanced

3.16 times on average after replacing an average of 32

sensor nodes for each calculation. The algorithm

reduces the rate of data loss by approximately 98.8%

and reduces the rate of energy consumption by

approximately 31.1%. Therefore, the FNR algorithm

not only replaces sensor Since mobile nodes are

moving in the network, we should save more battery

lifetime, bandwidth and threshold in future nodes, but

also reduces the replacement cost and reuses the most

routing paths to increase the WSN lifetime.

5. FUTURE ENHANCEMENT

Deploy ability. We can evaluate the overhead due to

LOLS using several large real topologies and shown

that it scales better than the recently proposed scheme

FCP which has similar failure resilience objectives.

Our plan is to implement a prototype of LOLS using

Mini net to demonstrate it does deploy ability. We can

evaluate the overhead due to LOLS using several large

real topologies and shown that it scales better than the

recently proposed

scheme FCP which has similar failure resilience

objectives. In future, we can enhance this concept with

thousands of nodes. In which we can construct sensor

nodes to transfer the data and a sink node to hold the

data.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining

Association Rule between Sets of Items in Large

Databases,” Proc. ACM SIGMOD Conf. on

Management of Data, pp. 207-216, May 2023.

[2] R. Agrawal and R. Srikant, “Fast Algorithm for

Mining Association Rules,” Proc. Int’l. Conf. on

Very Large Databases, pp. 478- 499, Sept. 2024.

[3] R. Agrawal and R. Srikant, “Mining Sequential

Patterns,” Proc. Int’l. Conf. on Data Engineering,

pp. 3-14, Mar. 2023.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,

and D. J. Lipman, “Basic Local Alignment Search

Tool,” J. of Molecular Biology, vol. 215, no. 3, pp.

403-410, Oct. 2022.

[5] M.-S. Chen, J.-S. Park, and P. S. Yu, “Efficient

Data Mining for Path Traversal Patterns,” IEEE

Trans. on Knowledge and Data Engineering, vol.

10, no. 2, pp. 209-221, Apr. 2022.

[6] J. Han and M. Kamber, “Data Mining: Concepts

and Techniques, 2nd Edition,” Morgan

Kaufmann, Sept. 2000.

