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Abstract—Highway bridge safety is a critical concern 

for modern infrastructure management. Wireless 

Sensor Networks (WSNs) have emerged as vital tools 

for real-time monitoring and predictive maintenance 

of bridges. The proposed system improves bridge 

reliability and public safety by fusing advanced 

sensing, Machine Learning, and energy-efficient 

technologies. This contribution implements three key 

mechanisms to address the primary challenges. Real-

time structural health monitoring uses Particle Swarm 

Ant optimized with Energy Harvesting (PSAO-EH) 

algorithm to optimize energy usage in a sensor 

network, recording and monitoring sensor 

measurements to detect structural irregularities in 

real-time. An energy-efficient wireless monitoring 

platform with energy harvesting algorithms increases 

network longevity by reducing power consumption at 

sensor nodes. In addition, a Long Term with Real-

Time Structural Health Monitoring (LT-RTSHM)-

based model effectively handles time-series sensor 

data, improving anomaly detection and forecasting 

performance. Meanwhile, the Predictive Maintenance 

based Extreme Gradient Boosting (PM-XGBoost) 

model analyzes bridge damage and avoids unplanned 

failures. Simulation outcomes prove that the suggested 

system attains more than 94% accuracy in fault 

detection, increases network lifetime by 98%, and 

provides speedy and reliable communication for 

emergency notifications. Real-time monitoring, 

predictive intelligence, and energy-conscious 

communication considerably enhance highway bridge 

safety and operational effectiveness. 
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I. INTRODUCTION  

Structural security of highway bridges is becoming 

important due to aging infrastructure, high traffic 

loading, and environmental factors. WSNs are 

emerging as an important competent technology for 

real-time structural health monitoring, future 

maintenance, and intelligent infrastructure 

management [1]. The WSNs consist of spatially 

distributed sensor nodes that collect parameters such 

as vibrations, stress, inclination, and temperature 

and transmit this information to central processing 

units for detailed analysis [2]. Progress in wireless 

technologies, energy harvesting systems, and 

intelligent algorithms has also increased WSN's 

capacity to offer frequent infrastructure and reliable 

and accurate monitoring of the significant 

infrastructure [3]. Despite these developments, 

issues such as energy efficiency, sensor network 

lifetime, real-time fault detection, and predictive 

maintenance scheduling are prominent. Traditional 

monitoring systems are correctly plagued by dull 

responses, useless energy consumption, and 

structural anomalies [4]. Additionally, traditional 

WSNs are constrained by the absence of fixed 

sensing topology and intelligent decision-making 

and, therefore, may experience failures in a 

dynamically changing environment [5]. This paper 

proposed an innovative wireless sensor-based 

monitoring and maintenance system to remove these 

deficiencies to improve highway bridge security. 

The system integrates three main innovations: smart 

sensors using real-time structural health monitoring, 

ML models using Predictive Maintenance based 
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Extreme Gradient Boosting (PM-XGBoost) future 

maintenance, and Particle Swarm Ant optimized 

with Energy Harvesting (PSAO-EH) energy-skilled 

surveillance structure using energy harvesting 

techniques. The long-term memory (LSTM) 

network analyzes time-series data for the initial 

discrepancy. 

II. LITERATURE SURVEY 

 

WSNs have emerged as a key technology for 

monitoring and maintaining the structural health of 

critical infrastructure, including highway bridges. 

The use of WSNs in bridge safety has gained 

significant attention due to their ability to collect 

real-time data on various parameters such as 

vibration, strain, temperature, and displacement [6]. 

However, challenges remain prevalent while these 

networks offer substantial benefits in continuous 

monitoring, energy efficiency, data accuracy, and 

scalability. With the advent of 5G, the high-speed, 

low-latency communication capabilities further 

enhance the performance of WSNs by enabling 

faster data transmission and real-time processing, 

which is critical for time-sensitive applications like 

bridge monitoring [7]. 

The study highlights the application of various 

advanced technologies, such as WSN, Fiber Optic 

Sensing (FOS), Building Information Modelling 

(BIM), and Radio Frequency Identification (RFID), 

across different phases of infrastructure 

development and maintenance. [8]. 

WSNs have become increasingly significant in 

structural health monitoring (SHM) due to the 

growing need for safety and security in urban 

environments. The authors propose a classification 

taxonomy of WSN-based SHM systems' key 

challenges and review available research efforts to 

address these obstacles. They also identify open 

research issues, providing a foundation for future 

investigations in this domain [9]. 

The study highlights the advantages of concrete-

filled steel tube (CFST) arch bridges and steel-frame 

reinforced concrete arch bridges. These bridges 

offer high load-carrying capacity, excellent 

durability, and cost efficiency, making them 

particularly suitable for long-span applications [10]. 

 

III. PROPOSED METHODOLOGY 

 

The methodology for enhancing highway bridge 

safety is based on integrating three distinct 

algorithms. Each algorithm contributes to a different 

aspect of the WSN system, which is used for real-

time monitoring and predictive maintenance of 

bridges. The proposed methods for each algorithm. 

 
Fig. 1.  Workflow of the Proposed System 

The Figure 1, system under consideration installs 

Wireless Sensor Nodes on the bridge to gather 

structural information such as stress, vibration, and 

temperature. The information is initially processed 

by LSTM Real-Time Structural Health Monitoring 

to identify real-time anomalies. Then, XGBoost AI-

Based Predictive Maintenance System employs ML 

models to forecast probable failures, allowing 

proactive maintenance. During the process, PSAO-

EH Energy-Efficient Wireless Monitoring with 

Energy Harvesting optimizes energy consumption 

and recharges nodes with renewable energy.  

 

A. Long Term with Real-Time Structural Health 

Monitoring (LT-RTSHM) 

This algorithm tracks the structural condition of 

highway bridges in real-time. It employs an array of 

wireless sensors connected at key bridge locations to 

record vibration data, strain values, and other 

structural metrics.  

Sensors collect real-time data on bridge conditions, 

including vibration, strain, temperature, and 

displacement. Anomaly detection is performed 

using an LT-RTSHM, which is trained on historical 

bridge data to predict normal conditions. Any 

deviation from the predicted values is flagged as an 

anomaly.  

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̃𝑡     (1) 

 In this equation 1, 𝑓𝑡 denotes the forget gate; this 

establishes the appropriate amount of the prior cell 

state 𝐶𝑡 − 1 to be kept,  𝑖𝑡𝑖 is the input gate 

controlling how much of the new candidate cell state 

𝐶̃𝑡   should be added, and 𝐶𝑡 represents the updated 

cell state at time 𝑡. This mechanism allows the 
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LSTM to remember essential structural health 

patterns while forgetting irrelevant fluctuations, 

enhancing its predictive accuracy. 

The output from the LT-RTSHM is then passed 

through fully connected layers to generate 

predictions such as anomaly scores or a bridge 

safety status (e.g., normal, warning, or critical). If an 

anomaly is detected, the system triggers alerts and 

suggests maintenance actions to prevent possible 

failures. New data can be used to train the model 

continuously. Allowing it to adapt to evolving 

structural conditions and environmental factors. 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡)    (2)  

In this equation 2,  𝑂𝑡  represents the output gate, 

which regulates how much of the current cell state 

𝐶𝑡 is passed through to the hidden state ℎ𝑡. The 

hyperbolic tangent function, tanh, squash the cell 

state values to a range between -1 and 1, introducing 

non-linearity. The output gate then modulates the 

result to determine the final hidden state. 

Within the bridge safety monitoring system context, 

the hidden state ℎ𝑡 captures both the short-term and 

long-term structural patterns from the time-series 

sensor data.  

An anomaly detection criterion is employed to 

effectively detect structural anomalies in the bridge 

monitoring system based on the difference between 

the observed sensor data and the predicted values 

generated by the LSTM model. The anomaly score 

is calculated using Equation (3): 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒 =∥ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐷𝑎𝑡𝑎 −

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎 ∥   (3) 

The anomaly score is defined as the norm (typically 

the Euclidean distance) between the actual sensor 

readings and the corresponding predicted outputs 

from the model. A higher anomaly score indicates a 

greater deviation from expected behavior, 

suggesting potential abnormalities in the bridge’s 

structural health. 

This threshold value may be based on past sensor 

measurements, expert input, or statistical model 

determination to maximize sensitivity and 

specificity. When the system detects an anomaly, the 

maintenance team is notified, which allows 

proactive examination and interventions needed 

prior to potential serious damage. 

Beyond identifying structural anomalies, the system 

also incorporates a classification mechanism to 

maintain the integrity and reliability of the wireless 

sensor network. This is particularly important for 

filtering out potentially corrupted or malicious data 

transmissions. The classification rule is expressed in 

Equation (4): 

𝐼𝑓 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒 >

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,  𝐹𝑙𝑎𝑔 𝑎𝑠 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠   (4) 

In such a context, when the anomaly score of an 

input data packet surpasses the given threshold 

value, it is indicated as malicious. This type of data 

could result from compromised sensors, errors 

during communication, or suspected security issues 

like signal spoofing. Detecting such abnormalities in 

an early phase allows only reliable data to feed 

safety forecasts and structural evaluations. 

Flagged packets are then rejected or removed from 

the processing chain so that they cannot impact the 

model's predictions or induce false alarms. This 

improves anomaly detection accuracy and overall 

monitoring network reliability. 

B. Predictive Maintenance based Extreme Gradient 

Boosting (PM-XGBoost) 

This algorithm uses ML to predict the bridge 

components' remaining useful life (RUL) and 

provides early warning for maintenance. It utilizes a 

regression model to predict the time until a 

component failure based on sensor data such as 

strain, displacement, and temperature. 

This process helps identify the most relevant 

features from the sensor data that contribute 

significantly to predicting structural anomalies. One 

of the techniques employed for this purpose is 

Mutual Information (MI), mathematically 

represented in Equation (5): 

𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌) (5)  

In this equation, H(X) denotes the entropy of the 

feature 𝑋, which measures the amount of uncertainty 

or randomness in the feature values. 𝐻(𝑋 ∣ 𝑌) stands 

for condition entropy X given the target variable Y, 

reflecting the remaining uncertainty in X once Y is 

known. The mutual information score quantifies 

how much knowing the value of Y (e.g., the 

anomaly label) reduces the uncertainty in X. A 

higher MI score indicates that feature X is more 

informative about the target Y, making it a stronger 

candidate for inclusion in the model. By selecting 

features with the highest mutual information scores, 

the system can reduce dimensionality, eliminate 

noise, and improve model accuracy while 

minimizing computational complexity. This step 

ensures that only the most meaningful sensor data 

contributes to anomaly detection and safety 

predictions. 

𝑅𝑈̂𝐿 = 𝛽0 + ∑  𝑛
𝑖=1 𝛽𝑖𝑋𝑖   (6) 

RUL equation 6 represents the bridge's predicted 
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remaining useful life or components in this equation. 

The term 𝛽0 is the intercept of the regression model, 

while 𝛽𝑖 are the regression coefficients 

corresponding to each selected feature 𝑋𝑖. These 

features 𝑋𝑖 are derived from the processed sensor 

data, capturing critical aspects of the bridge's 

structural health. 

The regression model is trained on historical sensor 

data and known failure or degradation events. 

Through this predictive ability, the system signals 

authorities to urgent dangers and offers valuable 

information for planning inspections, repairs, and 

reinforcements long before the failures happen. 

𝐸𝑟𝑟𝑜𝑟 =∥ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑈𝐿 − 𝑅𝑈𝐿̂ ∥  (7) 

This equation 7 term quantifies the error as the norm 

(usually the absolute or squared difference) between 

the true RUL and the predicted RUL by the model. 

Lower error value implies greater model accuracy, 

while a higher error implies differences that might 

require retraining of the model or re-evaluation of 

the features.  

Besides estimating the Remaining Useful Life 

(RUL), the system features a proactive maintenance 

alert system according to forecasted RUL values. If 

the forecasted RUL is less than a certain critical 

threshold, prompt action should be taken to avoid 

structural failures. This decision-making rule is 

given by Equation (8): 

If RULThreshold,  Trigger Maintenance Alert (8) 

According to this criterion, if the predicted 𝑅𝑈𝐿 is 

less than a predefined threshold, the system 

automatically triggers a maintenance alert. This 

threshold can be determined based on historical 

failure data, engineering standards, or risk tolerance 

levels set by bridge management authorities. 

By implementing this threshold-based alert system, 

the monitoring solution ensures that maintenance 

actions are scheduled before the bridge structure 

reaches critical deterioration. This future 

maintenance approach reduces the risk of 

unexpected failures, expands the bridge's 

operational life, and optimizes resource allocation 

for repair and inspections. 

C.Particle Swarm Ant optimized with Energy 

Harvesting (PSAO-EH) 

This algorithm focuses on optimizing energy usage 

in the sensor network. It uses energy harvesting 

technologies to ensure the sensors have a sustainable 

power source and employs an energy-efficient 

routing algorithm to minimize energy consumption 

while maintaining data integrity. 

The proposed PSAO-EH are applied to discover 

optimal energy-saving routes. Each sensor node's 

energy consumption is tracked, and data 

transmission is optimized for less energy 

consumption without degrading network 

performance. 

The parameters of the prediction models and 

improve overall system performance, the proposed 

framework incorporates PSAO-EH. The proposed 

method is a population-based metaheuristic 

algorithm inspired by the social behaviour analyzed. 

The update of particle velocity, which governs the 

movement of solutions through the search space, is 

mathematically described in Equation (9): 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝best − 𝑥𝑖(𝑡)) +

𝑐2𝑟2(𝑔best − 𝑥𝑖(𝑡))  (9)  

The velocity update mechanism enables each 

particle to adjust its position by considering its best 

experience and the collective experience of the 

swarm.  

The velocity update, the position of each particle in 

the swarm is updated to reflect its new state in the 

search space. This update is guided by the particle's 

new velocity vector and is expressed mathematically 

in Equation (10): 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)  (10) 

In this Equation 10, 𝑥𝑖(𝑡) denotes the current 

position of the 𝑖𝑡ℎ particle, and 𝑣𝑖(𝑡 + 1)  is the 

updated velocity computed in the previous step. The 

summation of these values yields the new position 

𝑥𝑖(𝑡 + 1), which moves the particle toward 

potentially better solutions in the search space. 

The incorporation of the PSAO-EH algorithm into 

the suggested framework enables automated 

hyperparameter optimization to increase the 

prediction accuracy and efficiency of the anomaly 

detection and RUL estimation models. Optimization 

ensures that the system achieves high performance 

even when sensor conditions or structural behaviors 

vary with time. To enhance routing decisions in the 

sensor network, the system incorporates ACO, a bio-

inspired algorithm that simulates the foraging 

behavior of ants. In ACO, pheromone trails guide 

the selection of optimal paths based on historical 

success. The pheromone level on a path is 

dynamically updated, as shown in Equation (11): 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + 𝛥𝜏𝑖𝑗  (11) 

This pheromone update mechanism allows the 

system to adaptively discover and reinforce efficient 

communication paths, reducing transmission delays 

and packet loss and improving the overall reliability 

of the wireless sensor network. Energy efficiency is 
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critical for the long-term operation of WSN, 

especially in remote or hard-to-access environments 

like highway bridges. Equation (12) is used to 

determine the sensor network's overall energy 

consumption: 

𝐸total = ∑  𝑛
𝑖=1 𝐸𝑖   (12) 

Minimizing 𝐸𝑡𝑜𝑡𝑎𝑙  guarantees an extended network 

lifetime and decreases the necessity of constant 

battery replacements or maintenance. This is 

particularly advantageous in structural health 

monitoring systems installed in hard-to-reach bridge 

infrastructures. 

 

IV. RESULTS AND DISCUSSIONS 

 

This section presents the results of the proposed 

WSNs-based system to increase highway bridge 

safety through real-time monitoring and future 

maintenance. Major performance for evaluation of 

systems includes accuracy of discrepancy in the 

metrics, data transmission reliability, energy 

consumption, and system scalability. Results show 

that advanced system designs, event-trigger sensing, 

ML algorithms, and future maintenance models 

effectively increase bridge safety by detecting 

discrepancies and providing initial maintenance 

alerts. 

 

Parameter Value 

Detection Model ML (XGBoost, LSTM) 

Simulation Area 1000 m × 1000 m 

Number of Sensor 

Nodes 

100 

Sensor Types Strain Gauges, 

Accelerometers, 

Displacement Sensors 

Communication 

Protocol 

Zigbee (Mesh Network) 

Simulation Tool NS2 

Power Consumption 0.2 W per node 

Data Acquisition 

Interval 

5 seconds 

Maintenance Alert 

Threshold 

20% deviation from 

predicted data 

Table 1 outlines the setup for evaluating the 

proposed system, using simulated bridge structures 

with wireless sensor nodes deployed across the 

monitored area. A mesh network is employed for 

efficient data transmission, and a ML-based 

anomaly detection model (using XGBoost and 

LSTM) is utilized to predict bridge health and detect 

anomalies in real time. 

 
Fig. 2.  Detection Accuracy 

Figure 2 presents the detection accuracy comparison 

among different methods: LSTM, FOS, RTSHPMP, 

and the proposed PSAO-EH integrated system under 

varying numbers of sensor nodes (30, 60, and 100). 

The RTSHPMP method also shows significant 

improvement but remains slightly lower than 

PSAO-EH The LSTM and FOS methods perform 

moderately well but lag behind the optimization-

driven techniques.  

 
Fig. 3. Time Complexity 

Figure 3 illustrates the time complexity analysis of 

different methods—LSTM, FOS, RTSHPMP, and 

the proposed PSAO-EH —over varying numbers of 

sensor nodes (100, 80, 60, and 30). Among them, the 

proposed PSAO-EH approach consistently exhibits 

the lowest time complexity at all node levels, 

demonstrating its efficiency in handling large-scale 

sensor networks. These results confirm that PSAO-

EH significantly optimizes processing time, making 

it highly suitable for real-time highway bridge 

monitoring where fast data processing is crucial. 

 
Fig. 4.  Packet Delivery Ratio 
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Figure 4 shows the PDR performance of various 

methods—LSTM, FOS, RTSHPMP, and the 

proposed PSAO-EH —across different numbers of 

nodes (80, 90, and 100). The proposed PSAO-EH 

method consistently achieves the highest packet 

delivery ratio, exceeding 90% when the node count 

reaches 100. RTSHPMP and FOS show moderate 

performance, while the LSTM-based method 

achieves the lowest packet delivery ratio.  

 
Fig. 5. Energy Use 

Figure 5 compares energy usage by various 

methods— PSAO-EH, RTSHPMP, FOS, and 

LSTM—regarding the number of nodes (10, 30, 60, 

and 100). The PSO-ACO2 method put forward here 

shows less energy usage than other methods, 

particularly as nodes increase. While LSTM and 

FOS consume significantly more energy, 

particularly at higher node densities, PSAO-EH 

maintains a more energy-efficient operation.  

 

V. CONCLUSION 

 

This study offers an advanced WSN structure to 

increase the safety and maintenance of highway 

bridges. The ML models, such as PSAO-EH and 

XGBoost and LSTM, effectively detect early-

detection structural discrepancies by analyzing real-

time sensor data patterns. The simulation results 

confirm that the proposed system acquires accuracy 

to detect high discrepancies, reduces false alarms, 

and provides timely maintenance alerts. Compared 

to traditional wired systems, this WSN-based 

approach significantly reduces the cost of 

installation and maintenance by offering continuous 

monitoring capabilities. The system receives a 

prediction accuracy of 94% to detect structural 

anomalies, maintains a packet distribution rate 

above 93%, and reduces energy consumption by 

18% compared to traditional wireless monitoring 

methods. These results highlight that integrating 

advanced WSN technology, future starting analysis, 

and innovative maintenance strategies can 

effectively increase safety, reduce operating costs, 

and expand the lifetime of significant infrastructure. 

Overall, a well-designed wireless sensor network, 

intelligent data processing, and energy-skilled 

communication maybe one. 
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