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Abstract—Traditional inventory models like the 

Economic Order Quantity (EOQ) are built on the 

assumption of static, predictable demand. However, in 

the era of fast-paced technological change and 

aggressive marketing, many products—especially those 

in consumer electronics, pharmaceuticals, and 

FMCG—experience time-varying demand influenced 

by innovation and social adoption. This paper presents 

a comparative analysis between two inventory modeling 

approaches: one based on classical EOQ with constant 

demand, and another extended EOQ framework 

incorporating demand dynamics modeled through the 

Bass innovation diffusion model. 

In the first model, demand is assumed to be constant, 

and the total cost is minimized by balancing ordering 

and holding costs. In the second model, demand is a 

function of innovation and imitation, reflecting realistic 

product adoption behavior over time. We analytically 

derive the cost functions and optimal policies for both 

models and then conduct numerical simulations to 

examine the behavior of total cost, order quantity, and 

cycle length under varying parameter conditions. 

The results reveal that innovation-adjusted models yield 

more adaptive inventory strategies and better cost 

efficiency, particularly during product launch and 

growth phases. Classical models are found to 

underestimate peak demand and overestimate 

inventory needs during saturation, leading to 

inefficiencies. The paper concludes with a discussion on 

the applicability of each model in real-world inventory 

management and offers recommendations for firms 

operating in volatile, innovation-driven markets. 

 

Index Terms—EOQ Model, Innovation Diffusion, Bass 

Model, Inventory Optimization, Time-Dependent 

Demand, Comparative Analysis, Order Quantity, Cycle 

Time, Total Cost, Product Adoption 

 

I. INTRODUCTION 

 

1.1 Background 

Inventory management has always played a pivotal 

role in ensuring operational efficiency, customer 

satisfaction, and cost control within supply chains. 

Among the numerous models developed over the 

years, the Economic Order Quantity (EOQ) model 

remains one of the most influential and widely used 

due to its simplicity and analytical clarity. The 

classical EOQ model assumes that demand is 

constant and known, that replenishment is 

instantaneous, and that costs associated with ordering 

and holding inventory are deterministic and time-

invariant. These assumptions have served as a 

practical framework for inventory control in 

relatively stable environments. 

However, in today’s dynamic markets, these 

assumptions are increasingly unrealistic. Many 

products experience demand that evolves over time, 

particularly in industries where new product 

introductions, aggressive marketing strategies, and 

consumer behavior influence purchasing patterns. 

Products such as smartphones, wearable technology, 

electric vehicles, pharmaceuticals, and even fashion 

items rarely follow the constant demand trajectory 

assumed by traditional models. Instead, demand 

tends to be time-varying, non-linear, and heavily 

influenced by innovation and social dynamics. 

This evolving market behavior necessitates an 

inventory modeling approach that reflects the real-

life demand evolution process. One of the most 

widely accepted frameworks to describe such 

behavior is the Bass Diffusion Model, which explains 

how new products are adopted by a population over 

time, driven by innovators (external influence) and 

imitators (internal social influence). The integration 

of this model into inventory theory has resulted in 

EOQ extensions that incorporate demand as a 

dynamic function of time and adoption. 
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1.2 Need for Comparative Analysis 

While both traditional EOQ and innovation-adjusted 

EOQ models are used in practice, there is a lack of 

comprehensive comparative studies that quantify 

their differences in decision-making outcomes. Most 

existing research either focuses exclusively on 

extending the EOQ model to accommodate time-

dependent demand or studies innovation diffusion in 

isolation from operational planning. 

A comparative analysis is important for several 

reasons: 

• It highlights the applicability boundaries of 

classical models. 

• It helps decision-makers understand the 

consequences of using a static model in a 

dynamic environment. 

• It supports model selection and policy design 

based on market context. 

• It demonstrates the cost implications of 

accounting for or ignoring innovation-driven 

demand. 

Therefore, the present study is positioned to fill this 

research gap by comparing two EOQ frameworks—

one with static demand and another with Bass-model-

driven dynamic demand—under an analytical and 

simulation-based setup. 

 

1.3 Objectives of the Study 

The main objectives of this research are: 

1. To develop and analyze a classical EOQ model 

with constant demand assumptions. 

2. To formulate an extended EOQ model where 

demand is driven by the Bass Diffusion Model. 

3. To derive cost functions, optimal order 

quantities, and cycle times for both models. 

4. To conduct numerical simulations to evaluate 

model behavior under different parameter 

configurations (e.g., adoption rates, market size, 

holding cost). 

5. To compare outcomes across models in terms of 

total cost, order quantity, and policy robustness. 

6. To offer managerial insights on when to use 

which model based on product type and market 

behavior. 

 

1.4 Structure of the Comparison 

The comparative study is structured around both 

analytical derivation and numerical simulation. The 

analytical part involves the formulation of: 

• A constant demand EOQ model minimizing total 

cost 𝐾(𝑇) =
𝐴

𝑇
+

ℎ𝜆𝑇

2
+ 𝐶𝜆 

• A diffusion-driven EOQ model using Bass 

adoption dynamics: 

𝑓(𝑡) = (𝑝 + 𝑞𝐹(𝑡))(1 − 𝐹(𝑡))𝑁, 

𝐹(𝑡) =
1 − e−(p+q)t

1 +
𝑝

𝑞
e−(p+q)t

 

and integration over the planning horizon 𝑇 to 

calculate order quantity and average inventory. 

The numerical section uses these formulations to 

simulate various market and cost conditions, 

examining the behavior of both models under: 

• Varying innovation coefficients 𝑝 

• Social imitation rates 𝑞 

• Market size 𝑁 

• Cost parameters (ordering cost 𝐴, holding cost ℎ, 

unit cost 𝐶) 

 

1.5 Relevance in Industry Practice 

The findings of this paper are highly relevant for 

organizations managing products with: 

• Short lifecycles (e.g., consumer electronics, 

fashion) 

• Heavy reliance on launch marketing 

• Time-sensitive demand surges 

• Gradual market saturation 

For such products, relying on a constant demand 

model could lead to: 

• Underestimation of initial inventory (causing 

stockouts) 

• Overstocking during market saturation (causing 

holding and obsolescence costs) 

• Inefficient replenishment cycles 

Conversely, for products with stable or long-term 

demand (e.g., office supplies, staples), the traditional 

EOQ model may suffice. 

 

1.6 Research Gap 

Despite the growing body of work on time-varying 

demand and diffusion-based models, few studies 

offer a side-by-side comparison of inventory 

performance outcomes across both modeling 

paradigms. Furthermore, there is limited work 

exploring: 
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• How sensitive optimal policies are to adoption 

parameters pp and 𝑞 

• Whether traditional EOQ approximates the 

diffusion model reasonably under specific 

conditions 

• The cost implications of mis-specifying demand 

type 

This research addresses that gap by providing both 

theoretical derivation and empirical evaluation of 

how the two models behave under realistic scenarios. 

 

II. LITERATURE REVIEW 

 

The purpose of this literature review is to explore and 

synthesize prior work in the domains of inventory 

modeling, particularly the classical EOQ model and 

its extensions, and the modeling of innovation 

diffusion. This sets the foundation for the 

comparative analysis undertaken in this study. We 

examine the following key areas: 

• Classical EOQ and its deterministic extensions 

• Inventory models under time-varying and 

dynamic demand 

• Innovation diffusion models, especially the Bass 

model 

• Inventory models incorporating innovation-led 

demand 

• Comparative studies and identified research gaps 

 

2.1 Classical EOQ Models 

The Economic Order Quantity (EOQ) model, 

introduced by Harris (1913), is the bedrock of 

deterministic inventory theory. It aims to determine 

the optimal order quantity that minimizes the total 

cost composed of ordering and holding costs. The 

basic assumptions of the EOQ model include: 

• Constant and known demand 

• Instantaneous replenishment 

• No shortages or stockouts 

• Fixed ordering and holding costs 

Mathematically, the EOQ is calculated as: 

𝑄∗ = √
2𝐴𝐷

ℎ
 

Where: 

• 𝐴 = Ordering cost 

• 𝐷 = Annual demand 

• ℎ = Holding cost per unit per year 

Despite its simplicity, the EOQ model has been 

widely accepted due to its closed-form solution and 

its foundational role in supply chain planning. 

Subsequent improvements to the model include: 

• Inclusion of price breaks (quantity discounts) 

• Reorder point calculation under lead time 

• Backordering and lost sales modeling 

• Multi-echelon and multi-item versions 

(See Hadley & Whitin, 1963; Nahmias & Olsen, 

2015; Silver et al., 2016) 

However, the assumption of constant demand limits 

its practical use in fast-changing markets, especially 

those driven by marketing and innovation. 

 

2.2 EOQ Models with Time-Varying Demand 

Researchers have extended the EOQ model to 

accommodate non-stationary demand, where demand 

changes over time. Notable extensions include: 

• Linear or quadratic time-dependent demand 

(e.g., Bhunia & Maiti, 1999) 

• Exponential or Weibull demand growth/decay 

(Sarkar et al., 2000) 

• Stock-dependent demand, where inventory level 

itself drives demand (Roy et al., 1993) 

While these models better reflect real-world 

situations, most assume the demand pattern is 

exogenously defined and does not evolve based on 

consumer behavior or marketing actions. 

Some approaches also consider seasonality and 

promotion-based demand peaks, but these models 

still fall short in representing the self-propagating 

nature of innovation adoption, which is critical for 

products in the growth phase. 

 

2.3 Innovation Diffusion Models 

The Bass Diffusion Model, introduced by Bass 

(1969), provides a widely accepted framework for 

modeling the rate of adoption of new products over 

time. It divides adopters into: 

• Innovators (external influence): Driven by 

marketing, media, etc. 

• Imitators (internal influence): Influenced by prior 

adopters through word-of-mouth or social proof 

The model assumes the cumulative proportion of 

adopters 𝐹(𝑡) at time 𝑡 evolves as: 

𝑓(𝑡) = (𝑝 + 𝑞𝐹(𝑡))(1 − 𝐹(𝑡))𝑁  

Where: 

• 𝑝 = coefficient of innovation 
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• 𝑞 = coefficient of imitation 

• 𝑁 = market potential 

The resulting S-shaped adoption curve has been 

validated across industries (Mahajan et al., 1990; 

Sultan et al., 1990), including electronics, 

pharmaceuticals, and consumer durables. 

Extensions of the Bass model include: 

• Variable market size (Sharif & Ramanathan, 

1981) 

• Price sensitivity and promotional factors 

(Horsky, 1990) 

• Stochastic diffusion with uncertain parameters 

(Mahajan & Muller, 1995) 

 

2.4 Inventory Models with Diffusion-Based Demand 

Efforts to integrate innovation diffusion with 

inventory control are more recent and less mature. 

Urban (1992) proposed one of the earliest EOQ 

models where demand was driven by advertising and 

product awareness. 

Later, Joglekar and Sapatnekar (2010) developed an 

EOQ model using the Bass model to determine 

replenishment decisions for new products. They 

showed that innovation and imitation coefficients 

strongly influence inventory policy. 

Other works, such as Rajan et al. (2016), have 

included dynamic pricing with diffusion-based 

demand to jointly optimize revenue and inventory. 

These models typically result in nonlinear, time-

dependent cost functions that require numerical 

integration or simulation for solution, limiting their 

widespread adoption in practice. 

 

2.5 Comparative Studies and Insights 

Very few studies compare the performance of EOQ 

models with and without innovation diffusion in a 

unified framework. Some notable exceptions include: 

• Sarker & Pan (1997): Compared constant vs. 

ramp-type demand in EOQ with partial 

backlogging. 

• Aggarwal & Jaggi (1995): Explored inventory 

with and without deterioration under variable 

demand. 

• Kim et al. (2003): Evaluated advertising-based 

demand functions vs. static EOQ. 

However, none of these studies explicitly compare: 

• Classical EOQ vs. EOQ with Bass-type diffusion 

• Under the same market and cost conditions 

• With numerical simulations and graphical 

insights 

Thus, a quantitative and visual comparison of the two 

models—evaluating differences in cost, order 

quantity, and cycle time—has not been systematically 

documented. 

 

2.6 Research Gap Identified 

Based on the review above, the following gaps are 

identified: 

1. Lack of comparative studies that empirically and 

analytically contrast EOQ outcomes under static 

vs. innovation-driven demand. 

2. No integrated framework that simulates and 

visualizes the cost and performance differences 

under real-world parameters. 

3. Absence of guidelines on when to use classical 

EOQ vs. diffusion-adjusted EOQ in managerial 

decision-making. 

4. Under-explored behavioral implications of 

innovation adoption on inventory policies. 

 

2.7 Contribution of This Study 

This research contributes to the literature by: 

• Building two EOQ models: one classical, one 

innovation-based 

• Deriving cost functions and optimal values 

analytically 

• Simulating both models across a range of real-

world parameter values 

• Offering side-by-side comparison tables and 

visualizations 

• Providing prescriptive guidance for model 

selection based on product and market 

characteristics 

 

III. MATHEMATICAL MODELS 

 

This section presents the formal mathematical 

formulations for both inventory models being 

compared in this study: 

1. Classical EOQ Model – assumes constant, time-

invariant demand 

2. Innovation-Adjusted EOQ Model – incorporates 

time-varying demand using the Bass diffusion 

model 
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We define the assumptions, notations, objective 

functions, and derive the key equations used for cost 

optimization and comparative analysis. 

 

3.1 Common Notations 

Symbol Description 

𝐴 Ordering cost per order 

𝐶 Unit purchase cost 

ℎ Holding cost per unit per unit time 

𝑄 Order quantity 

𝑇 Replenishment cycle time 

𝐷 Constant demand rate (classical model) 

𝑓(𝑡) Time-varying demand rate (diffusion model) 

𝐹(𝑡) Cumulative adoption proportion at time tt 

𝑝 Coefficient of innovation 

𝑞 Coefficient of imitation 

𝑁 Total market potential 

𝐾(𝑇) Total cost per unit time 

 

3.2 Classical EOQ Model 

Assumptions: 

• Demand is constant at rate 𝐷 

• No shortages or stockouts 

• Instantaneous replenishment 

• Inventory depletes linearly 

Order Quantity: 

𝑄 = 𝐷 ⋅ 𝑇  

Average Inventory: 

𝐼 ̅ =
𝑄

2
=

𝐷 . 𝑇

2
 

Total Cost per Unit Time: 

𝐾𝐸𝑂𝑄(𝑇) =
𝐴

𝑇
+ ℎ .

𝐷 . 𝑇

2
+ 𝐶 . 𝐷  

Optimal Cycle Time: 

𝑇∗ = √
2𝐴

ℎ𝐷
,   𝑄∗ = 𝐷 . 𝑇∗ 

This is the well-known EOQ result and serves as a 

benchmark for comparison. 

 

3.3 Innovation-Adjusted EOQ Model (Bass-Based 

Demand) 

Demand Dynamics: 

According to the Bass diffusion model: 

𝑓(𝑡) = (𝑝 + 𝑞𝐹(𝑡))(1 − 𝐹(𝑡)) ⋅ 𝑁  

Where cumulative adoption F(t)F(t) is: 

𝐹(𝑡) =  
1 − 𝑒−(𝑝+𝑞)𝑡

1 +
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡

 

This creates an S-shaped demand curve that reflects 

realistic product adoption over time. 

Order Quantity over Cycle 𝑇: 

𝑄 = ∫ 𝑓(𝑡) 𝑑𝑡
𝑇

0

 

Inventory Level at Time 𝑡: 

𝐼(𝑡) = 𝑄 − ∫ 𝑓(𝑢) 𝑑𝑢
𝑡

0

  

Average Inventory: 

𝐼 ̅ =
1

𝑇
∫ 𝐼(𝑡)𝑑𝑡

𝑇

0

 

 

Total Cost per Unit Time: 

𝐾𝐷𝑖𝑓𝑓(𝑇) =
𝐴

𝑇
+ ℎ . 𝐼 ̅ +

𝐶 . 𝑄

𝑇
 

Where: 

• 𝐼 ̅is computed numerically 

• 𝑄 is obtained via integration of the Bass model 

• Cost components are dynamically evaluated over 

the planning horizon 

 

3.4 Comparison Structure 

To enable fair comparison between the two models: 

• Both are evaluated across the same time horizon 

𝑇 

• Cost parameters 𝐴, 𝐶, ℎ remain constant 

• For the diffusion model, we calibrate 𝑝, 𝑞, 𝑁 to 

generate equivalent average demand over the 

cycle as 𝐷 in the classical model 

Key Comparative Outputs: 

• Total cost 𝐾(𝑇) 

• Order quantity 𝑄 

• Cycle length 𝑇∗ 

• Service level sensitivity (via demand 

underestimation or overestimation) 

 

3.5 Analytical Insight 

• In the classical model, the cost function 𝐾(𝑇) is 

quadratic and convex, with a closed-form 

minimum. 

• In the diffusion model, 𝐾(𝑇) is nonlinear due to 

nested integrals in 𝑄 and 𝐼,̅ and requires 

numerical optimization (grid search, gradient 

descent, or simulation). 
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IV. SOLUTION METHODOLOGY 

 

This section describes the computational framework 

used to solve both the classical and diffusion-adjusted 

EOQ models and compare their results under 

identical operational conditions. Given the 

deterministic nature of the classical model and the 

dynamic complexity of the diffusion-based model, 

distinct analytical and numerical techniques are 

employed. 

 

4.1 Solving the Classical EOQ Model 

The classical EOQ model assumes constant demand 

𝐷, resulting in a well-established, closed-form 

solution: 

𝑇∗ = √
2𝐴

ℎ𝐷
, 𝑄∗ = 𝐷 . 𝑇∗ 

Where: 

• 𝐴 = ordering cost 

• ℎ = holding cost per unit 

• 𝐷 = constant demand rate 

Cost Calculation: 

𝐾𝐸𝑂𝑄(𝑇) =  
𝐴

𝑇
+

ℎ𝐷 . 𝑇

2
+ 𝐶 . 𝐷 

This model serves as a benchmark for comparison 

due to its analytical tractability. 

 

4.2 Solving the Innovation-Adjusted EOQ Model 

In the extended EOQ model, the demand rate is 

governed by the Bass innovation diffusion model: 

𝑓(𝑡) = (𝑝 + 𝑞𝐹(𝑡))(1 − 𝐹(𝑡)) ⋅ 𝑁  

Where 𝐹(𝑡) =  
1−𝑒−(𝑝+𝑞)𝑡

1+
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡

 

This function cannot be simplified into a closed-form 

for the total demand over time or for average 

inventory. Therefore, numerical integration is used. 

 

4.3 Numerical Procedure 

1. Parameter Initialization: 

o 𝐴 =  500, ℎ =  2, 𝐶 =  100 

o Bass parameters: 𝑝 =  0.03, 𝑞 =  0.4, 𝑁 =

10,000 

o Time horizon 𝑇: Range from 1 to 10 units (e.g., 

months) 

2. Time Discretization: 

o Divide [0, 𝑇] into 200 uniform steps 

o Calculate 𝑓(𝑡), 𝐹(𝑡) for each step 

3. Order Quantity: 

𝑄 = ∫ 𝑓(𝑡) 𝑑𝑡
𝑇

0

  

Computed using trapezoidal integration or Simpson’s 

rule 

4. Inventory Level and Average Inventory: 

𝐼(𝑡) = 𝑄 − ∫ 𝑓(𝑢) 𝑑𝑢
𝑡

0
, 

𝐼 ̅ =
1

𝑇
∫ 𝐼(𝑡) 𝑑𝑡

𝑇

0

  

5. Total Cost Function: 

𝐾𝐷𝑖𝑓𝑓(𝑇) =  
1

𝑇
+ ℎ . 𝐼 ̅ +  

𝐶 . 𝑄

𝑇
  

6. Optimization: 

o For both models, compute total cost 𝐾(𝑇) for 

each trial cycle time 𝑇 

o Identify optimal 𝑇∗ by selecting the value that 

minimizes 𝐾(𝑇) 

o Store corresponding 𝑄∗, 𝐼 ̅ and cost components 

 

4.4 Comparison Criteria 

The performance of both models will be compared 

based on: 

• Optimal cycle time 𝑇∗ 

• Order quantity 𝑄∗ 

• Total cost per unit time 𝐾(𝑇∗) 

• Sensitivity to parameters 𝑝, 𝑞, 𝑁, ℎ 

Both models will be evaluated under identical cost 

and market conditions to ensure fairness in 

comparison. 

 

4.5 Simulation Tools 

All numerical computations are performed using: 

• Python (NumPy, SciPy for integration and 

optimization) 

• Matplotlib for visualization of cost curves 

• Excel Solver (for sensitivity checks) 

• Tabular analysis for capturing results across 

scenarios 

 

V. NUMERICAL EXPERIMENTS 

 

This section provides a numerical comparison of the 

classical EOQ model with the diffusion-adjusted 

EOQ model using identical cost parameters and a 

range of replenishment cycle times (𝑇). The 

objective is to observe and interpret the differences in 

total cost behavior when demand is assumed to be 

constant versus when it follows the Bass innovation 
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diffusion model. The comparison is based on the 

following parameters: 

❖ Ordering cost (𝐴): ₹500 

❖ Holding cost per unit per unit time (ℎ): ₹2 

❖ Unit cost (𝐶): ₹100 

❖ Constant demand (𝐷): 1000 𝑢𝑛𝑖𝑡𝑠 (for classical 

model) 

❖ Innovation coefficient (𝑝): 0.03 

❖ Imitation coefficient (𝑞): 0.4 

❖ Total market potential (𝑁): 10,000 units 

For each cycle time T (ranging from 1 to 10 months), 

we compute the total cost per unit time for both 

models. The classical EOQ model yields a smooth 

cost function with a unique minimum. The diffusion-

based model, while also convex, exhibits sharper 

gradients due to its front-loaded demand. This leads 

to an earlier optimal cycle time with smaller order 

quantities and lower average inventory in the early 

phases of product adoption. 

The graph below compares total cost per unit time 

between the classical EOQ and the diffusion-adjusted 

EOQ models. 

From the chart below, it is evident that the classical 

EOQ model underestimates early-cycle demand and 

overestimates late-cycle demand, leading to 

inefficiencies. In contrast, the diffusion-based model 

adjusts to actual consumer adoption patterns, yielding 

better cost optimization. These differences become 

more pronounced in products with shorter life cycles  

 
Figure 1: Total Cost Comparison – Classical EOQ vs. 

Diffusion-Based EOQ 
 

or rapid adoption rates, emphasizing the need for 

demand-sensitive inventory models. 

 

 

VI. OBSERVATIONS 

 

The comparative analysis of the classical EOQ and 

diffusion-based EOQ models reveals significant 

insights into how demand behavior assumptions 

impact inventory decisions and cost structures. The 

simulation and numerical results presented in the cost 

comparison graph provide a robust foundation for 

understanding the practical differences between the 

two approaches. 

 

6.1 Cost Function Behavior 

The graph clearly illustrates the convex nature of the 

total cost functions for both models, indicating that 

there exists a unique optimal cycle time 𝑇∗ in each 

case that minimizes total cost per unit time. 

• The classical EOQ cost curve is smoother and 

reaches its minimum at a moderately longer 

cycle time due to the assumption of constant 

demand. 

• The diffusion-based EOQ cost curve shows a 

slightly sharper decline and steeper curvature, 

reflecting the increasing early demand from 

innovation and imitation forces that require 

faster replenishment to avoid shortages or 

opportunity loss. 

This suggests that products with innovation-driven 

adoption require more frequent restocking than 

constant-demand products, particularly during the 

early stages of market penetration. 

 

6.2 Optimal Cycle Time and Order Quantity 

The optimal cycle time 𝑇∗ for the diffusion-based 

EOQ model is generally shorter than that of the 

classical EOQ model. This is because the front-

loaded nature of the Bass demand curve creates a 

rapid consumption phase early in the product 

lifecycle, necessitating smaller, more frequent orders. 

Consequently: 

• Order quantities in the classical model are 

relatively larger and consistent over time. 

• Order quantities in the diffusion model are 

initially smaller but adjust dynamically with the 

adoption curve. 

 

6.3 Inventory Holding Dynamics 

Because the classical model assumes symmetric 

inventory depletion, its average inventory level is 
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half of the order quantity. In contrast, the diffusion-

based model experiences asymmetric depletion, with 

inventory levels dropping more sharply in early 

periods and leveling out as adoption slows. 

This leads to: 

• Lower average inventory in the diffusion model 

• Reduced holding costs, particularly in the initial 

phases 

• However, slight increases in ordering costs due 

to shorter cycles 
 

6.4 Total Cost Implications 

The total cost per unit time is consistently lower in 

the diffusion-adjusted model during high-demand 

phases because it better aligns with actual 

consumption rates. However, the classical model 

underestimates peak demand and overestimates 

demand near saturation, leading to inefficiencies: 

• Stockouts in the beginning (lost sales) 

• Excess inventory near market maturity (waste) 
 

6.5 Summary 

This comparative experiment reinforces the 

importance of selecting an inventory model that 

aligns with the product's demand profile: 

• For mature or stable products, classical EOQ 

may suffice. 

• For innovative, fast-moving products, diffusion-

based EOQ offers greater accuracy and cost 

efficiency. 

 

VII. MANAGERIAL IMPLICATIONS 

 

The comparative study of classical EOQ and 

diffusion-adjusted EOQ models provides critical 

insights for operations and supply chain managers 

tasked with planning inventory for diverse product 

categories. As markets evolve and consumer 

behaviors become increasingly dynamic due to 

marketing and social influence, the assumptions 

underlying traditional inventory models must be 

reevaluated. The following implications help bridge 

the gap between academic modeling and real-world 

inventory planning. 

 

7.1 Demand Behavior Should Guide Inventory Policy 

The most fundamental implication is that demand 

type must dictate the inventory model used. Classical 

EOQ assumes static demand, making it suitable for: 

• Commodities with predictable usage (e.g., office 

supplies) 

• MRO (maintenance, repair, and operations) 

items 

• Staples with stable year-round consumption 

However, for products that follow an innovation 

adoption curve, such as new tech devices, 

pharmaceuticals, fashion trends, and seasonal retail 

items, diffusion-based EOQ models provide more 

responsive and accurate inventory policies. 

Managerial Insight: Before deciding on 

replenishment schedules, analyze whether the 

product is innovation-sensitive. If demand is 

expected to surge post-launch and taper off, a 

classical model may lead to misaligned inventory. 

 

7.2 Use Shorter Cycles for Innovation-Driven 

Products 

The simulation reveals that diffusion-based models 

recommend shorter replenishment cycles. This 

reflects the need to stay agile during the growth phase 

of a product’s lifecycle when demand changes 

rapidly. 

Managerial Action: Set up dynamic replenishment 

schedules in ERP systems (e.g., SAP, Oracle 

NetSuite) that can adjust frequency based on demand 

indicators like marketing campaigns, early sales 

velocity, or online interest. 

 

7.3 Avoid Underestimating Initial Demand 

Traditional EOQ tends to underestimate initial 

demand surges, especially during product launches. 

This can result in: 

• Missed sales opportunities 

• Stockouts and customer dissatisfaction 

• Higher expedited shipping costs 

By contrast, the diffusion-based EOQ incorporates 

early adopter behavior and promotional impact, 

resulting in more accurate forecasts. 

Managerial Action: Integrate marketing calendars 

and campaign metrics into forecasting tools. Consider 

using real-time sentiment analysis or web traffic data 

to adjust the innovation diffusion curve parameters 

dynamically. 

 

7.4 Monitor for Overstocking Near Market Saturation 

Another consequence of the classical EOQ is 

overordering during the saturation or decline phase, 
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as it assumes unchanging demand. This leads to 

excessive inventory holding, markdowns, and 

obsolescence costs. 

The diffusion-based EOQ corrects this by gradually 

reducing order quantity in line with decreasing 

marginal adoption. 

Managerial Action: Review adoption data 

periodically. Use decelerating order quantities as a 

signal to phase out SKUs or introduce next-

generation products. 

 

7.5 Decision Support Tools Are Essential 

Since the diffusion-based EOQ model requires 

numerical integration and simulation, it is not 

feasible to implement using only manual calculations 

or static spreadsheets. 

Managerial Action: Deploy decision support tools 

such as: 

• Python or R-based simulation platforms 

• Business analytics dashboards (e.g., Power BI, 

Tableau) 

• Inventory modules that support time-varying 

demand (e.g., SAP IBP, Kinaxis) 

 

7.6 Strategic Implications Across Product Life Cycle 

Inventory planning must evolve as the product moves 

through the lifecycle: 

• Introduction/Growth: Use diffusion-based EOQ 

with adaptive cycles 

• Maturity: Possibly shift to classical EOQ or 

hybrid models 

• Decline: Minimize holding costs, exit strategies 

Managerial Insight: Treat inventory policies as fluid 

and life-cycle aligned, not static across all SKUs. 

 

The adoption of innovation-sensitive EOQ models 

can help firms: 

• Better align inventory with true demand 

• Improve service levels and customer satisfaction 

• Reduce waste and obsolete stock 

• Respond faster to market trends 

Managers must recognize that the accuracy of 

demand assumptions is foundational to inventory 

efficiency. For products in volatile or competitive 

markets, classical EOQ is often insufficient. 

Embracing data-driven, behavior-aware models is a 

strategic necessity. 

 

VIII. CONCLUSION 

 

This paper presented a comprehensive comparative 

analysis of two fundamental inventory modeling 

approaches—the classical Economic Order Quantity 

(EOQ) model and an extended EOQ framework that 

integrates innovation diffusion via the Bass model. 

Through both analytical formulation and numerical 

experimentation, we investigated how differences in 

demand behavior assumptions influence inventory 

decisions, costs, and overall performance. 

 

8.1 Summary of Findings 

The study demonstrates that while the classical EOQ 

model remains analytically elegant and 

computationally simple, it is best suited for products 

with stable and predictable demand patterns. On the 

other hand, the diffusion-adjusted EOQ model, 

though more complex, provides a nuanced and 

realistic approach to inventory control when dealing 

with innovation-sensitive, time-varying demand. 

Key findings include: 

• The total cost function for both models is 

convex, but the optimal cycle time 𝑇∗ differs 

significantly, with the diffusion model favoring 

shorter replenishment intervals due to early 

demand surges. 

• The order quantity in the diffusion-based model 

evolves in alignment with product adoption 

patterns, whereas the classical model maintains a 

static approach. 

• The classical EOQ model underestimates 

demand during launch and overestimates it near 

saturation, leading to stockouts and excess 

inventory, respectively. 

• The diffusion-adjusted EOQ model yields lower 

total costs and improved alignment with actual 

demand, especially in the introduction and 

growth phases of the product lifecycle. 

 

8.2 Practical Implications 

The results underscore the importance of matching 

inventory models with demand characteristics. For 

products heavily influenced by marketing, consumer 

adoption, and competitive timing (e.g., consumer 

electronics, pharma launches, seasonal fashion), a 

static EOQ model is insufficient. Managers should 
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adopt diffusion-based or hybrid inventory models 

that respond dynamically to shifting demand curves. 

In addition, the study illustrates the necessity of 

technology-driven decision support, since analytical 

solutions for diffusion-based models are not readily 

tractable. Simulation tools, real-time data integration, 

and adaptive ERP modules are vital for accurate 

inventory control in such contexts. 

 

8.3 Limitations of the Study 

While this study successfully demonstrates the 

comparative performance of both models, a few 

limitations remain: 

• The analysis assumes no product perishability or 

pricing elasticity, which may be relevant in many 

sectors. 

• The diffusion model is deterministic and 

parameter-driven; in practice, uncertainty in 

parameters like 𝑝, 𝑞, 𝑁 may impact accuracy. 

• The scope is limited to single-item inventory 

systems; multi-product or multi-echelon supply 

chains introduce further complexity. 

8.4 Directions for Future Research 

Future research can build upon this study in the 

following ways: 

• Introduce stochastic versions of the Bass model 

to handle real-time uncertainty in adoption 

behavior. 

• Integrate dynamic pricing models with diffusion-

sensitive inventory control for joint revenue and 

stock optimization. 

• Extend to multi-echelon supply chains, where 

upstream and downstream coordination is 

necessary. 

• Explore machine learning techniques for 

estimating 𝑝, 𝑞, and 𝑁 from market and sales 

data in real time. 

 

8.5 Final Remark 

This paper highlights that in today’s dynamic and 

innovation-driven marketplaces, assumptions matter. 

The difference between assuming constant demand 

and modeling evolving adoption patterns can 

translate into significant cost differentials and 

inventory inefficiencies. A data-informed, behavior-

sensitive inventory strategy is not just analytically 

superior—it is a competitive imperative. 
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