© June 2025 | JIRT | Volume 12 Issue 1 | ISSN: 2349-6002

Sound Based Bird Species Recognition

Varshitha N R?, Sowjanya K M?, Vaishnavi khuba 3, Shivani 4, Dr. Kavyasri M N °
*Assistant Professor Dept of CSE Malnad College of Engineering Hassan, India
1234 Dept of CSE Malnad College of Engineering Hassan, India

Abstract—Ecological monitoring and biodiversity
assessment  increasingly  utilize  acoustic  bird
identification as a non-disruptive methodology. This
research develops a deep learning framework for
automated recognition of avian species through their
vocalizations. The approach employs convolutional
neural networks  applied to  spectrogram
representations derived from publicly accessible
datasets including Xeno-Canto and BirdCLEF
competitions.  Preprocessing  incorporates  noise
reduction techniques and data augmentation strategies
to enhance model robustness. Evaluation across
multiple species demonstrates effective performance
under varying acoustic conditions and background
interference. The system's potential for deployment in
mobile applications and remote monitoring platforms
offers significant value for ornithological research and
conservation efforts. Future research directions include
incorporating spatio-temporal contextual information
to refine species classification accuracy.
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I INTRODUCTION

Avian species serve as crucial bioindicators for
ecosystem integrity and environmental health
assessment. Population dynamics and distribution
patterns of birds provide valuable insights into
biodiversity trends, environmental changes, and
habitat quality. Traditional ornithological surveys
rely predominantly on visual identification
techniques and expert interpretation of acoustic
signals—approaches that demand substantial
temporal investment, specialized expertise, and
remain susceptible to observer bias and subjective
interpretation.

Recent advances in artificial intelligence, particularly
deep neural architectures, have enabled the
development of automated systems for species
recognition through acoustic analysis. These
computational approaches exploit the distinctive
spectral characteristics inherent in species-specific

vocalizations, which exhibit remarkable inter-species
variability. Through the conversion of temporal audio
data into visual representations such as spectrograms,
deep learning architectures—especially
Convolutional Neural Networks—can effectively
learn discriminative features for accurate taxonomic
classification.

This study presents a novel computational framework
for automated avian species identification utilizing
advanced machine learning techniques applied to
acoustic data. The proposed system processes digital
audio recordings, converts them into Mel-frequency
spectral representations, and employs a trained CNN
architecture developed using comprehensive bird
vocalization databases. This methodology offers a
scalable, non-invasive solution for biodiversity
monitoring and ecological assessment across diverse
terrestrial environments.

1. LITERATURE REVIEW

Bioacoustic research has experienced significant
growth in automated avian species recognition,
leveraging computational intelligence and neural
network architectures to process vocalization data.
This review examines contemporary methodologies
and algorithmic approaches employed in recent
investigations, analyzing their technical
contributions and  quantitative  performance
outcomes.

Research by Prakash and Rajesh [1] demonstrated the
feasibility of deploying compact CNN architectures
for real-time classification on portable devices. Their
implementation utilized logarithmic  Mel-scale
spectrograms as input features, achieving
approximately 91% classification accuracy with sub-
second processing latency on proprietary mobile-
recorded datasets. This work established the viability
of edge-computing solutions for field-based
ornithological applications.

Mehta and Patel [2] explored composite classifier
strategies, combining Random Forest and Gradient
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Boosting algorithms trained on diverse acoustic
descriptors including Mel-Frequency Cepstral
Coefficients, spectral centroids, and temporal zero-
crossing characteristics. Their methodology yielded
89% accuracy when evaluated on urban soundscape
recordings, demonstrating ensemble robustness in
acoustically challenging environments.

The investigation by Bhattacharya and Saha [3]
employed pre-trained convolutional architectures
(VGG16, ResNet50) adapted through fine-tuning for
avian vocalization spectrograms. Utilizing Xeno-
Canto repository data supplemented with field
recordings, their approach achieved 93%
classification performance, validating transfer
learning efficacy in acoustic pattern recognition
tasks.

Latha and Gopal [4] conducted comprehensive
evaluations of neural network variants, comparing
CNNs, RNNs, and hybrid CNN-RNN configurations.
Processing MFCC and logarithmic Mel-spectrogram
features on BirdCLEF dataset subsets, their hybrid
model demonstrated superior performance at 94%
accuracy, illustrating the advantages of combining
spatial and temporal feature extraction mechanisms.

Jadhav and Patil [5] implemented fully-connected
neural networks trained on multi-dimensional feature
vectors comprising MFCC, spectral roll-off, and
chromatic  characteristics. ~ Their  architecture
achieved 87% accuracy across 20 species
classifications, confirming that conventional deep
learning structures remain effective when paired with
appropriate feature engineering and balanced training
datasets.

Arvind and Shalini [6] developed distributed
computing frameworks integrating CNN and LSTM
architectures for processing logarithmic Mel-
spectrograms. Their system, trained on OpenMic-
2018 and field-collected data, demonstrated 90% F1-
score performance, establishing the potential for
scalable acoustic monitoring infrastructure.

The work of Prashanth and Suprabha [7] investigated
reduced-complexity CNNs with dual convolutional
layers, achieving 88% accuracy on combined custom
and Xeno-Canto datasets. Their findings support the
effectiveness of simplified architectures when
coupled with optimized spectrogram preprocessing
techniques.

Roy and Banerjee [8] evaluated traditional
classification algorithms including Support Vector
Machines and Random Forest models trained on
MFCC, spectral flux, and zero-crossing rate features.
Their 85% accuracy results on limited datasets
highlight the continued relevance of conventional
machine learning approaches for resource-
constrained applications.

Yang et al. [9] introduced SSL-Net, a synergistic
learning framework combining spectral and learned
feature  representations.  Their  architecture
demonstrated enhanced performance despite limited
training samples, showcasing the effectiveness of
multi-modal feature fusion strategies in avian
acoustic classification.

Heinrich et al. [10] developed AudioProtoPNet, an
explainable deep learning model utilizing ConvNeXt
backbone architectures for embedding extraction
coupled with prototype-based classification. Their
system achieved 0.90 AUROC and 0.42 cmAP scores
on BirdSet evaluations, advancing interpretable
machine learning applications in acoustic pattern
recognition.

Revathi and Sasikaladevi [11] constructed
comprehensive classification frameworks
incorporating multiple feature extraction techniques
and ensemble learning paradigms. Through
spectrogram analysis and CNN implementations,
their system achieved perfect classification accuracy
across 20 species, demonstrating the power of
integrated feature-model combinations.

Naranchimeg et al. [12] investigated cross-domain
feature fusion techniques for audio-visual bird
species classification. Their CNN-based multimodal
architectures  with  various fusion strategies
outperformed single-modality models, establishing
the benefits of integrated sensory data processing.
Denton et al. [13] addressed overlapping vocalization
challenges through unsupervised sound separation
methodologies. Implementing mixture invariant
training (MixIT), they achieved improved separation
quality and classification accuracy across multiple
datasets, emphasizing the importance of handling
acoustic interference.

Yang et al. [14] developed novel recognition
frameworks utilizing transformer encoders and
multi-feature fusion strategies. By integrating
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multiple  CNN  networks with  transformer
architectures, their system effectively captured
positional relationships within acoustic features,
resulting in enhanced recognition performance.

Gopiashokan [15] implemented comprehensive deep
learning models using CNN architectures and
TensorFlow frameworks for 114-species
classification tasks. Achieving 93.4% accuracy, their
work demonstrated the scalability of deep learning
solutions for extensive taxonomic classification
applications.

Mathara Arachchi [16] provided extensive analysis
of automated bird sound recognition in contemporary
Al contexts. The review emphasized deep learning
capabilities in extracting complex acoustic patterns
while highlighting the necessity for improved model
robustness and real-time system optimization.

Aggarwal and Sehgal [17] examined CNN
classification systems through various configuration
and hyperparameter evaluations. Fine-tuning pre-
trained MobileNet architectures on Xeno-Canto
datasets, their methodology demonstrated transfer
learning advantages in avian acoustic classification

tasks.

Ref | Methodology Tools/Model Used | Features Dataset Accuracy

no.

1 Real time | Light CNN | Log-mail Custom mobile- | ~91%
classification on | (Custom), Android | spectrogram recorded bird | Accuracy,
mobile using | Integratio audio dataset Real-time
customized CNN latency < 1s

2 Learning for audio- | Random forest, | MFCC, Spectral | Urban bird audio | ~89%
based classification | promote shield Centroid, Zero | dataset Accuracy

Crossing Rate

3 Transfer learning on VGG16, Resanet50 | Mail & STFT | xeno-canto + | ~93%

. (Fine-Tinked) Spectrogram custom field data | Accuracy
Spctrogram using
Carrying CNN

4 Architecture CNN, LSTM, | MFCC, Log- | BirdCLEF subset | CNN-RNN:
Comparison (CNN, | Hybrid CNN-RNN | Mail ~94%, CNN:
RNN, CNN-RNN) Spectrogram ~91%, RNN:

~88%

5 Custom DNN model | DNN (fully | MFCC, Spectral | Custom dataset | ~87%
with extracted | connected) Roll-Off, Croma | (20 species) Accuracy
features

6 Field-based CNN, LSTM | Log-mail OpenMic-2018 + | ~90% F1
monitoring  using | (Cloud-hosted spectrogram field data Score
deep education pipeline)

7 Spctrograde-based CNN  (2-Convavi | Log-mail Custom audio + | ~88%
classification using | layer) spectrogram Xeno-Canto Accuracy
CNN samples

8 Traditional ml with | SVM, Random | MFCC, zero | Custom small | ~85%
audio feature | Forest crossing rate, | dataset Accuracy
extraction spectral flow

9 Spectral + learning- | SSL-NET (Custom | Spectral features, | Custom + public | ~92%
based hybrid | CNN with feature | learned facilities | datasets Accuracy
classification fusion)

10 . Audioprotopate Spectrogram BirdSet dataset AUROC:

Interpretation . ]
. embeding 0.90, cmAP:
Learn with 0.42
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Prototype network

11 | Multi-based deep CNN with | MFCC, Custom da}taset 100%
teaching handcrafted  and | Spectrogram (20 species) Accuracy
classification learned facilities

12 Multimodal audio- | CNN  (Visual + | Spectrogram, Audio-Visual ~90%
visual classification | Audio), image embeding bird dataset Accuracy
using CNN fusion Multimodal Fusion

Strategies

13 | Uncontrolled sound Mi.xi.ng irrgversible Raw mixed audio | 3  public bird Impr'oyed
separation for | training (mix) signal sound datasets Premspn &
overlapping bird Separation
calls

14 | Transformer-based Multi-facility cnns | MFCC, o ~95%
fusion model with | * transformer | Spectrogram, Public bird Accuracy
multi-feature input encoder Status Facility sound datasets

15 Deep CNN model | CNN (tensarflow | MFCC, Custom dataset | ~93.4%
for  multi-species | implementation) Spectrogram (114 bird Accuracy
bird classification species)

16 Literature review on | Various DL models | MFCC, STFT, | - (survey study) | - (comparative
automatic bird | (CNN, RCNN, etc.) | Log-Mail insights only)
sound analysis

17 | Transfer learning for | Mobilnet Mail spectrogram | Xeno-Canto dataset~90%
mobile-skilled bird Accuracy
classification

1. LIMITATIONS OF PRIOR RESEARCH

Despite substantial advances in acoustic-based avian
species recognition, several critical constraints
persist within existing research frameworks.
Environmental acoustic interference and overlapping
vocalizations in natural habitats significantly degrade
classification performance, representing the most
substantial impediment to practical field deployment.
Additionally, models trained on constrained datasets
demonstrate limited generalization capabilities
across diverse species populations and geographical
regions, restricting their broader applicability.

Data-Related Constraints

Insufficient high-quality annotated samples for rare
species contribute to dataset imbalance, creating
classification  bias  toward  well-represented
taxonomic groups. This limitation particularly affects
conservation applications where rare species
detection is most critical.
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Computational Limitations

Computational resource requirements of
sophisticated deep learning architectures, including
CNN-based and transfer learning models, demand
substantial processing capabilities that preclude
deployment on resource-constrained platforms such
as mobile devices or remote sensing equipment.
Furthermore, the predominant reliance on brief audio
segments in most existing models neglects temporal
dependencies inherent in bird vocalizations, limiting
the system's capacity to recognize complex acoustic
sequences.

Technical Challenges

Recording  condition  variability,  including
microphone  specifications and environmental
factors, introduces systematic variations that
complicate feature extraction processes and
compromise model robustness. The prevalence of
overfitting in small-dataset scenarios, combined with
the inherent opacity of deep learning models,
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constrains interpretability and hinders diagnostic
analysis of classification decisions.

Real-Time Processing Constraints

Current systems struggle to achieve optimal balance
between classification accuracy and processing
latency requirements for field applications. Most
existing models fail to meet real-time performance
standards necessary for practical ornithological
monitoring applications.

These identified limitations necessitate the
development of more computationally efficient,
noise-resilient, and generalizable bird sound
classification frameworks, directly motivating the
architectural design decisions underlying the
proposed methodology.

V. CONCLUSION

This research develops an efficient deep learning
framework for automated bird species identification
from acoustic data, addressing key limitations in
existing approaches. The system combines Mel-
spectrogram  analysis with optimized CNN
architectures to achieve robust performance across
diverse species and noisy environments. Data
augmentation strategies effectively handle dataset
imbalances while maintaining computational
efficiency for mobile deployment.

The framework enables real-time processing on
resource-constrained devices, making it practical for
field applications in remote locations. Future work
will incorporate temporal modeling and spatial
context to enhance accuracy and interpretability. This
approach provides a valuable tool for ecological
monitoring and biodiversity conservation efforts.
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