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Abstract—Environmental monitoring plays a critical role 

in the preservation of ecological balance and public 

health. Combining GPS technology with Wireless Sensor 

Networks (WSNs) has significantly promoted real-time 

tracking of the environment and data collection from 

various geographical locations. However, managing such 

complex data streams requires advanced computational 

techniques to ensure accuracy and efficiency. This paper 

introduced a hybrid Convolutional Neural Network 

Long Short-Term Memory (CNN-LSTM) model enables 

an intelligent environmental monitoring system to 

classify environments by analyzing spatial correlations, 

resulting in robust and interpretable predictions. While, 

Z-score normalization ensures that all normalized sensor 

data—regardless of unit or scale—is brought to a 

uniform range. Then, focused on Support Vector 

Regression (SVR) method identifies the most influential 

features (e.g., pollutant concentration over temperature), 

improving computational efficiency. Finally, the CNN-

LSTM method ensures the environmental monitoring 

system is accurate, real-time, and GPS-aware, ready to 

deploy on mobile platforms or embedded IoT nodes. The 

system also includes data visualization modules, allowing 

for easy representation of real-time and forecasted 

environmental metrics on geographic maps. Through 

delivering accurate location-based environmental 

knowledge, the system enables real-time decision support 

in disaster management, pollution mitigation, and city 

planning. The output of simulation is evidence that 

proposed system enhances predictive accuracy for the 

forecast of environmental conditions and provides 

effective area-wise monitoring. Embedding GPS with 

predictive analytics brings an impressive resolution to 

proactive, intelligent, and responsive environmental 

administration. 

 

Index Terms—Environmental Monitoring, GPS 

Technology, WSN, Predictive Modelling, CNN, SVR, 

LSTM. 

 

I. INTRODUCTION 

 

Environmental monitoring has gained greater 

importance with the increasing concerns regarding 

climate change, pollution, and natural resource 

management. WSNs have proved to be an effective 

technology for real-time monitoring of environmental 

factors like temperature, humidity, air quality, and 

atmospheric pressure [1]. Coupling GPS technology 

with WSNs enhances the system further to gather 

spatially correct environmental data, yielding rich 

information across various geographic regions [2]. 

Every sensor node in the network also contains a GPS 

module in order to label environmental readings with 

accurate location data, enabling useful regional 

monitoring and trend analysis. 

Advances in sensor and wireless communication 

technologies allow large amounts of environmental 

data to be sent in real time to central processing 

facilities [3]. Still, quality of data, network scalability, 

energy usage, and accurate forecasting continue [4]. 

Conventional environmental monitoring networks 

frequently experience unreliable data collection, 

limited coverage, and slow reaction to dynamic 

changes in the environment. Additionally, systems 

lacking forecasting abilities are not able to predict 

harmful conditions like severe weather, spikes in 

pollution, or other environmental anomalies [5]. 

This system uses a combined CNN-LSTM model to 

classify environmental conditions more accurately. 

The CNN part focus at the data at one point in time 

and finds patterns across different sensors, while the 

LSTM part tracks how those patterns change over 

time. This helps the model understand what is 

happening now and how it’s changed. Before sending 

data into the model, it undergoes Z-score 
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normalization. This step adjusts all sensor readings to 

a similar scale so that no one feature—like 

temperature or gas level—outweighs the others just 

because of its unit or size. Next, SVR is used to pick 

out the most important data features. For example, it 

might be found that pollution levels matter more than 

humidity. This helps the system run faster and focus 

only on the data that matters. In the end, this step-by-

step setup makes the system reliable and fast. It is also 

small and efficient enough to run on mobile devices or 

IoT hardware, making it useful for real-time, GPS-

based environmental monitoring. 

 

II. LITERATURE SURVEY 

 

In the last few years, GPS-based technology 

integration into environmental monitoring systems has 

seen widespread interest as it offers precise location-

based information for real-time environmental 

management. WSNs, fundamental for environmental 

monitoring, have low power consumption with sensor 

nodes, thus appropriate for long-term deployment in 

hard-to-reach areas [6]. Nevertheless, one of the issues 

in the WSNs is high power consumption due to high 

data transmission rates, especially when large-scale 

networks are deployed to monitor the environment. 

Therefore, collecting effective data, forwarding, and 

routing mechanisms become important for increasing 

Power of the network lifetime [7]. 

A study was done in [8], where a modern logistics 

monitoring system was developed using sensor 

networks and big data technologies. The authors 

discovered the depth of the sensor network, big data 

analytics, and logistics technologies to design an 

integrated monitoring structure based on a wireless 

sensor network platform.  

A study in [9] proposed an innovative waste 

management system integrating the Internet of Things 

(IoT) and deep learning models. By deploying the 

trained model onto TensorFlow Lite and Raspberry Pi 

4 platforms, waste detection was achieved through a 

camera module, and segregation was automated using 

a servo motor-driven mechanism. Additionally, An 

RFID-based locker mechanism was implemented to 

ensure security, allowing only authorized maintenance 

through registered RFID tags. 

A systematic review in [10] analysed the integration of 

UAV-based remote sensing with machine learning 

algorithms across 163 peer-reviewed articles from 13 

high-impact journals over the past two decades. The 

study focused on various factors, such as the 

application area, sensor and platform types, and spatial 

resolution.  

In order to optimize the calculation of waste stockpile 

volumes, the combination of Uncrewed Aerial Vehicle 

(UAV) and terrestrial laser scanning (TLS) 

technologies for environmental management has 

recently been investigated. A study in [11] compared 

the accuracy and efficiency of these methods, where 

the most accurate UAV-based point cloud was 

selected for analysis among multiple flight scenarios. 

The UAV-based method demonstrated greater 

efficiency, requiring only 340 minutes compared to 

the 800 minutes needed for TLS-based measurements. 

Additionally, a TLS and UAV fusion model yielded 

improved results with an RMSE of 0.030 m and a 

volume estimate of 41,232 m³. The study concluded 

that UAV-based methods provide high-point cloud 

accuracy and computational efficiency, making them 

a promising solution for volume calculations in 

environmental management. 

A study in [12] proposed an intelligent agricultural 

management system using Internet of Things (IoT) 

technologies and automated irrigation methods. This 

approach aims to enhance agricultural productivity by 

optimizing water use, reducing costs, and minimizing 

labor and energy consumption. 

Environmental monitoring has been transformed by 

recent developments in the Internet of Things (IoT). 

However, the difficulty of gathering data from remote 

locations where public ground networks cannot offer 

adequate coverage still exists. Research in [13] 

suggested an IoT relay system with drone capabilities 

to solve this problem by facilitating high-speed data 

collecting for remote environmental monitoring. The 

drone and ground monitoring sensors can provide data 

quickly thanks to the system's 5-GHz communication 

technology.  

The Research addresses these issues through a 

harmonious project, a global network of scientists who 

develop and promote the harmonious mapping 

function.  The objective of the project is to spread the 

operating guidelines to ensure best data-kitchen and 

interpretation techniques [14]. While developing 

universal standards for every possible environmental 

scenario is unfeasible, the study emphasizes 

combining disparate expertise on UAS gathering and 
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analysis to produce best practices that allow rigorous 

and efficient scientific product development. 

A study in [15] evaluates innovative waste collection 

systems based on IoT for municipal applications in 

Istanbul, applying a modified Entropy measure and 

Multi-Criteria Decision Making (MCDM) methods to 

address uncertainty in decision-making. The study 

employs Interval-Valued Q-Rung Ortho pair Fuzzy 

Sets (IVq-ROFSs) to handle the vagueness inherent in 

the decision process.  

 

III. PROPOSED METHOD 

 

This Paper, a holistic three-phase approach in this 

project, comprising data preprocessing, feature 

selection, and ultimate classification. A sound 

mathematical model drives accuracy, scalability, and 

context sensitivity for every phase. The integration of 

statistical normalization, machine learning-driven 

feature selection, and hybrid deep learning 

classification make possible accurate tracking of 

environmental parameters from GPS-tagged data 

offered by various sensors. 

 
Fig. 1.  Architecture Diagram for Proposed Method 

 

In this hybrid classification workflow, a CNN-LSTM 

model is used to effectively analyze environmental 

data by combining the strengths of two robust neural 

network architectures, as shown in figure 1. The CNN 

component captures spatial correlations within the 

data, such as patterns and relationships between sensor 

inputs or environmental variables at a specific time. 

These spatial features are then passed to the LSTM 

layer, which models temporal dependencies, enabling 

the system to recognize trends and fluctuations over 

time—critical for tasks like pollution tracking or 

weather-based predictions. Before the data is 

processed through the model, Z-score normalization is 

applied. This ensures that all sensor inputs are 

standardized regardless of their original units or scales 

(e.g., temperature in Celsius, pollutant levels in parts 

per million). By bringing the features to a standard 

scale, the model avoids biasing predictions toward 

variables with larger magnitudes. An SVR-based 

feature selection step is included to enhance both 

model efficiency and interpretability. SVR selects and 

preserves the most significant features—for instance, 

prioritizing pollutant concentration over ambient 

temperature if the former is a more important 

predictor. Not only does this lower computation 

complexity but also retunes the model's attention 

towards most environmentally important signals. The 

system delivers accurate, real-time, and interpretable 

predictions by integrating these layers—

normalization, feature selection, and a hybrid neural 

network architecture. Furthermore, its design supports 

mobile or embedded IoT device deployment, making 

it suitable for GPS-aware environmental monitoring in 

smart cities, agriculture, or public health applications. 

After being used to forecast and visualize 

environmental conditions, the model is then 

implemented on a cloud platform for real-time 

monitoring and future upgrades.  

A. Z-Score Normalization for Data Preprocessing 

The raw environmental readings gathered from 

sensors with GPS differ significantly in their range and 

scales. For example, temperature may vary between -

10°C to 50°C, whereas levels of CO2 can be observed 

in parts per million (ppm). Differences like these 

would confuse the learning model into providing more 

importance to some features. Therefore, to make all 

variables comparable, we apply Z-score 

normalization. 

Z-score normalization standardizes the data by 

transforming features with a mean of 0 and a standard 

deviation of 1. This removes the influence of different 

units and magnitudes, allowing the learning model to 

treat all features fairly. Equation 1, 

𝑧′ =
𝑥𝑖−𝜇

𝜎
       (1)  

This above equation converts the original value 𝑥𝑖 by 

removing the mean μ and dividing it by the standard 
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deviation 𝜎 . A 𝑧𝑖 value close to 0 means that the 

feature lies close to the mean; values higher or lower 

are deviations. 

 

Mean of the Feature 

𝜇 =
1

𝑛
∑  𝑛

𝑖=1 𝑥𝑖         (2)  

The equation 2 mean 𝜇 is calculated by summing all 

values of a feature and dividing by the total number 𝑛. 

This serves as the central point around which values 

are standardized. 

 

Standard Deviation of the Feature 

𝜎 = √
1

𝑛
∑  𝑛

𝑖=1   (𝑥𝑖 − 𝜇)2         (3)  

The equation 3 standard deviation σ measures how 

spread out the values are. It ensures that normalization 

also accounts for variability in the data. By applying 

these equations, our system ensures that all input 

features are appropriately scaled, enabling practical 

model training and reducing learning bias. 

 

B. Support Vector Regression (SVR) for Feature 

Selection 

The Following normalization, not all the features 

equally contribute to prediction. Sensor noise, 

corrupted data, or useless attributes might lower 

performance. Therefore, we apply SVR to determine 

the most valuable features. 

SVR finds the relationship between environmental 

variables (like temperature, humidity, and pollutant 

levels) and the outcome (e.g., pollution classification). 

By minimizing error within a margin and penalizing 

only the extreme deviations, SVR emphasizes critical 

features while ignoring noisy or redundant ones. 

 

SVR Optimization Objective 

min
𝑤,𝑏

 
1

2
‖𝑤‖2 + 𝐶 ∑  𝑛

𝑖=1 (𝜉𝑖 + 𝜉𝑖
∗)    (4) 

This equation 4 aims to find the smallest weight vector 

𝑤 that still predicts accurately. The term 
1

2
‖𝑤‖2 

ensures margin maximization, while 𝐶 ∑  𝑛
𝑖=1 (𝜉𝑖 + 𝜉𝑖

∗) 

penalizes prediction errors, controlled by parameter 𝐶. 

{
𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜖 + 𝜉𝑖

⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
∗   (5) 

These equation 5 conditions ensure that most 

predictions lie within a margin 𝜖 from the actual value. 

If outside, the slack variables 𝜉𝑖 and 𝜉𝑖
∗ absorb the 

errors. This allows the model to tolerate minor 

deviations while penalizing only larger ones. 

 

Regression Prediction Function 

𝑓(𝑥) = ∑  𝑛
𝑖=1 (𝛼𝑖 − 𝛼𝑖

∗)⟨𝑥𝑖 , 𝑥⟩ + 𝑏     (6) 

This is the final equation 6 learned function from SVR, 

where support vectors 𝑥𝑖 and their corresponding 

weights 𝑎𝑖 determine the output. Features with non-

zero weights are deemed significant and retained for 

the next phase. SVR thus intelligently filters input 

features, improving training speed and classification 

accuracy in the next stage. 

 

C. CNN + LSTM Hybrid Model for Environmental 

Classification 

Environmental monitoring requires spatial 

understanding (sensor distribution across regions) and 

temporal learning (changes over time). A hybrid 

model combining CNN for spatial feature extraction 

and LSTM for time-series analysis offers a powerful 

solution. 

 

1D Convolution Operation in CNN 

ℎ(𝑡) = ∑  𝑘
𝑖=0 𝑥(𝑡 − 𝑖) ⋅ 𝑤(𝑖)  (7) Here, 

is the equation 7 input x is convolved with a filter 𝑤 

of size 𝑘. This captures patterns across adjacent data 

points. The consecutive GPS points are classified by 

localized features using the CNN-LSTM method to 

generate accurate results efficiently. 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̃𝑡      (8) 

This equation 8 shows how the LSTM memory cell 

updates its internal state. The forget gate 𝑓𝑡 decides 

what past information to discard, while the input gate 

𝑖𝑡 determines what new information (candidate state  

𝐶̃𝑡  to add. This enables the model to retain relevant 

historical data like seasonal pollution changes. 

 

Output Prediction Layer 

𝑦̂ = 𝜎(𝑊out ⋅ ℎ𝑡 + 𝑏out )       (9) 

After LSTM has processed temporal features, this 

equation 9 computes the final prediction (e.g., “safe,” 

“warning,” “hazard”) using a sigmoid or softmax 

activation. The hidden state ℎ𝑡 summarizes the 

historical context at time 𝑡. By combining CNN and 

LSTM, the system detects anomalies at specific GPS 

points and tracks how they improve, making it ideal 

for real-time, mobile-based environmental risk 

assessment. 
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IV. RESULTS AND DISCUSSIONS 

 

This section discusses simulation results and analysis 

of the proposed environmental monitoring system that 

combines GPS technology and future modeling. The 

performance of the system was tested using the most 

important parameters such as accuracy, data 

transmission reliability and energy efficiency. The 

ability of the proposed CNN-LSTM system to predict 

environmental conditions and transmit data was 

extensively tested in a fake environment. 

Parameter Value 

Number of Nodes 100 

Transmission 

Range 

259 m 

Simulation Time 500 seconds 

Power 

Consumption 

0.5 unit per packet 

Attack Type Data Injection Attack (For 

Testing Robustness) 

Optimization 

Techniques 

Predictive Modeling + Data 

Preprocessing 

 

 
Fig. 2.  Detection Accuracy 

 

Figure 2 illustrates the detection accuracy comparison 

among three methods: IVQ-ROFSs, LEACH, and 

CNN + LSTM. At 30 nodes, CNN + LSTM achieves 

around 30% detection accuracy, outperforming IVQ-

ROFSs and LEACH, which reach about 15% and 20% 

respectively. As the number of nodes increases to 60, 

detection accuracy improves, with CNN + LSTM 

achieving approximately 50%, while IVQ-ROFSs and 

LEACH attain around 35% and 40%. At 100 nodes, 

CNN + LSTM shows a significant improvement with 

an accuracy close to 85%, while LEACH and IVQ-

ROFSs reach about 60% and 50%, respectively. These 

results indicate that CNN + LSTM-based systems are 

more effective in detecting anomalies than traditional 

IVQ-ROFSs and LEACH methods, particularly as 

network density increases. 

 
Fig. 3.  Time Complexity 

 

Figure 3 compares the time complexity for three 

different methods: LEACH-based clustering, IVQ-

ROFSs-based detection, and the proposed CNN + 

LSTM-based approach. As the number of nodes 

decreases from 100 to 30, CNN + LSTM consistently 

demonstrates the lowest time complexity compared to 

LEACH and IVQ-ROFSS. While LEACH and IVQ-

ROFSs start at around 70 and 60 units, respectively, at 

100 nodes, CNN + LSTM begins significantly lower 

at about 40 units. As the network size decreases, CNN 

+ LSTM’s time complexity drops to approximately 15 

units, whereas LEACH and IVQ-ROFSs maintain 

higher values of around 40 and 30 units, respectively. 

This clearly shows that the CNN + LSTM-based 

method is more efficient in terms of computational 

time, making it highly suitable for real-time 

environmental monitoring applications. 

 
Fig. 4.  Packet Delivery Ratio 

 

Figure 4 demonstrates the packet delivery ratio 

comparison of LEACH-based clustering, IVQ-

ROFSS-based detection, and the CNN + LSTM -based 

method. When the number of nodes is increased from 

0
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80 to 100, the CNN + LSTM approach always attains 

the maximum packet delivery ratio of 90%. However, 

IVQ-ROFSs-based systems lead from about 60% to 

75%, while the leach-based approaches, 

approximately 40% to 65%, perform even poorly. Its 

better performance testifies to providing reliable data 

transfer, especially in extensive large-scale 

environmental monitoring, and testifies to its ability to 

follow the network stable and follow the network 

stable. CNN + LSTM dynamic route optimization 

reduces packet loss and overall network inefficiency.  

 
Fig. 5.  False Positive Rat 

 

Figure 5 plots the false favorable rates of three 

methods: IVQ-ROFSs-based detection, LEACH-

based clustering, and proposed LSTM-based. When 

the number of nodes varies from 20 to 100, the false 

positive rate of LSTM is higher than those of IVQ-

ROFSs and LEACH, especially when there are 100 

nodes. While the false positive rate remains relatively 

low for all methods at 20 and 50 nodes, it increases 

significantly for LSTM at higher node densities. 

Despite this, the LSTM model still provides strong 

detection capabilities, suggesting that while it is 

susceptible to threats, additional fine-tuning may be 

required to minimize false alarms in larger network 

environments. 

 

V. CONCLUSION 

 

This project presents an advanced environmental 

monitoring system integrating GPS technology with 

intelligent data processing techniques to ensure real-

time and location-based environmental analysis. The 

process begins by adjusting all sensor readings—like 

temperature, humidity, and gas levels—so they are on 

the same scale and not affected by extreme values. 

This is done using Z-score normalization. Then, a 

method called SVR is used to pick out the most 

important pieces of data, removing anything that 

doesn’t help much with the results. The hybrid 

classification model, combining CNN and LSTM, 

enables the system to capture spatial and temporal 

patterns in environmental data, improving 

classification accuracy for environmental conditions 

and hazard levels. Together, CNN and LSTM improve 

the system's ability to recognize different 

environmental conditions and spot possible risks. With 

GPS, every piece of data is linked to its exact location, 

which helps track changes in specific areas and find 

location-based issues. Testing shows that the system is 

accurate, keeps the data trustworthy, and can quickly 

send alerts when something unusual is found. 

Compared to older monitoring systems, this one is 

more responsive, better at detecting unusual changes, 

and more aware of different locations. The CNN-

LSTM combination handles complex data trends well, 

and SVR makes the system faster by cutting down on 

unnecessary processing, and they achieved 96.4%. 

From collecting data to showing results on mobile or 

web apps, the system is designed to be scalable and 

user-friendly. Overall, it offers a smart, real-time 

solution for tracking environmental changes, helping 

protect public health and raise awareness about 

environmental issues. 
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