Business Card Scanner Application

Varsha Dange¹, Shraddhesh Tamhane², Abhishek Sondkar³, Soniya Warade4, Soham Thakkar⁴, Sujal Thakur⁶

^{1,2,3,4,5,6}Department of Information Technology, Vishwakarma Institute of Technology, Pune, India

Abstract—Giving your business card is still a popular method of exchanging contact details at work. But it is tedious and error-filled to add these details one by one. What this project offers is an application that lets you use your phone to scan any business cards. The images are run through Optical Character Recognition (OCR) and are also enriched with AI to recognize names, titles, phone numbers and email addresses from them. All the data is set up for users to see, save and access from their dashboards. Managing campaigns, users and subscriptions is possible from the web interface. The system went through testing using several OCR programs and AWS Textract was discovered to have the greatest number of correct results. The tool provides a practical system for handling and exporting business cards electronically.

Index Terms—Campaign Tracking, Contact Management, Entity Recognition, Lead Capture, OCR, PostgreSQL, React, React Native, AWS Textract, Business Card Scanner.

I. INTRODUCTION

At most events, conferences and meetings, business cards are widely used to connect people in the industry. Manually adding all of those contacts to your phone or CRM system can be slow and boring. With this app, OCR and AI technology will automatically read and arrange your business card contacts.

Using the app, people can scan the information from both the front and back of a business card. The software saves main details—including the person's name, company, position, phone and email—all together in one place. Users have the option to label contacts with names from ongoing campaigns, filter and group their leads and export the data they require.

The project extracts data from business cards in any shape or layout by combining OCR and AI-based entity recognition. On the web dashboard, admins can both add users and manage their campaigns.

In general, this project allows individuals and teams to control their contact list with much less manual work.

II. LITERATURE REVIEW

	Title	Auth	Approa	Advanta	Disadva
		or(s)	ch	ges	ntages
	Automat	Piyu	Image	Standalo	Limited
	ic	sh	process	ne app,	scope of
	Contact	Shar	ing	handles	extracted
	Importer	ma,	with	occlusio	details
	from	Kacy	OpenC	ns and	(name,
	Busines	n	V and	poor	phone,
	s Cards	Fujii	Tessera	lighting	email),
	for		ct	well,	depends
	Android		OCR;	integrate	heavily
			C++ for	s with	on
			preproc	address	Tesserac
			essing,	book	t for
			JNI for		OCR
			Androi		accuracy
			d		
			integrat		
			ion		
İ	Design	Xi-	Multi-	High	Comple
	and	Ping	resoluti	computa	xity in
	impleme	Luo,	on	tion	impleme
	ntation	Jun	analysis	speed,	ntation,
	of a card	Li,	for	lower	may
	reader	Li-	faster	memory	require
	based	Xin	text	require	higher
	on built-	Zhen	detectio	ments,	processi
	in		n and	improve	ng
	camera		reduced	d OCR	power
			memor	speed	for
			y usage	through	multi-
				two-	resolutio

			layer	n
			classifie	analysis
			r	
Android	Isla	Androi	Simple	Lacks
Project	m,	d-based	impleme	focus on
Busines	A.	busines	ntation	advance
s Card:	K.	s card	using	d image
Ecard	M.	applicat	Java and	processi
		ion	Android	ng and
		develop	SDK,	OCR
		ed	customi	function
		using	zable UI	ality
		Java,		
		custom		
		layouts,		
		and		
		Androi		
		d		
		Studio		
A robust	S. K.	Uses	Highly	Requires
mobile	Ong,	Mobile	accurate	barcode
business	D.	Multi-	, avoids	on cards,
card	Chai,	Colour	issues	reliance
reader	A.	Compo	with	on
using	Rass	site	OCR	specific
MMCC	au	(MMC	failures,	printing
barcode		C)	works	methods,
		barcode	well	limits
		to store	with	adoption
		and	mobile	to cards
		read	cameras	with
		busines		barcodes
		s card		
		details		

III. SYSTEM ARCHITECHTURE

1. Mobile Application (User Interface)

The mobile app is built using React Native, making it compatible with both Android and iOS devices. It allows users to:

- Scan the front and optionally the back of business cards.
- Add notes and campaign-specific tags before saving.
- View, edit, and manage scanned leads through a user-friendly interface.
- 2. OCR and AI-Based Entity Extraction

When a card is scanned, the image is first processed through an OCR engine (like AWS Textract) to extract raw text. This text is then passed to an AI entity recognition module—initially using OpenAI's API—to intelligently identify key details such as:

- Person's name
- Company name
- Designation
- Contact numbers
- Emails
- Website, LinkedIn, Instagram
- Address and other custom fields

The system is designed to handle multiple values for each field, such as multiple phone numbers or email addresses.

3. Web Application (Admin Interface)

The web dashboard, developed using React, Vite, and Tailwind CSS, is primarily used by organization admins. From here, they can:

- Create and manage campaigns
- Add or remove users
- Monitor progress (e.g., leads captured vs campaign goals)
- View and edit all collected lead data

This admin dashboard is accessible only to authorized users with specific roles like Org Admin or Super Admin.

4. Backend Server

The backend is built with Node.js and Express.js. It provides APIs for:

- User authentication (sign-up, login, OTP verification)
- Role-based access control
- Card scan data submission and retrieval
- Campaign and user management

This layer acts as the bridge between the frontend and the database, handling all business logic.

5. Database

The project uses PostgreSQL as the primary database. It stores:

- User profiles and roles
- Scanned card data (images, extracted text, timestamps)
- Campaign details and user assignments
- Tags, comments, and manual entries

PostgreSQL's support for structured data and relationships makes it a reliable choice for managing complex, multi-tenant information.

IV. METHODOLOGY & IMPLEMENTATION

Planning and designing took place first, then frontend development, next backend development and finally adding OCR and entity extraction using AI to the project. Ensuring all users found the software pleasant to use while still making sure the data was accurate from business cards was a priority.

4.1 Planning and Design

The project started with designing the overall user flow and interface. Wireframes for both the mobile and web applications were created using Figma, keeping usability and minimal interaction in mind. A project flow diagram was prepared to define the interactions between users, campaigns, and lead data.

4.2 Frontend Development

- The mobile app was developed using React Native, enabling cross-platform support for Android and iOS.
- The web app interface for admins was built using React, Vite, and Tailwind CSS for a responsive and fast user experience.
- Both platforms were designed to support user authentication, card scanning, campaign tracking, and lead management.

4.3 Backend Development

- A lightweight backend was built using Node.js and Express.js to handle APIs for user management, lead storage, campaign creation, and data filtering.
- APIs were structured with role-based access, ensuring that features are available only to the correct user types (User, Org Admin, Super Admin).

4.4 Database Design

- PostgreSQL was used to store structured data, including user information, scanned leads, campaign metadata, and tagging information.
- Relationships were carefully mapped to support multi-tenant architecture and campaign-based filtering.

4.5 OCR and Entity Extraction

One of the key challenges was reliably converting unstructured text from business cards into wellorganized digital fields.

OCR Tool Comparison

To determine the most effective OCR tool, we compared multiple services including:

- AWS Textract
- Tesseract OCR (open-source)
- Google Vision API

These tools were evaluated based on accuracy, speed, ease of integration, and ability to handle various fonts, layouts, and image clarity. AWS Textract showed consistently better results for structured extraction and was chosen for this project.

Entity Recognition

After OCR, raw text is sent to OpenAI's API for entity recognition. We tested different prompting techniques to improve accuracy in:

- Identifying multiple phone numbers, emails, or social links
- Parsing names, designations, and companies from different layouts
- Handling unusual formats or mixed languages This helped us refine prompts and structure the extracted data effectively. We also explored fallback rules in case the AI missed specific fields.

4.6 Lead Management and Campaign Tracking

- Users can view, edit, and organize their scanned leads inside the app.
- Campaigns are used to group leads for specific events or purposes.
- Admins can assign users to campaigns, track progress against lead goals, and review campaign-wise analytics.

V. EVALUATION AND RESULTS

A key part of this project involved evaluating how well different OCR tools could extract meaningful information from real-world business card images. Since business cards vary widely in design, fonts, layouts, and even language, it was important to choose a tool that could handle this variability with high accuracy.

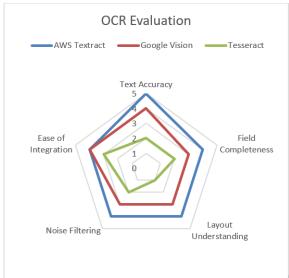
OCR Tools Compared

During development, the following OCR options were tested:

- AWS Textract
- Google Cloud Vision API
- Tesseract OCR (open-source)

Each tool was integrated into a test setup where the same set of business card images were processed and the output was compared based on accuracy, clarity of text extraction, and ease of parsing.

Test Dataset

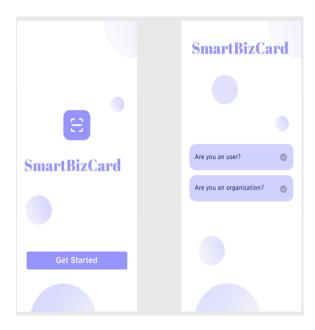

A dataset of 50+ business card images was used for evaluation. These cards included:

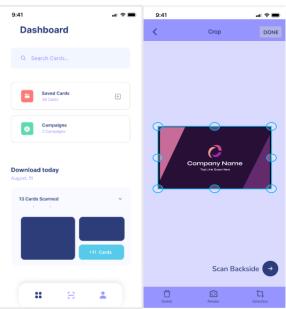
- Minimalistic designs with clean text
- Visually heavy cards with logos, icons, and decorative fonts
- Cards with multiple phone numbers, emails, and addresses
- Cards with non-standard layouts (e.g., vertical orientation or dense blocks of text)

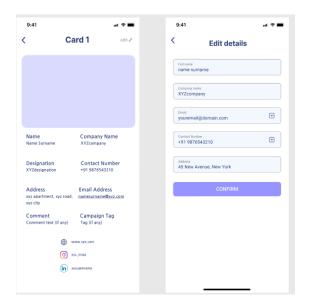
Performance Metrics

Each OCR tool was evaluated based on:

- Text accuracy: How correctly it read the printed text
- Field completeness: Whether all key elements (name, phone, email, etc.) were captured
- Noise filtering: Ability to ignore irrelevant elements like design artifacts
- Layout understanding: How well the tool grouped related items together

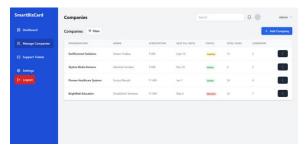

Results


- AWS Textract performed the best overall. It handled both simple and complex card layouts with high accuracy, and was able to extract multiple fields cleanly.
- Google Vision API produced decent results for simpler cards but sometimes missed grouped information or misclassified details.
- Tesseract, while free and customizable, struggled with modern card layouts and had the highest rate of errors, especially in design-heavy cards.


Entity Recognition Results

The raw text from OCR was then fed to an AI model (via OpenAI API) to find out names, job roles and contact information. Because of this, the software became smarter at understanding the raw text, especially when its structure made straightforward extraction tough.

After manual review, using AWS Textract and AI entity recognition resulted in an average correctness of more than 90% in accessing business card features from the dataset.



VI. CONCLUSION

With the use of OCR and AI, this project shows how a practical and quick business card scanner app can be developed. Since users can gather and sort business cards into an app, it handles a challenge faced by many companies and professionals.

With entity recognition, AWS Textract was the quickest and most precise tool by far for extracting clean data from different card layouts. Using the app, users have access to tagging, organizing leads and seeing admin dashboards; it isn't only used for scanning alone.

React, React Native, Node.js and PostgreSQL are among the modern tools used to build the system so it works well on both the mobile and web sides.

VII. FUTURE SCOPE

While the current version of the project meets the primary objectives, there are several areas for future improvement and expansion:

- Advanced Analytics: Adding dashboards for tracking user activity, campaign performance, and lead conversion rates.
- CRM Integrations: Syncing the app with popular CRM tools like HubSpot, Salesforce, or Zoho to streamline follow-ups.
- In-App Communication: Allowing users to send emails or messages to scanned contacts directly from the app.
- Multilingual OCR: Expanding OCR capabilities to support multiple languages and regional business card formats.
- Offline Scanning: Enabling card scanning and temporary data storage even when the device is offline.

These improvements would make the app even more valuable to businesses looking to modernize their contact management process.

REFERENCES

- [1] Sharma, Piyush, and Kacyn Fujii. "Automatic contact importer from business cards for Android." (2013).
- [2] Xi-Ping Luo, Jun Li and Li-Xin Zhen, "Design and implementation of a card reader based on build-in camera," Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., Cambridge, UK, 2004, pp. 417-420 Vol.1, doi: 10.1109/ICPR.2004.1334142.

- [3] S. K. Ong, D. Chai and A. Rassau, "A robust mobile business card reader using MMCC barcode," 2011 IEEE Symposium on Computers & Informatics, Kuala Lumpur, Malaysia, 2011, pp. 656-661, doi: 10.1109/ISCI.2011.5958994.
- [4] Islam, A. K. M. Android Project Business Card: Ecard. Diss. East West University, 2017.

461