A Comprehensive Skill Management Framework for Agile Teams

Kajin Karunakaran¹, Chandni K Nair², Ajish K B³

^{1,2} Scrum Master, Siemens Technology and Services Pvt Ltd, Bengaluru, India

³ Software Architect, Siemens Technology and Services Pvt Ltd, Bengaluru, India

Abstract- Knowledge and skill management within agile software development teams presents unique challenges due to their dynamic nature and evolving requirements. This paper introduces a structured yet lightweight framework for measuring, tracking, and developing skills within Scrum teams. The framework employs a competency matrix approach with a four-level rating system (None, Basic, Advance, Expert) implemented through collaborative assessment sessions. Data from three teams demonstrates how this approach enables transparent skill visualization, targeted development planning, and effective cross-team knowledge transfer. The framework's evolution into a web-based organizational platform further enhances its capability to identify experts, facilitate knowledge sharing, and provide management with actionable insights for workforce planning. Results indicate significant improvements in onboarding efficiency, development, and the establishment of a continuous learning culture within the organization. This paper comprehensive implementation presents challenges encountered, mitigation strategies, and quantifiable outcomes that validate the framework's effectiveness across multiple assessment cycles.

Index Terms: Agile teams, Competency assessment, Knowledge sharing, Skill management, Software development teams

I. INTRODUCTION

In contemporary software development organizations, the effective management of team competencies has become increasingly crucial for maintaining competitive advantage and ensuring project success. Agile methodologies, particularly Scrum, have been widely adopted for their flexibility and focus on iterative delivery. However, this adaptability creates unique challenges in systematically tracking, measuring, and developing the skills necessary for teams to perform optimally.

Traditional approaches to skill management often rely on centralized HR systems or annual performance reviews that are misaligned with the dynamic nature of agile teams. These systems typically fail to provide timely insights into skill gaps, lack integration with daily workflows, and offer limited support for the knowledge sharing that is vital in agile environments. Furthermore, they rarely consider the team as a collective unit of competence, focusing instead on individual assessments disconnected from project requirements.

The challenges faced by agile teams in skill management can be categorized into several critical areas:

- 1. Rapidly Evolving Technology Landscape: The accelerating pace of technological change requires continuous upskilling, making traditional annual assessment cycles inadequate for identifying emerging gaps.
- 2. Knowledge Silos: Specialized knowledge often becomes concentrated within individual team members, creating dependencies and vulnerabilities when those individuals are unavailable or leave the organization.
- Tacit Knowledge Transfer: Many critical skills in software development rely heavily on tacit knowledge that is difficult to document and formalize, requiring dedicated mechanisms for transfer.
- 4. Cross-functional Requirements: Agile teams thrive when members have T-shaped skill profiles (deep expertise in one area with broader capabilities across multiple domains), necessitating a framework that captures this multidimensional aspect.
- Alignment with Business Objectives: Skill
 development initiatives must be strategically
 aligned with organizational goals and project
 requirements rather than pursued as isolated
 learning activities.

This research addresses these limitations by proposing a framework specifically designed for Scrum teams that:

- 1. Establishes a consistent method for measuring individual and collective competencies
- 2. Integrates skill assessment into regular team activities
- Provides mechanisms for targeted knowledge transfer
- Enables data-driven decision-making for skill development
- 5. Evolves with changing project requirements and technologies
- 6. Supports both tactical team improvements and strategic organizational planning

The framework was implemented across three Scrum teams within a software development organization, with data collected over multiple assessment cycles spanning 18 months. The results demonstrate significant improvements in team capability transparency, knowledge sharing efficiency, and targeted skill development planning.

II. SKILL ASSESSMENT IN SOFTWARE ENGINEERING

Previous research has explored various approaches to skill assessment in software engineering. Balcar et

al. [1] conducted a comprehensive review of competency models and found that technical skills assessments often lack standardization across organizations. Santos et al. [2] highlighted the challenges of maintaining accurate skill inventories in rapidly evolving technical environments.

Curtis et al. [3] proposed the People Capability Maturity Model (P-CMM), which addresses workforce development through staged capability levels. While comprehensive, P-CMM implementations often require significant organizational commitments that may exceed the resources available to small and medium-sized enterprises.

III. KNOWLEDGE MANAGEMENT IN AGILE TEAMS

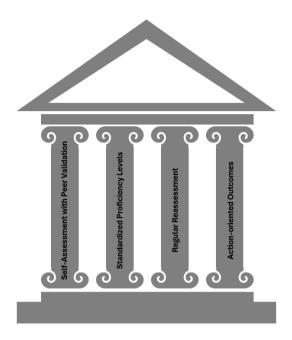
Knowledge management within agile teams has been explored by several researchers. Much research has investigated knowledge transfer mechanisms in distributed agile teams and identified several challenges related to tacit knowledge sharing.

Seth et al. [4] specifically addressed the challenges of knowledge management in agile environments, highlighting how agile methodologies can create gaps in institutional knowledge through their focus on "just enough" documentation and emphasis on tacit knowledge. Their work emphasizes the need for structured approaches to convert tacit knowledge into explicit forms that can be preserved and shared throughout the organization.

IV. GAPS IN EXISTING APPROACHES

Despite the valuable contributions of existing research, significant gaps remain in terms of practical implementations for skill assessment and knowledge management in agile teams:

- Many frameworks remain theoretical or require extensive customization for practical deployment.
- 2. Few approaches integrate skill assessment with targeted knowledge transfer mechanisms.
- 3. Most models do not provide clear strategies for scaling across multiple teams.
- 4. The self-organizing nature of agile teams is often not adequately considered in skill management approaches.


Our framework addresses these gaps by providing a practical, scalable approach that respects agile principles while creating structures around skill development and knowledge sharing.

V. THE COMPETENCY ASSESSMENT FRAMEWORK

A. Conceptual Foundation

The proposed framework is built on four key principles:

- Self-assessment with peer validation: Team members evaluate their own skills, which are then discussed and validated within the team context.
- 2. Standardized proficiency levels: Clear definitions of skill levels that are consistent across the organization.
- Regular reassessment: Periodic evaluation to track progress and identify emerging needs.
- 4. Action-oriented outcomes: Direct connection between assessment results and knowledge sharing initiatives.

B. Proficiency Level Definitions

To ensure consistency and clarity, the framework defines four distinct levels of proficiency:

- None: Work in the area is not feasible due to a lack of necessary knowledge and skills.
- Basic: Capable of handling work in the area with guidance and support; possesses partial understanding.
- Advanced: Able to execute tasks in the area independently, though collaboration with additional specialists might be beneficial.
- Expert: Fully proficient with deep expertise in the area. Capable of mentoring others without impacting daily business.

RULE	DEFINITION
None	Work in the area is not feasible due to a lack of necessary knowledge and skills.
Basic	Capable of handling work in the area with guidance and support; possesses partial understanding.
Advance	Able to execute tasks in the area independently, though collaboration with additional specialists might be beneficial.
Expert	Fully proficient with deep expertise in the area. Capable of mentoring others without impacting daily business.

These definitions provide clear distinctions between proficiency levels and help team members accurately assess their capabilities. The requirement for multiple team members at Advanced level recognizes the importance of redundancy in critical skill areas to mitigate the risk of knowledge loss.

C. Competency Categories

The framework suggests to organize the skills into various categories. Usually at a broader level the skills in any software development organization can be primarily categorized into:

- 1. Domain Competencies: Knowledge related to business domains, specific products, and industry understanding.
- Technical Competencies: Programming languages, tools, frameworks, and technologies required for development or testing tasks.
- 3. Craftsmanship Competencies: Software engineering practices, design principles, and various quality approaches.

Within each category, specific competencies are defined based on project requirements and organizational needs. This categorization helps ensure comprehensive coverage of all relevant skill areas while facilitating focused analysis and improvement initiatives.

D. Assessment Process

The assessment process follows a structured approach conducted at regular intervals (typically every three or six months):

- 1. Assess Individual Skill Level: Team members self-evaluate their proficiency across all identified skills using the four-level scale (None, Basic, Advanced, Expert). This quick 15-minute assessment captures the current capability landscape of each individual.
- Consolidate Team Skill Data: Individual assessments are combined into a comprehensive skill matrix, revealing the team's collective capabilities and limitations. This creates visibility into expertise distribution and potential knowledge silos.
- 3. Identify Skill Gaps & Training Requirements: Analysis of the consolidated data highlights critical skill gaps, bottlenecks, and vulnerabilities. Priorities for skill development are established based on project requirements and risk assessment.
- Plan and Execute Trainings / Knowledge Sharing Sessions: Targeted development activities are implemented to address identified gaps. These include internal

- knowledge sharing, cross-team learning, formal training, and documentation.
- 5. Update the Skill Lists: The skill taxonomy is reviewed and refined to reflect evolving project requirements, new technologies, and changing priorities. This ensures the assessment framework remains relevant for the next cycle.

This process combines individual reflection with team-level discussion, promoting awareness of both personal development needs and team capabilities. The collaborative nature of the assessment helps ensure ratings are accurate and consistent across team members.

VI. FRAMEWORK IMPLEMENTATION

The skill management framework follows a structured implementation process designed to integrate seamlessly with existing Scrum practices while providing meaningful insights for both team members and leadership.

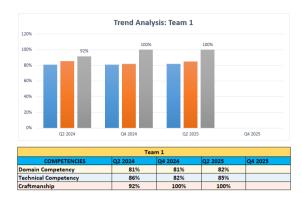
A. Assessment Tools

We implemented the framework using a standardized template in Microsoft Excel (as shown in below figure), which was later evolved into a web application for larger-scale deployment.

The template includes:

- Individual rating sheets for each team member
- A team summary sheet that aggregates individual assessments
- Visualization dashboards showing skill distribution and gaps
- Action planning sections for documenting development initiatives

The template was designed to be lightweight and user-friendly, requiring minimal effort from team members while providing valuable insights for team leaders and management.


B. Analysis Methodologies

Several analysis approaches were incorporated into the framework:

- Heat mapping: Visual representation of skill concentrations and gaps using color coding.
- Gap analysis: Comparison of current proficiency levels against target requirements.
- Distribution analysis: Assessment of how evenly skills are distributed across the team.
- Trend analysis: Tracking skill development over multiple assessment cycles.

These analyses provide Scrum Masters and managers with clear visibility into team capabilities and development needs.

One example trend analysis for a team looks like,

C. Knowledge Transfer Mechanisms

Based on assessment results, the framework facilitates various knowledge transfer mechanisms:

- 1. Intra-team mentoring: Pairing team members with complementary skills.
- 2. Cross-team knowledge sharing: Connecting experts from different teams for specialized topics.
- Formal training sessions: Organizing structured learning events for widely needed skills.
- Learning repositories: Creating and maintaining documentation and learning materials.

D. Scaling the Framework

The framework was designed to scale from individual teams to organization-wide implementation through:

- 1. Standardized templates: Consistent assessment tools across all teams.
- Centralized reporting: Aggregation of team-level data for organizational insights.
- 3. Cross-team knowledge mapping: Identification of expertise across organizational boundaries.

4. Expertise directory: Searchable database of skills and their holders throughout the organization.

As the implementation scales, the value of the framework increases exponentially as it facilitates not only within-team development but also cross-team knowledge sharing and optimization of training resources across the organization.

VII. CASE STUDY

A. Implementation Context

We implemented the competency assessment framework across three scrum teams in a software development organization over an 18-months period. The teams were working on different components of a complex industrial automation system, requiring a diverse set of technical and domain skills.

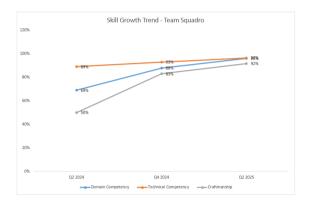
The implementation began with a pilot in a single team and was subsequently expanded to include all three teams. Each team consisted of 6-8 developers with varying experience levels and technical backgrounds.

B. Assessment Execution

The assessment process was conducted thrice during the study period, with a six-month interval between assessments. Each assessment cycle followed these steps:

- 1. The Scrum Master scheduled a dedicated session (approximately 60 minutes)
- 2. Team members individually completed their self-assessments (10-15 minutes)
- 3. The team collectively reviewed the assessments, with particular focus on areas where members had rated themselves as experts
- 4. The Scrum Master facilitated a gap analysis and action planning discussion

The initial assessment established a baseline of team capabilities, while the follow-up assessment measured progress and identified emerging skill needs.


Further during the six-month duration, various knowledge sharing sessions and formal trainings were carried out to fill the skill gaps.

C. Results and Impact

The implementation of the framework yielded several significant outcomes:

1. Improved Skill Distribution

After two assessment cycles and targeted knowledge sharing initiatives, the distribution of skills within teams showed measurable improvement. Figure below illustrates the change in skill distribution for one of the participating teams.

The members who rated "None" for many of the skills were drastically reduced over these 18 months and many members moved into the Expert category for some of the skills.

2. Reduced Knowledge Silos

The framework successfully identified and addressed several critical knowledge silos. In one team, a critical subsystem was understood at an expert level by only one team member. After targeted knowledge sharing sessions, three additional team members achieved basic proficiency, and one reached advanced proficiency, substantially reducing the risk associated with this knowledge concentration.

3. More Effective Training Investments

By clearly identifying skill gaps across teams, the project was able to optimize its training investments. Rather than providing general training to all team members, targeted sessions were organized based on specific needs identified through the assessment process. Also, many topics were covered as cross-team knowledge sharing sessions. This resulted in a 30% reduction in training costs while achieving better outcomes in terms of skill development.

4. Enhanced Team Confidence

Qualitative feedback from team members indicated that the framework contributed to increased confidence in tackling complex technical challenges. Team members reported

feeling more aware of available expertise within their teams and more comfortable seeking assistance when needed.

D. Challenges and Mitigations

Below challenges were encountered during implementation:

1. Initial Hesitation in Self-Assessment

Some team members were initially uncomfortable rating their own skills, particularly when rating themselves at expert level. This was addressed through clear communication about the purpose of the assessment and the specific definitions of each proficiency level. Giving mental safety to the members is important, where they should have the trust that this assessment is not to judge anyone, but to improve their skills.

2. Action Follow-Through

Initial action plans were sometimes neglected due to project pressures. This was addressed by incorporating knowledge sharing activities into sprint planning and making them visible on team boards.

3. Keeping Skill Lists Current

As the project evolved, the competency lists required regular updates. A quarterly review process was established to ensure the assessment covered all project relevant skills.

These challenges were progressively addressed, leading to a more robust implementation of the framework over time.

VIII. EVOLUTION TO DIGITAL PLATFORM

Based on the success of the Excel-based implementation, the framework was evolved into a web-based application to better support scaling across the organization. This digital platform offers several enhancements:

1. Centralized Data Storage

All assessment data are stored in a secure database, providing access to past ratings as well.

2. Role-based Access Control

Team members can see their own team's data, while management can access aggregated views.

3. Automated Analysis

Real-time generation of reports and visualizations.

4. Expertise Directory

Searchable database of skills and experts across the organization.

5. Integrated with Learning Systems

Direct links to available online training resources for identified gap areas of individuals.

The platform maintains the core principles of the original framework while adding features that enable organization-wide implementation and more sophisticated analysis capabilities.

IX. LEARNINGS

A. Key Success Factors

Several factors contributed to the successful implementation of the framework:

1. Lightweight Process

The assessment process was designed to be minimally intrusive, requiring only10-15 minutes per team member.

2. Clear Definitions

Unambiguous proficiency level definitions helped ensure consistent self-assessment.

3. Team Validation

The collaborative review of assessments helped maintain accuracy and build team awareness.

4. Direct Action Linkage

Clear connections between assessment results and development actions ensured the process led to tangible outcomes.

5. Regular Repetition

The six-month reassessment cycle provided a balance between stability and responsiveness to changing needs.

These factors ensured that the framework remained valuable and sustainable over time, avoiding the common pitfall of becoming a bureaucratic exercise with limited practical impact.

B. Organizational Benefits

Beyond the team-level impacts discussed in the case study, the framework provided several organizational benefits:

Strategic Resource Planning Better visibility into organizational capabilities, informed hiring and training strategies.

2. Cross-Team Collaboration

Identification of expertise across team boundaries facilitated knowledge sharing and problem solving.

3. Onboarding Optimization

New team members could be more effectively integrated by targeting specific knowledge gaps.

4. Retention Impact

Team members reported increased engagement due to clearer development pathways and recognition of expertise.

These benefits contributed to overall organizational resilience and adaptability, particularly important in the context of complex technical projects and evolving skill requirements.

C. Comparison with Traditional Approaches

The framework offers several advantages over traditional skill management approaches:

1. Self-organization

Unlike top-down assessments, our approach respects the self-organizing nature of agile teams.

2. Contextual Relevance

Skills are assessed in the context of actual project needs rather than generic competency models.

3. Dynamic updating

The framework accommodates evolving skill requirements through regular updates to competency lists.

4. Action Orientation

Direct connection to knowledge sharing activities ensures practical outcomes.

These characteristics make the framework particularly well-suited to agile environments where adaptability and team autonomy are valued.

X. ACKNOWLEDGMENT

We would like to express our sincere gratitude to the scrum teams at Siemens Technologies Services Pvt Ltd who participated in the implementation and provided valuable feedback throughout the process. We also thank the management for their support and encouragement in this initiative.

We would like to express our profound gratitude to our sub-segment head Mr. Prashanth Uppunda and our manager Mr. Rengarajan S, for their invaluable guidance and unwavering support throughout the implementation of this framework.

REFERENCES

- [1] Balcar, Jiří; Šimek, Milan; Filipová, Lenka (2018): Soft Skills of Czech Graduates, Review of Economic Perspectives, ISSN 1804-1663
- [2] G. Santos et al., "Implementing Software Process Improvement Initiatives in Small and Medium-Size Enterprises in Brazil," 6th International Conference on the Quality of Information and Communications Technology (QUATIC 2007), Lisbon, Portugal, 2007, pp. 187-198, doi: 10.1109/QUATIC.2007.22.
- [3] Curtis, William; Hefley, William A.; Miller, Sally A. (2018). People Capability Maturity Model (P-CMM) Version 2.0. Carnegie Mellon University. Report. https://doi.org/10.1184/R1/6581879.v1
- [4] Seth, A., Antony, A., S, M., & Pathak, S. (2025). Agile-Driven Knowledge Management. International Journal of Innovative Research in Technology, Vol. 11, No. 11, ISSN: 2349-6002