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Abstract- This project presents a comprehensive study on 

the use of Long Short-Term Memory (LSTM) networks, a 

specialized class of Recurrent Neural Networks (RNNs) 

within the domain of deep learning, for time series 

forecasting of stock prices. The research specifically 

focuses on Tata Steel Limited, a key stock within the 

Indian equity market, selected for its historical volatility 

and market relevance. Accurate prediction of stock prices 

is a highly challenging task due to the non-linear, non-

stationary, and noisy nature of financial time series data. 

Traditional statistical methods often fall short in 

capturing these complex temporal patterns, which 

underscores the need for more sophisticated, data-driven 

approaches. 

The core objective of this study is to investigate the 

efficacy of bidirectional LSTM architectures in 

modelling and predicting future stock price movements 

based on historical data. To this end, the model is trained 

on Open, High, Low, and Close (OHLC) price features 

retrieved from Yahoo Finance, with optional inclusion of 

technical indicators such as Moving Averages (MA), 

Relative Strength Index (RSI), and Bollinger Bands to 

enhance pattern recognition. The Adam optimizer is 

utilized for gradient-based optimization of the model 

parameters due to its computational efficiency and 

adaptive learning capabilities. 

The model’s predictive performance is quantitatively 

evaluated using Root Mean Squared Error (RMSE), a 

robust metric for measuring the deviation between 

predicted and actual values. Additionally, the research 

examines the influence of hyperparameters, particularly 

the number of training epochs, on the model’s 

convergence behavior and forecasting accuracy. 

Experimental results suggest that LSTM networks, when 

properly tuned and supplemented with relevant 

indicators, can effectively learn from historical patterns 

and outperform baseline models in terms of predictive 

precision. 

Beyond model performance, the project also explores the 

practical challenges associated with implementing deep 

learning models in financial forecasting, including 

overfitting, data pre-processing complexities, and 

interpretability issues. Overall, this study contributes 

valuable insights to the growing field of machine learning 

in finance, illustrating how RNN-based models like 

LSTM can serve as powerful tools for stock market 

analysis, investment decision support, and algorithmic 

trading. 
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I. INTRODUCTION 

 

The stock market has always been a subject of 

interest for investors, financial analysts, and 

researchers due to its inherent volatility and the 

complexities involved in predicting its future 

behavior. Accurate stock price prediction is vital for 

making informed investment decisions, reducing 

risk, and maximizing profits. Traditional methods 

such as statistical models (e.g., ARIMA, GARCH) 

and regression models have been widely used for 

forecasting stock prices, but these approaches often 

struggle to capture the underlying complex patterns 

in the stock market data, especially when dealing 

with large datasets and non-linear relationships. 

With the rise of machine learning (ML) and deep 

learning (DL) technologies, new methods have been 

introduced to address these challenges. Among these, 

Recurrent Neural Networks (RNNs), specifically 

Long Short-Term Memory (LSTM) networks, have 
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gained significant attention due to their ability to 

model sequential data and capture temporal 

dependencies in time series data. LSTMs, with their 

unique architecture, are able to learn from long-term 

dependencies, making them particularly well-suited 

for tasks like stock price prediction, where past stock 

prices influence future movements. 

Stock price prediction is a highly challenging task 

due to various factors such as market volatility, 

unexpected events, and complex market dynamics. 

Traditional statistical models fail to account for the 

intricate relationships and time dependencies within 

stock price movements. This research aims to 

investigate how deep learning models, specifically 

LSTM networks, can be used to predict stock prices 

more accurately by analyzing historical stock data, 

including the Open, High, Low, and Close (OHLC) 

prices. 

The focus of this project is on Tata Steel, a major 

player in the Indian steel industry, and the analysis 

of its stock prices to explore the potential of LSTMs 

in stock forecasting. By leveraging LSTM networks, 

this project seeks to determine whether deep learning 

techniques can outperform traditional methods in 

predicting stock prices and uncover meaningful 

patterns from the past data. 

The primary objective of this study is to evaluate the 

effectiveness of LSTM networks for stock price 

prediction. The specific goals of the project are as 

follows: 

• To develop a time series forecasting model based 

on LSTM networks for predicting Tata Steel stock 

prices. 

• To utilize historical stock data (OHLC) from Yahoo 

Finance as the input for training the model. 

• To evaluate the performance of the model using 

various evaluation metrics, primarily focusing on 

Root Mean Squared Error (RMSE). 

• To explore how technical indicators such as 

Moving Average Convergence Divergence (MACD) 

and Relative Strength Index (RSI) can be 

incorporated into the model to improve its predictive 

accuracy. 

• To analyze the influence of training epochs, batch 

size, and learning rates on model performance and 

convergence. 

The importance of this study lies in its potential to 

improve the accuracy of stock price forecasting, 

providing investors and financial analysts with better 

tools for decision-making. Accurate forecasting 

models could lead to more efficient market 

predictions, enhanced risk management strategies, 

and optimized investment portfolios. Additionally, 

this study contributes to the growing body of research 

at the intersection of machine learning and finance, 

exploring the practical applications of deep learning 

techniques in real-world financial markets. 

 

II. LITERATURE REVIEW 

 

Stock market forecasting has traditionally been 

approached through statistical models such as 

Autoregressive Integrated Moving Average 

(ARIMA), GARCH, and Support Vector Machines 

(SVMs). While these models perform adequately in 

linear scenarios, they often struggle with the non-

linearity, volatility, and sequential dependencies 

inherent in stock price data. As a result, deep learning 

models, particularly Recurrent Neural Networks 

(RNNs) and their variants, have gained prominence 

for their ability to model temporal dependencies in 

sequential data[1] 
 

• RNN and LSTM-Based Approaches 
 

Vanilla RNNs 

Recurrent Neural Networks (RNNs) are designed for 

sequential data, but they suffer from vanishing and 

exploding gradient problems, which hinder their 

ability to capture long-term dependencies [2]. Due to 

this limitation, their performance in stock prediction 

tasks has been suboptimal unless used with very short 

sequences. 
 

Long Short-Term Memory (LSTM) Networks 
 

To overcome the limitations of vanilla RNNs, LSTM 

networks were introduced by Hochreiter and 

Schmidhuber (1997), incorporating gating 

mechanisms that enable the retention and forgetting 

of information over longer sequences [3]. 

Many studies have successfully employed LSTM 

networks for stock price prediction: 

• Fischer & Krauss (2018) applied LSTM networks 

on S&P 500 stock data and demonstrated that 

LSTM outperformed both traditional models and 
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standard RNNs in predicting daily returns [4]. 

• Nelson et al. (2017) compared LSTM with multi-

layer perceptrons (MLP) and SVM for predicting 

the Brazilian stock market, concluding that 

LSTM yielded higher accuracy and lower error 

rates [5]. 

• Zhang et al. (2018) used LSTM networks 

enhanced with technical indicators (e.g., RSI, 

MACD) and found significant improvement in 

prediction accuracy [6]. 

Additionally, bidirectional LSTM (Bi-LSTM) 

networks have been explored to capture both past and 

future context in the data sequence, yielding further 

improvements in trend prediction [7]. 

• Hybrid Models with LSTM 

Several works have explored hybrid models 

combining LSTM with other techniques: 

• LSTM + Attention Mechanism: Attention layers 

help the model focus on important time steps. Qin 

et al. (2017) proposed the DA-RNN (Dual-stage 

Attention-Based RNN) model, significantly 

improving predictive accuracy in multivariate 

time series forecasting [8]. 

• LSTM + ARIMA: Hybrid models combining 

statistical learning with deep learning have shown 

strong performance in capturing both linear and 

non-linear patterns [9]. 

• Comparison with Other Deep Learning 

Architectures 

Convolutional Neural Networks (CNNs) 

While CNNs are traditionally applied to spatial data 

(images), they have been used in stock prediction 

tasks by applying convolution across time windows. 

• Sezer & Ozbayoglu (2018) used 1D CNNs for 

feature extraction from technical indicators, 

showing that CNNs can extract local temporal 

patterns effectively [10]. 

• However, CNNs lack the inherent capability to 

model long-range temporal dependencies, 

making them less effective for time series 

forecasting when used alone. 

Transformers 

Transformers, originally introduced for NLP tasks, 

have recently shown great promise in time series 

forecasting due to their self-attention mechanism, 

which models long-term dependencies without 

recurrence. 

• Zhou et al. (2021) introduced Informer, a 

Transformer-based architecture for long-sequence 

forecasting, outperforming LSTM in some time 

series benchmarks [11]. 

• Wu et al. (2020) proposed Time Series Transformer 

and demonstrated its effectiveness in capturing 

global dependencies, making it suitable for 

financial forecasting tasks, though requiring more 

data and computational resources [12]. 

Transformers generally outperform LSTM in long-

horizon forecasting tasks, but for short-term or 

moderately-sized datasets, LSTM remains 

competitive due to its simpler architecture and lower 

computational cost [13]. 

• Key Observations from Literature 

Model Strengths Weaknesses Use Case 

RNN 

Basic 

temporal 

modeling 

Gradient 

issues 

Short 

sequences 

LSTM 

Captures 

long-term 

dependencies, 

stable training 

Slow training Moderate-

length 

financial 

data 

CNN 

Fast training, 

good for local 

patterns 

Poor long-

term memory 

Pattern 

recognition 

from 

technical 

indicators 

Transformer 

Excellent for 

long-range 

dependencies 

High 

computational 

cost 

Large 

datasets, 

long-range 

forecasts 

 

III. SYSTEM ANALYSIS 

The stock market is inherently volatile and non-

linear, with price movements influenced by a wide 

range of factors including economic indicators, 

market sentiment, and geopolitical events. 

Traditional time series models like ARIMA or linear 

regression are insufficient to model such complex 

relationships due to their limited memory capacity 

and assumption of stationarity. 

This project aims to solve the following key problem: 

How can we leverage deep learning techniques, 

specifically Long Short-Term Memory (LSTM) 

networks, to model historical stock price data and 
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forecast future prices more accurately than 

conventional approaches? 

The focus is on Tata Steel stock data, utilizing past 

performance (Open, High, Low, Close) to predict 

near-future stock behavior and aid in trend analysis. 

• System Objectives 

• To build a forecasting model using LSTM, a 

type of Recurrent Neural Network (RNN). The 

predictive model will be using Bidirectional 

LSTM (BiLSTM) networks to forecast the 

short-term movements of Tata Steel's stock 

prices based on historical price data and 

technical indicators. 

• To train the model using historical OHLC stock 

data from Yahoo Finance. 

• To evaluate the model performance using 

RMSE and other relevant metrics. 

• To incorporate technical indicators (e.g., RSI, 

MACD) for enhanced feature representation. 

• To analyze how training parameters (like 

number of epochs and batch size) affect model 

accuracy and convergence. 
 

• Feasibility Study 

a. Technical Feasibility 

• The implementation uses Python with libraries 

like TensorFlow, Keras, NumPy, Pandas, and 

Matplotlib. 

• LSTM networks are computationally feasible 

on standard GPUs or high-end CPUs for 

single-stock forecasting. 

• Data collection is straightforward using Yahoo 

Finance APIs (e.g., yfinance). 

b. Economic Feasibility 

• No direct financial investment is needed, as 

open-source tools and public datasets are used. 

• The system is cost-effective and scalable for 

academic or research purposes. 

c. Operational Feasibility 

• The model can be integrated into trading 

dashboards or decision-support tools. 

• Outputs are interpretable as graphs or 

numeric forecasts 

• Data Flow Description 

• Input: Raw stock data (OHLC), derived 

indicators Columns used are:Date, Close, 

Volume 

• Derived Features: 

o Technical indicators (SMA, EMA, 

Bollinger Bands, RSI, MACD) 

o Statistical transformations (Daily 

Return, Price Change, Lag features) 

o Time-based features (Day of the Week) 

• Processing: Feature scaling (MinMaxScaler), 

time series windowing, LSTM training 

• Output: Predicted price(s), trend analysis, 

visual plots of Actual vs. Predicted Prices,RSI 

& Bollinger Bands Over Time 

• Limitations and Assumptions 

• The system assumes that past price movements 

and derived indicators hold predictive value. 

• External factors (news, sentiment, global events) 

are not directly modeled in this version. 

• The LSTM model may underperform if the stock 

behavior changes dramatically due to unforeseen 

events. 

• System Workflow 

The workflow of the system can be broken down into 

several key stages, each essential to the successful 

prediction of stock prices using a deep learning-based 

RNN approach. The complete process from data 

acquisition to prediction is as follows: 

1. Data Collection 

• Stock market historical data for Tata Steel is 

collected using Yahoo Finance and stored as a 

CSV file. 

• The dataset includes columns like Date, Open, 

High, Low, Close, and Volume. 

2. Data Preprocessing 

• The Volume column is cleaned by removing 

commas and converting values to float. 

• Dates are converted to datetime format, and the 

dataset is sorted chronologically. 

• Missing values and anomalies are removed to 

ensure dataset integrity. 

3. Feature Engineering 

• New features are derived to enhance the 

model’s predictive power: 
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o Daily Return 

o Price Change 

o Exponential Moving Average (EMA-20) 

o Simple Moving Averages (SMA-30 and 

SMA-100) 

o Relative Strength Index (RSI) 

o Bollinger Bands (High and Low) 

• These indicators provide insights into trends, 

momentum, and volatility. 

4. Data Normalization 

• The dataset is scaled using MinMaxScaler to 

ensure that all input features fall within the 

same numerical range. 

• This improves the model’s convergence and 

stability. 

5. Time Series Dataset Creation 

• A sliding window of 60 time steps is used to 

convert the data into a supervised learning 

format suitable for LSTM input. 

• The dataset is then split into training (80%) and 

testing (20%) sets. 

6. Model Construction 

• A Bidirectional LSTM network is used to learn 

from both past and future trends in the 

sequence data. 

• The architecture consists of: 

o Four stacked Bidirectional LSTM layers 

(100, 50, 30, and 20 units) 

o Dropout layers for regularization 

o A final Dense layer for output prediction 

7. Model Compilation and Training 

• The model is compiled with the Adam 

optimizer and mean squared error loss 

function. 

• Training uses callbacks: 

o EarlyStopping to prevent overfitting 

o ReduceLROnPlateau to adjust learning 

rate dynamically 

o LearningRateScheduler for gradual 

learning rate decay. 

8. Prediction and Evaluation 

• The model predicts the price change (delta), 

which is added to the previous closing price to 

estimate the next price. 

• Evaluation Metrics: 

o Root Mean Squared Error (RMSE) to 

assess prediction accuracy 

o Directional Accuracy to evaluate the 

model’s ability to predict the correct 

movement (up/down) 

9. Visualization 

• Graphs are generated to compare actual vs 

predicted prices. 

• Future stock price predictions for 10 days 

ahead are visualized. 

• Technical indicators like RSI and Bollinger 

Bands are plotted for better interpretability. 

10. Future Forecasting 

• The last known time window is used to 

recursively predict the next n days of stock 

prices using the trained model. 

 

WORKING OF THE MODEL 

This project leverages a Bidirectional Long Short-

Term Memory (BiLSTM) network, a powerful deep 

learning architecture within the Recurrent Neural 

Network (RNN) family, to forecast stock price 

movements for Tata Steel. Here's a breakdown of the 

model’s internal functioning and operational flow: 

1. Data Preprocessing 

• Loading Data: 

The model reads historical stock data for Tata 

Steel from a CSV file. 

• Cleaning: 

o Commas are removed from the "Volume" 

column and converted to float. 

o The "Date" column is converted to datetime for 

time-based processing. 

o Data is sorted chronologically. 

2. Feature Engineering 

We created technical indicators commonly used in 

trading to enrich our input features: 

• Daily_Return: Percentage change in closing 

price. 

• Price_Change: Absolute change in price. 
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• EMA_20, SMA_30, SMA_100: 

Exponential/Moving averages to capture trends. 

• Bollinger Bands (High & Low): Volatility 

indicators based on standard deviation from 

EMA. 

• RSI: Indicates overbought or oversold 

conditions. 

• MACD: Momentum indicator. 

• Lag_1: Previous day's close (helps the model 

understand recent movement). 

• Day_of_Week: Captures weekly patterns (e.g., 

Monday dips or Friday rallies). 

3. Feature Scaling 

• MinMaxScaler scales features to a 0–1 range, 

which helps LSTM layers converge faster and 

prevents certain features from dominating due 

to magnitude. 
 

4. Dataset Construction (Time Series) 

The model uses sliding time windows: 

• For each prediction, it uses the previous 60 

time steps (days) of feature values as input (X) 

and the next day's percentage return as the 

target (y). 

• So each input to the model is a (60, 12) shaped 

array: 60 timesteps × 12 features. 

5. BiLSTM Model Architecture 

• Bidirectional LSTM (BiLSTM): 

Unlike standard LSTM (which sees only the 

past), BiLSTM reads both past and future 

context within each input window, improving 

pattern detection. 

• Layers: 

1. Bidirectional(LSTM(64)) with 

return_sequences=True – First layer 

returns a full sequence for the next layer. 

2. Dropout layer to prevent overfitting. 

3. Bidirectional(LSTM(32)) – Second 

layer reduces dimensionality and 

captures sequential dependencies. 

4. Another Dropout. 

5. Dense layer with 1 neuron to output the 

predicted next-day return. 

• Loss Function: 

Huber() is used – robust to outliers (unlike 

MSE), which is good for financial data. 

• Optimizer: 

Adam is used for efficient gradient updates. 

6. Model Training 

• EarlyStopping: Stops training if validation loss 

doesn’t improve for 10 epochs. 

• ReduceLROnPlateau: Reduces learning rate 

when the model gets stuck in a plateau, 

improving convergence. 

7. Prediction Logic 

• The model predicts percentage return (not 

direct price). 

• To reconstruct predicted price we used the 

formula: 

Predicted_Price = previous_price * ( 1 + 

predicted_return) 

Actual price is shifted one day to match the forecast. 

8. Evaluation Metrics 

• RMSE (Root Mean Squared Error): Measures 

how far predictions are from actual prices. 

• Directional Accuracy: Compares whether the 

model predicted the direction of price 

change (up/down) correctly. 

• Percentage Deviation: Measures average % 

error. 

9. Visualization 

• Plots: 

o Actual vs Predicted Prices over time. 

o RSI and Bollinger Bands to show signal 

strength and volatility visually. 

Summary:  

Our model is designed to predict the next day’s return 

(price movement %), from which we reconstruct the 

predicted price. It uses technical indicators and time 

series trends captured by BiLSTM layers, which are 

particularly effective for sequence modelling. 

Algorithm: BiLSTM-Based Stock Price Forecasting  
 

Input: 

• Historical stock data (CSV) with columns: Date, 

Open, High, Low, Close, Volume. 

Output: 

• Predicted stock prices 
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• Evaluation metrics: RMSE, Directional 

Accuracy, Avg. % Deviation 

Step 1: Load and Preprocess Data 

1. Read CSV file into a DataFrame. 

2. Clean data: 

o Remove commas from Volume and convert 

to float. 

o Convert Date to datetime format. 

o Sort data by Date. 

Step 2: Feature Engineering 

3. Compute new features: 

o Daily_Return = % change of Close. 

o Price_Change = difference in Close from 

previous day. 

o EMA_20, SMA_30, SMA_100. 

o Bollinger_High = EMA_20 + 2×rolling std. 

o Bollinger_Low = EMA_20 − 2×rolling std. 

o RSI using 14-day average gain/loss. 

o MACD = EMA12 − EMA26. 

o Lag_1 = Close price of previous day. 

o Day_of_Week from Date. 

4. Drop all rows with missing values (due to 

rolling calculations). 

Step 3: Prepare Features and Target 

5. Define features = selected indicators 

including Close, SMA, RSI, MACD, etc. 

6. Define target = Daily_Return. 

Step 4: Normalize Features 

7. Use MinMaxScaler to scale all features to 

[0, 1]. 

Step 5: Create Time Series Dataset 

8. Set time_step = 60. 

9. For each index i from 60 to end of dataset: 

o X[i] = features from i-60 to i-1. 

o y[i] = target[i] (next-day return). 

Step 6: Build BiLSTM Model 

10. Initialize a Sequential model. 

11. Add layers: 

o Bidirectional(LSTM(64, 

return_sequences=True)) 

o Dropout(0.3) 

o Bidirectional(LSTM(32)) 

o Dropout(0.3) 

o Dense(1) (output layer) 

12. Compile model with: 

o Optimizer = Adam(0.001) 

o Loss = Huber() 

Step 7: Train the Model 

13. Define callbacks: 

o EarlyStopping(patience=10) 

o ReduceLROnPlateau(factor=0.5, 

patience=5, min_lr=1e-6) 

14. Train model on X, y with: 

o Epochs = 100 

o Batch size = 32 

o Validation split = 10% 

Step 8: Make Predictions 

15. Predict Daily_Return using the trained 

model on input X. 

Step 9: Reconstruct Predicted Prices 

16. Extract scaled Close prices. 

17. Reverse scaling using inverse transform. 

18. For each prediction: 

o Predicted_Price[i] = Actual_Close[i] + 

Predicted_Delta[i] 

19. Shift actual closes to align for comparison. 

Step 10: Evaluate the Model 

20. Calculate: 

o RMSE = √MSE(actual_prices, 

predicted_prices) 

o Directional Accuracy = % of correctly 

predicted directions 

o Avg % Deviation = Mean of absolute 

percentage errors 

Step 11: Visualization 

21. Plot: 

o Actual vs. Predicted Prices 

o RSI values with overbought/oversold 

thresholds 

o Bollinger Bands with Close price 

IV. PROPOSED SYSTEM 

 

The proposed system aims to accurately forecast 

stock price movements using a deep learning-based 
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model that leverages temporal patterns and technical 

indicators. A Bidirectional Long Short-Term 

Memory (BiLSTM) neural network is employed to 

capture both past and future dependencies in 

historical stock data, enhancing the model’s ability 

to make short-term forecasts with improved 

accuracy and directional consistency. 

The system consists of the following key modules: 

1. Data Acquisition & Pre-processing 

• Historical stock price data is sourced from a CSV 

file. 

•Pre-processing steps include: 

o Cleaning volume data by removing commas. 

o Converting date strings to datetime format. 

o Chronologically sorting the data to ensure time-

series integrity. 

2. Feature Engineering 

To improve predictive performance, the system 

extracts a wide range of financial and technical 

indicators, including: 

• Price-based features: Daily return, price change, 

lagged close. 

• Trend indicators: Simple Moving Averages (SMA), 

Exponential Moving Averages (EMA). 

• Volatility indicators: Bollinger Bands. 

• Momentum indicators: Relative Strength Index 

(RSI), Moving Average Convergence Divergence 

(MACD). 

• Temporal features: Day of the week. 

These features collectively help the model 

understand market trends, momentum shifts, and 

cyclical behaviours. 

3. Feature Scaling 

All features are normalized using MinMaxScaler to 

ensure efficient gradient descent convergence and 

avoid dominance of any single feature due to scale. 

4. Time Series Dataset Creation 

• The data is restructured using a sliding window 

approach. 

• Each input sample consists of the previous 60 time 

steps of all selected features. 

• The output target is the next day’s return 

percentage, capturing immediate future movement. 

5. Model Design: BiLSTM Neural Network 

The forecasting model is a deep neural network 

composed of: 

• Two Bidirectional LSTM layers to learn temporal 

patterns in both forward and backward directions. 

• Dropout layers to prevent overfitting. 

• Dense output layer to predict the next-day return. 

The model is compiled with: 

• Huber Loss: Robust to outliers in volatile stock 

data. 

• Adam Optimizer: Ensures fast and stable 

convergence. 

 

6. Training Strategy 

• The model is trained with: 

o EarlyStopping to avoid overfitting. 

o ReduceLROnPlateau to fine-tune the learning 

rate dynamically. 

o A 10% validation split to monitor generalization 

performance. 

 

7. Price Reconstruction and Prediction 

• The predicted next-day return is added to the actual 

price of the previous day to reconstruct the predicted 

price. 

• Predictions are compared against actual closing 

prices to evaluate model accuracy. 

 

8. Evaluation Metrics 

The system is evaluated using: 

• RMSE (Root Mean Square Error): Measures 

prediction accuracy. 

• Directional Accuracy: Measures how often the 

model correctly predicts upward/downward 

movement. 

• Average Percentage Deviation: Measures the 

average percent error between predicted and actual 

prices. 

9. Visualization 

To interpret model behavior and performance: 

• Actual vs Predicted prices are plotted. 

• RSI and Bollinger Bands are visualized to correlate 

with price movements and validate indicator 

effectiveness. 
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• Hardware & Software Requirements : 

 

Component 
Minimum 

Requirement 

Recommended 

Configuration 

Processor 

(CPU) 

Intel Core i5 or 

AMD Ryzen 5 

Intel Core i7 / AMD 

Ryzen 7 or higher 

RAM 8 GB 16 GB or more 

Storage 
256 GB 

HDD/SSD 
512 GB SSD or more 

Graphics 

Card 

(GPU) 

Integrated 

GPU (for basic 

training) 

NVIDIA GPU with 

CUDA (e.g., GTX 

1660 / RTX 3060) for 

faster training 

Display 

13-inch display 

with 720p 

resolution 

15-inch+ Full HD 

display 

Operating 

System 

Windows 10 / 

Linux Ubuntu 

Windows 11 / Ubuntu 

22.04 LTS 

 
Software / 

Package 

Version / Description 

Operating 

System 

Windows 10/11, Ubuntu 

20.04/22.04 

Programming 

Language 

Python 3.8 or higher 

IDE / Notebook Jupyter Notebook / VS Code / 

PyCharm 

Libraries and 

Frameworks 

 

• NumPy For numerical operations 

• Pandas For data manipulation 

• Matplotlib For data visualization 

• scikit-learn For preprocessing and evaluation 

metrics 

• Keras Deep learning library used with 

TensorFlow 

• TensorFlow Backend for Keras (version 2.x 

recommended) 

• Yahoo Finance 

API / CSV 

Data source for stock market data 

Optional Tools (for enhanced development): 

• Git – Version control system 

• Anaconda – For managing Python environments 

and dependencies 

• CUDA Toolkit – If using NVIDIA GPU for 

accelerated training 

• TensorBoard – For model visualization and 

diagnostics 

V. SYSTEM DESIGN 

 

The proposed system is designed to forecast future 

stock prices using a deep learning model—

specifically, a Bidirectional Long Short-Term 

Memory (BiLSTM) neural network. Unlike 

traditional regression or unidirectional models, 

BiLSTM networks are capable of learning both 

forward and backward temporal relationships, which 

are essential in modeling complex time-series data 

such as stock price movements. This system 

integrates advanced feature engineering with deep 

learning to improve prediction accuracy and 

robustness. 

Data Acquisition 

• Loads stock data from CSV. 

• Cleans formats, converts dates, sorts 

chronologically. 

• Output: Cleaned DataFrame. 
 

Data Preprocessing 

Handles missing values, computes returns and price 

changes. 

Feature Engineering 

Adds indicators: SMA, EMA, RSI, MACD, 

Bollinger Bands, lag features, and weekday info. 

Feature Scaling 

Uses MinMaxScaler to normalize features to [0, 1]. 

Time Series Dataset Creation 
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• Builds sliding window dataset (60 time steps) for 

LSTM input. 

• Output: X (3D array), y (next-day return). 

Model Architecture 

• BiLSTM with dropout and a final dense layer. 

• Loss: Huber, Optimizer: Adam. 

Training 

Max 100 epochs with EarlyStopping and 

ReduceLROnPlateau. 

Batch size: 32, 10% validation split. 

Prediction & Price Reconstruction 

Predicts returns, reconstructs price by adding to last 

close. 

Evaluation 

Metrics: RMSE, directional accuracy, mean 

percentage deviation. 

Visualization 

Plots actual vs. predicted prices and indicators like 

RSI/Bollinger Bands. 

 
Fig Sequence Diagram 

 
Fig Activity Diagram 

 

VI. RESULT 

 

The performance of the proposed RNN-based stock 

price forecasting model has been evaluated using key 

statistical and technical indicators. The analysis 

reflects the effectiveness of the model in capturing 

price trends and directionality over time. 

 

Numerical Evaluation Metrics 

Metric Value 

Root Mean Squared Error (RMSE) 2.9910 

Directional Accuracy 52.41% 

Average Percentage Deviation (APD) 1.44% 

RMSE of 2.9910 indicates that on average, the 

prediction deviates from the actual price by around 3 

units. This reflects relatively low error given the 

stock's price range. 

Directional Accuracy of 52.41% suggests that the 

model correctly predicts whether the price will go up 

or down in 52% of the cases. This is slightly better 

than random guessing, which can be improved with 

additional feature engineering or ensemble 

techniques. 

Average Percentage Deviation of 1.44% implies that 
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the predicted prices are within a narrow margin of 

error from the actual prices, demonstrating high 

precision. 

Actual vs. Predicted Prices Plot 

This plot shows the close alignment between the 

actual and predicted stock prices across the test 

dataset. The red line (predicted) closely follows the 

blue line (actual), validating the model’s ability to 

generalize to unseen data. The tight overlap indicates 

minimal deviation, supporting the low RMSE and 

APD metrics. 

 

Last Batch Sample Output 

A batch of the final predictions is printed to compare 

exact values: 

• Actual and predicted values for several consecutive 

time steps show a small difference. 

• This reaffirms the quantitative evaluation and 

highlights the consistency of prediction performance 

at individual data points. 

 

Technical Indicators Visualization 

The above composite figure visualizes: 

• Relative Strength Index (RSI): Indicates market 

momentum and potential overbought/oversold 

conditions. The model aligns well during high and 

low RSI regions, capturing trend reversals. 

• Bollinger Bands: These bands help assess volatility. 

The model prediction remains mostly within the high 

and low bounds, suggesting robustness during 

volatile market phases.

 

VII. CONCLUSION 

 

The proposed RNN-based deep learning model for 

stock price forecasting performs reasonably well, 

both statistically and visually. While the error 

margins are low and trends are captured efficiently, 

future work may focus on enhancing directional 

accuracy, experimenting with hybrid models (like 

CNN-RNN or Transformer-based models), and 

incorporating more advanced sentiment or economic 

data to boost performance further. 

The current RNN-based stock price forecasting 

model provides a strong foundation for time series 

prediction. However, there are several opportunities 

to improve its accuracy, robustness, and practical 

utility.  

Integration of Advanced Architectures 

• LSTM and GRU Enhancements: While vanilla 

RNNs capture basic temporal patterns, Long Short-

Term Memory (LSTM) and Gated Recurrent Unit 

(GRU) networks can better handle long-range 

dependencies and vanishing gradient issues. 

• Hybrid Models: Combining CNNs for spatial 

feature extraction with RNNs/LSTMs for temporal 

analysis can enhance performance. 

• Transformer Models: Recently, Transformer-based 

architectures (like Temporal Fusion Transformer or 

Informer) have shown significant promise in time 

series forecasting, offering superior attention 

mechanisms and parallelization benefits. 

Feature Engineering Improvements 

• Incorporate Technical Indicators: Additional 

indicators like MACD, OBV, Fibonacci 

Retracement, and Moving Averages can enrich the 

model’s input. 

• Sentiment Analysis: Real-time news headlines, 

financial reports, or social media sentiment (via NLP 

models) can provide qualitative context that impacts 
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stock price movement. 

• Macroeconomic Variables: Features such as 

interest rates, inflation, and geopolitical factors could 

further refine forecasts. 

Directional Accuracy Optimization 

• While overall price prediction is strong, directional 

accuracy can be enhanced through: 

o Custom loss functions (e.g., Hinge loss, 

Directional loss). 

o Ensemble learning methods that combine 

classification (direction) with regression 

(price). 

o Post-prediction smoothing or trend correction 

algorithms. 

Real-Time Forecasting System 

• Develop a real-time inference system with 

streaming data input to enable live stock price 

prediction and decision-making. 

• Deploy the model as a web or mobile application 

for user interaction and visualization. 

Risk Management & Backtesting 

• Incorporate backtesting frameworks to evaluate the 

profitability and risk of trading strategies based on 

predictions. 

• Simulate historical trades and analyze metrics such 

as Sharpe Ratio, Max Drawdown, and ROI to 

validate real-world utility. 

Model Explainability 

• Use tools like SHAP (SHapley Additive 

exPlanations) or LIME to interpret model predictions 

and improve trust among stakeholders. 

• Visualize how different features influence the 

model’s forecasted price. 
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