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Abstract—In today’s data-driven world, environmental 

monitoring demands scalable and intelligent systems to 

process complex satellite imagery. To address the 

challenges in surface water resource detection, we 

introduce a Flask-based web application that integrates 

deep learning with hyperspectral imaging. This system 

automates the classification of water and non-water 

bodies using CNN and GCN models trained on spectral 

bands. Hyperspectral images are preprocessed, 

analysed, and visualized in an intuitive interface that 

enables efficient decision-making. Unlike traditional 

methods that are costly and time-consuming, our 

solution offers rapid, accurate, and accessible surface 

water detection at scale. 
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I. INTRODUCTION 

 

The exponential growth of Earth observation data, 

especially from hyperspectral satellites, has 

presented both immense opportunities and complex 

challenges for environmental monitoring. Traditional 

methods for detecting and analysing water resources, 

such as field-based surveys and manual GIS 

workflows, are increasingly insufficient in handling 

the scale and frequency of data required today. 

To address these limitations, we present a web-based 

hyperspectral water monitoring system that 

integrates machine learning and remote sensing in an 

automated pipeline. This system applies 

Convolutional Neural Networks (CNNs) and Graph 

Convolutional Networks (GCNs) to classify water 

and non-water bodies from high-dimensional spectral 

imagery. 

The architecture leverages a Flask-based backend 

with real-time visualization on the frontend, allowing 

users to interactively analyse image inputs.   

By automating the analysis of hyperspectral images, 

the application reduces reliance on manual labours 

and speeds up the decision-making process. 

Furthermore, the modular design allows for easy 

scaling, future enhancements, and integration with 

other geospatial platforms. 

In this paper, we explore the foundations of our 

system design through classical research 

methodologies, compare it to existing water 

monitoring tools, describe its architecture and 

implementation, and evaluate its performance using 

real-world satellite datasets. 

 

II. RESEARCH METHODS 

 

A research method defines a systematic pathway for 

formulating, conducting, and documenting scientific 

inquiry. In this project, we incorporate several well-

established research paradigms including the Input-

Output-Process (IOP), Problem-Method-Solution 

(PMS), and Milestone Approach (MA) to structure 

our work.  

 
A. Basic Research Methods 

 

The IOP model forms the backbone of our workflow. 

Inputs include raw hyperspectral satellite images and 

domain-specific knowledge about spectral indices. 

The process involves preprocessing, CNN and GCN-

based classification, and Flask-based integration. 

Outputs are visual maps distinguishing water from 

non-water areas. The PMS model also applies 

directly: the problem is inefficient traditional water 

detection; the method  

PMS mirrors this framework but focuses more 

explicitly on the problem definition, its associated 

methods, and the solution space explored. involves 

deep learning; and the solution is a web-enabled 

automated system. These structured methodologies 

helped ensure consistency, traceability, and 

reproducibility in model development and system 

deployment. 

 

B. Scientific Method 

 

The scientific method was essential in hypothesis      

testing and validation. We hypothesized that 

combining CNN and GCN would outperform 

traditional image classification techniques for water 

body detection. This was validated through multiple 
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test cases, performance metrics (accuracy, precision, 

recall), and visual analysis of results. Experiments 

were repeatable and datasets well-documented, 

supporting rigorous scientific inquiry. 

 

In our system, the hypothesis was that a hybrid 

architecture combining Convolutional Neural 

Networks (CNNs) and Graph Convolutional 

Networks (GCNs) would outperform traditional 

water detection methods using spectral imagery. We 

validated this hypothesis by training on hyperspectral 

datasets and evaluating model performance using 

standard metrics such as accuracy, precision, and 

recall. The experiments were repeated with consistent 

configurations to ensure reliability, thereby 

reinforcing scientific rigor in our approach. 

 

C. Milestone Approach 

 

The Milestone Approach provides a project-oriented 

structure by dividing research into sequential 

checkpoints. These include problem identification, 

literature review, system design, implementation, and 

evaluation. Each milestone contributes to better 

project management and ensures well-documented 

progress. 

 

For our project, this approach facilitated a structured 

journey from identifying inefficiencies in traditional 

water monitoring to deploying a full-stack Flask 

application for hyperspectral image classification. 

Every stage—from initial data collection to backend 

integration and frontend development—served as a 

documented milestone, enabling clearer 

collaboration and version control. This strategy also 

allows for easier scalability and integration of future 

functionalities such as flood prediction or seasonal 

tracking. 

 

III. RELATED WORKS 

 

A. Existing Water Monitoring Methods 

 

Several techniques have been developed for water 

body detection, including NDWI and MNDWI 

indices, which rely on specific spectral band 

differences. While effective in some scenarios, these 

indices struggle with mixed-pixel effects and often 

misclassify shadows or urban features as water. 

Traditional manual GIS-based workflows are time-

consuming and require domain expertise. 

 

1) NDWI / MNDWI: 

Normalized Difference Water Index (NDWI) and 

Modified NDWI are widely used indices in remote 

sensing for detecting water bodies. They are simple 

to compute but often misclassify shadows and built-

up areas, especially in mixed-pixel scenarios. 

 

2) GIS-based Manual Monitoring: 

Traditional GIS techniques involve manual 

delineation and analysis of satellite imagery. While 

precise, these methods are time-intensive and require 

technical expertise, making them less scalable. 

 

3) Google Earth Engine / Sentinel Hub: 

These platforms offer powerful processing 

capabilities and access to satellite data. However, 

they require programming skills and do not integrate 

customized deep learning models for automated 

classification. 

 

4) Deep Learning Research Models: 

 

Numerous academic projects have applied  CNNs or 

GCNs to hyperspectral imagery, often in isolated 

experimental settings. However, these models are 

rarely packaged in user-friendly applications suitable 

for non-experts.  

 

Our proposed system integrates preprocessing, 

classification, and visualization into an automated 

pipeline for hyperspectral water body detection. 

Unlike traditional GIS tools or isolated research 

models, it combines the capabilities of CNN and 

GCN architectures with an accessible web interface 

served via Flask. 

 

It performs the following tasks: 

. Preprocessing Module: Processes hyperspectral 

satellite input by normalizing bands and 

computing indices. 

. CNN Module: Extracts key spatial and spectral 

features from the image data. 

. GCN Module: Builds spatial graphs from pixels 

and performs context-aware classification. 

. Visualization Module: Displays classified output 

interactively for end users via a browser. 

 

IV. HYPERSPECTRAL WATER MONITORING 

SYSTEM 

 

Our system is designed not just as a classification tool 

but as an intelligent environmental monitoring 
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assistant. Its strength lies in automating what is 

traditionally manual—hyperspectral preprocessing, 

deep model inference, and result visualization—thus 

streamlining the remote sensing workflow into a 

single, intuitive platform. 

 

A. Philosophy of the Hyperspectral Water 

Monitoring System 

The system is grounded in the belief that advanced 

analytics should be accessible, scalable, and 

practical. Designed with both researchers and 

policymakers in mind, it aims to bridge the gap 

between powerful AI models and real-world 

usability. 

Unlike conventional tools that demand domain 

expertise or scripting knowledge, our platform is 

fully automated and web-based. It supports iterative 

exploration of satellite imagery, transparent 

processing stages, and encourages frequent 

validation of environmental hypotheses. The goal is 

to simplify scientific workflows, enable broader 

participation in environmental monitoring, and 

reduce dependency on specialized software. 

Our design also emphasizes reproducibility and 

modularity. Each stage of the workflow—from 

uploading hyperspectral images to downloading 

classification results—is logged, version-controlled, 

and easily extensible. This makes the system suitable 

for both one-off studies and long-term monitoring 

programs. 

transparency and reproducibility by reducing agent 

output at every stage. 

 

B. Architecture of the Hyperspectral Water 

Monitoring System 

Our system follows a modular, service-oriented 

architecture designed for both flexibility and 

performance. It consists of the following key 

modules: 

 
Fig 1 - System architecture diagram 

1. Preprocessing Module: Normalizes 

hyperspectral bands and extracts relevant indices 

for enhanced model readiness. 

 

2. CNN Classification Module: Extracts spatial and 

spectral features to identify water regions with 

high accuracy. 

 

3. GCN Classification Module: Transforms image 

data into graph representations for context-aware 

classification, capturing neighborhood 

relationships between pixels. 

 

4. Visualization Module: Generates and renders 

classified outputs with interactive overlays using 

OpenCV and Matplotlib. 

 

These modules are coordinated through a Flask 

backend that handles user interaction, routing, and 

result management. The frontend, built using 

HTML/CSS/JS, provides real-time feedback and 

displays results in an accessible format. 

 

This architecture supports fast inference, 

maintainability, and easy integration of additional 

models or tools. It can be deployed locally or in the 

cloud and is suitable for large-scale batch processing 

or on-demand analysis. 

 

V. IMPLEMENTATION OF HYPERSPECTRAL 

WATER MONITORING SYSTEM 

 

 
The implementation of the Hyperspectral Water 

Monitoring System was fully realized in Python, 

making use of its comprehensive ecosystem for 

machine learning, image processing, and web 

development. The user interface was developed using 

HTML, CSS, and JavaScript, while the backend logic 
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was handled by Flask, ensuring smooth interaction 

between the modules and users. The application 

allows users to upload hyperspectral satellite 

imagery, process it through deep learning pipelines, 

and view the classified outputs in real-time. 

 

The implementation flow is structured as follows: 

 

1. Image Upload: Users upload hyperspectral 

images through the web interface. 

2. Preprocessing: The backend normalizes the 

spectral bands and extracts indices such as 

NDWI and MNDWI for improved feature 

separation.  

3. CNN Classification: A Convolutional Neural 

Network is applied to extract spatial and spectral 

features, providing an initial classification of 

water vs. non-water regions. 

4. GCN Classification: A Graph Convolutional 

Network refines the output by modelling spatial 

dependencies between pixels, improving 

classification accuracy in mixed-pixel zones. 

5. Visualization: The results are rendered using 

Matplotlib and OpenCV, displaying color-coded 

output to the user for interpretation and 

download. 

 
Fig 3 - Query Input 

 

 
Fig 4 - Output 

 

The system is modular and scalable, allowing easy 

integration of additional models or preprocessing 

enhancements. It supports both local deployment and 

cloud-based execution for large-scale processing. 

Future implementation goals include expanding the 

system to support flood monitoring, integrating real-

time satellite image retrieval, and enabling temporal 

analysis for seasonal water variation. 

 

VI. SYSTEM EVALUATION 

 

To comprehensively assess the effectiveness of the 

Hyperspectral Water Monitoring System, we 

conducted a structured user study involving 30 

participants from academic and environmental 

science backgrounds. Each participant uploaded a 

hyperspectral satellite image, performed 

classification, and reviewed the visual outputs 

provided by the system. The evaluation measured 

critical factors such as ease of use, clarity of output, 

classification accuracy, and intent to reuse the 

system. Participants interacted with various modules 

of the application including upload, visualization, 

and classification. Their feedback highlighted the 

system’s reliability and user-friendliness. This 

structured assessment provides empirical support for 

the system’s real-world utility and offers direction for 

further enhancement. 

 
Fig 6 - Analysis of survey result 

 

Survey key findings include the following: 

 

1. Ease of Use: 64% of users rated the interface as 

“High,” and 28% rated it “Very High,” indicating that 

the system is intuitive and user-friendly. 

 

2. Perceived Usefulness: 89% of users marked the 

system as “High” or “Very High” in usefulness for 

environmental monitoring and research. 

 

3. Output Clarity: 67% of participants rated the 

classification visualization as “Very Clear,” while 

26% found it “Clear.” 
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4. Intention to Use: 70% of users indicated they 

would “Likely” use the tool again, and 25% said they 

were “Most Likely” to use it in future water resource 

projects. 

 

5. Classification Accuracy Perception: 73% of users 

found the model outputs to be “Highly Accurate,” 

22% marked them as “Moderately Accurate,” and 

only 5% indicated “Low Accuracy.” 

 

These results demonstrate that the system streamlines 

hyperspectral image classification for water detection 

and provides accurate, interpretable outputs. 

Participants praised the clean interface, fast 

performance, and meaningful classification overlays. 

The CNN and GCN models were specifically noted 

for their performance in detecting mixed-pixel water 

bodies and producing reliable maps. 

 

The average processing time recorded was under 10 

seconds per image. Suggestions for improvement 

included batch upload capability, enhanced 

resolution handling, and support for different sensor 

formats. These aspects are considered for future 

system updates. 

 

The current system is limited by fixed image 

resolution support, lack of batch upload functionality, 

and minimal support for multi-temporal analysis. It 

also does not yet handle diverse hyperspectral 

formats or integrate real-time satellite feeds. 

 

VII. CONCLUSION AND FUTURE WORK 

 

This paper presents the Hyperspectral Water 

Monitoring System, an intelligent deep learning-

powered platform for automating the detection and 

classification of water bodies using hyperspectral 

satellite imagery. By combining CNN and GCN 

models within a user-friendly web interface, the 

system reduces the effort and expertise typically 

required for remote sensing tasks. 

Built with a modular Flask architecture and real-time 

visualization, the system enables fast, accurate, and 

scalable classification. Evaluations confirm high user 

satisfaction with interface usability, classification 

performance, and output clarity, making it suitable 

for academic, field-based, and policy applications. 

 

The system not only accelerates water resource 

analysis but also improves accessibility and 

reproducibility in hyperspectral image interpretation. 

Key future directions include: 

• Expanding image resolution and batch upload 

support. 

• Enabling multi-temporal comparison and 

seasonal analysis. 

• Integrating real-time satellite data feeds. 

• Supporting diverse hyperspectral formats and 

enhanced export options. 

 

Ultimately, this system aims to serve as a practical 

decision-support tool for sustainable water 

management, adaptable across regions and 

applications. 
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