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Abstract— Differentiating between actual and
deepfakes becomes increasingly challenging in digital
forensics as synthetic picture production advances.
This paper offers a practical approach to detect images
generated by a Vanilla Generative Adversarial
Network (GAN) by use of the discriminator of another
vanilla generator. Since the GAN discriminator is
adversarially trained to uncover minute deviations
from true data distributions, it is naturally suited for
deepfake detection unlike traditional classifiers.
Following Vanilla GAN training, we ran a fine-tuning
step in which the discriminator acted as a stand-alone
classifier. In controlled settings the model achieved a
final detection accuracy of 100%. This work
significantly clarifies the possibilities of adversarial
components as forensic tools by offering information
on the technique, architecture, training phases, and
performance results. Future directions demand
evaluating cross-GAN generalization and
enhancement of model robustness for pragmatic
environments.
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I INTRODUCTION

Generative Adversarial Networks (GANs) have
become among the most important developments in
artificial intelligence recently. Comprising a
generator and a discriminator taught in opposition,
these models have shown amazing success creating
hyper-realistic images, audio, and video material.
Although their contributions to fields including
creative media, medical imaging, and simulation are
noteworthy, their use has also raised questions about
abuse—most famously in the form of deepfakes.
Often without permission, deepfakes—synthetic
images or videos that convincingly copy real
people—may compromise information authenticity,
privacy, and trust.
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Finding such synthetic media gets more difficult as
the realism of GAN-generated content keeps
improving. Currently used deepfake detection
methods mostly rely on CNN-based classifiers
educated on labeled datasets of real and synthetic
images. Although these methods produce good
results on known data, they sometimes cannot
generalize over various GAN architectures or
datasets not observed during training. This
restriction drives a great demand for more flexible
and architecture-agnostic detection systems able to
detect deepfakes in dynamic and various
environments.

We present in this work a fresh but simple method:
using the discriminator from a trained Vanilla GAN
as a detection engine for images produced by GANS.
We speculate that the discriminator has latent ability
for deepfake detection since it is naturally optimized
to differentiate real from fake samples during
adversarial training. First we separate and fine-tune
the discriminator for binary classification after
training a Vanilla GAN using conventional
adversarial techniques. Our results show that this
basic framework can attain high accuracy in
controlled experiments, implying that GAN
discriminators—often neglected after training—can
be lightweight, efficient detectors of synthetic
content [1], [2].

1. LITERATURE REVIEW

Generative  Adversarial ~ Networks' (GANS')
development has revolutionized synthetic media
generation's field. Deepfakes are becoming more
and more similar to real content, thus parallel
development in detection techniques has started to
counteract their use. Conventions for deepfake
detection mostly rely on frequency-based analysis or
Convolutional Neural Networks (CNNs). These
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approaches, however, sometimes fail to generalize
across various GAN architectures or image domains,
which results in brittle detection frameworks when
used in practical settings.[3]

Emphasizing that deep learning models trained on
frequency artifacts and color anomalies typically
outperform passive forensics but still lack
transferability across domains, Remya Revi et al.[4]
surveyed GAN-based deepfake detection methods.
Abdullah et al.[5] underlined similar limits in
detection generalization and suggested architectural
improvements depending on content-agnostic
feature extraction. They also demanded models who
could change with the times to fit changing deepfake
generating techniques.

Yang et al.,[6] who first proposed the idea of a
dynamic discriminator, go over a particularly
pertinent method here. Their work suggested that the
capacity of a discriminator should change during
training to correspond with the different generator
output difficulty. Without adding computational
complexity, this adaptive capacity model—
DynamicD—showered better performance in both
synthesis quality and downstream classification.
Their work emphasizes training dynamics, but it also
supports the notion that discriminators have deep
representational insights fit for use in detection
tasks.

Moreover, basic research by Goodfellow et al.[7]
established the theoretical framework for adversarial
networks, in which the generator is guided toward
realism by means of imperfection identification in
synthetic data, hence the discriminator is central.
Although most studies concentrate on generator
enhancements, more recently conducted studies
have turned their focus to using discriminator
knowledge after training. One such research
proposes to use pre-trained discriminators as
forensic tools, especially when refined using
supervised learning to differentiate between real and
fake images.

With PCA and SVMs, Hanady S. A. Kareem et al.[8]
presented a machine learning-based method for
deepfake face classification attaining over 96%
accuracy. Although their pipelines are different, the
use of reduced feature representations is similar to
how GAN discriminators isolate important
distinguishing features by adversarial learning.
Focusing on small discrepancies brought about
during image synthesis, further works by Li et al.
and McCloskey et al.[9] investigated color-space
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transformations and high-pass filtering. These
methods confirm the relevance of fine-grained
artifact detection—a natural ability of adversarially
trained discriminators—even if they are not directly
related to GAN discriminators.

All things considered, the literature shows
increasing awareness of GAN discriminators as rich
sources of forensic information. Still underexplored,
though, their reusing outside adversarial training.
This work fills in that void by suggesting a
structured pipeline isolating and optimizing a
Vanilla GAN discriminator to operate as a stand-
alone deepfake detector. We want to use the
embedded feature space of the discriminator to
create a lightweight, architecture-agnostic detection
framework by merging adversarial training with
focused fine-tuning.

I1. PROBLEM STATEMENT

Generative Adversarial Networks (GANs) have
significantly advanced the field of synthetic media
generation. The rapid development of generative
models has led to the widespread creation of highly
realistic synthetic media, commonly referred to as
deepfakes. These synthetic images and videos can
convincingly replicate human faces, expressions,
and environments, making them increasingly
difficult to distinguish from real content using
traditional inspection or forensic techniques. While
this innovation has enabled valuable applications in
art, medicine, and education, it also poses significant
risks, including the spread of misinformation,
identity fraud, and erosion of public trust in digital
content.

To counter these threats, numerous deepfake
detection methods have been developed, primarily
relying on frequency spectrum anomalies, artifact-
based forensic cues, or supervised learning
techniques  employing  convolutional  neural
networks (CNNs). However, these models often face
two major limitations. First, they tend to be domain-
specific, tailored to detect fakes from particular
datasets or GAN architectures (e.g., StyleGAN,
CycleGAN), and struggle to generalize to images
produced by other techniques. Second, training these
models from scratch or maintaining large ensembles
for robust detection incurs substantial computational
and data costs, making them less practical for
lightweight or real-time deployment.
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Each GAN inherently includes a discriminator
network trained to differentiate between real images
and those generated by its corresponding generator.
This discriminator is adversarially optimized by
continuously analyzing real and synthetic data to
identify subtle differences between the two
distributions. Despite its central role in GAN
training, the discriminator is seldom repurposed for
real-world applications, particularly in detection
tasks. This underutilization represents a missed
opportunity, as the discriminator possesses a learned
representation of synthetic features that could be
leveraged in downstream classification problems
[10].

This study explores the potential of employing a
trained discriminator as an independent deepfake
detection engine to address the underutilization of
GAN discriminators in post-training scenarios.
Specifically, we examine the effectiveness of fine-
tuning the discriminator from a trained Vanilla GAN
for binary classification tasks distinguishing real
images from GAN-generated ones. Our objective is
to determine whether the latent knowledge
embedded in the discriminator—originally shaped
through adversarial training—can serve as a rapid,
accurate, and broadly applicable tool for identifying
synthetic visual data [11].

The primary challenge lies in the absence of
lightweight, reusable detection models that do not
require architectural overhauls or extensive
retraining. This work proposes a novel yet
straightforward pipeline to bridge this gap by
validating the GAN discriminator as a viable
solution for detecting deepfake images, potentially
reducing computational overhead and enhancing the
adaptability of detection systems across various
generative environments.

V. METHODOLOGY

The design, implementation, and workflow of our
suggested method—repurposing a Vanilla GAN
discriminator for the detection of GAN-generated
(fake) images—are described in this section.
Architectural design, dataset curation, adversarial
training, discriminator fine-tuning, and performance
evaluation are the five main phases that make up the
methodology.

4.1 GAN-Based Detection Framework Overview

A Vanilla Generative Adversarial Network (GAN),
which is the basis of this work, is made up of two
neural networks—a discriminator and a generator—
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that have been trained in opposition to one another.
While the discriminator is trained to discern between
authentic and fraudulent inputs, the generator learns
to create progressively more realistic images from
random noise during adversarial training. We
decouple the discriminator from the GAN
framework after the adversarial training is finished,
and then retrain it under supervision to identify real
or fake images.

Compared to conventional deepfake detection
pipelines, which train classifiers from scratch on
labeled datasets, this method is essentially different.
Here, the discriminator has a solid representational
foundation for classification because it has already
been exposed to both kinds of data during
adversarial training [10], [11].

4.2 Architectural Details

Generator Architecture

Early in the generator network, a dense layer
expands the noise vector into a high-dimensional
tensor, which is then transformed into an initial
feature map. Four Conv2DTranspose
(deconvolution) layers—each with LeakyRel U
activations and Batch Normalization—follow next.
To create 128x128 grayscale images, the last layer
scales pixel values between -1 and 1 using a Tanh
activation function. The generator boasts roughly
2.78 million trainable parameters overall.

Model: “sequential 4"

Layer (type) Output Shape Param #
Ccom2d 8 (Comdd) | (None, 64, 64, 68) oss
leaky_re_lu_16 (LeakyRelU) (None, 64, 64, 64) (2]
dropout_8 (Dropout) (None, 64, 64, 64) 2]
conv2d_9 (Conv2D) (Mone, 32, 32, 128) 131200
leaky re_lu_17 (LeakyRelU) (Mone, 32, 32, 128) a
dropout_9 (Dropout) (None, 32, 32, 128) 0
conv2d_10@ (Conv2D) (None, 16, 16, 256) 524544
leaky_re_lu_18 (LeakyRelU) (None, 16, 16, 256) a
dropout_10 (Dropout) (None, 16, 16, 256) [
conv2d_11 (Conv2D) (None, 8, 8, 512) 2097664
leaky_re_lu_19 (LeakyReLU) (None, 8, 8, 512) 2}
dropout_11 (Dropout) (None, 8, 8, 512) 9

flatten_2 (Flatten) (None, 32768) e

dense_4 (Dense) (None, 1) 32769

Total params: 2787265 (18.63 MB)
Trainable params: 2787265 (10.63 MB)
Non-trainable params: 9 (2.00 Byte)
Fig 1. Generator architecture showing the transformation of a
random noise vector into a 128x128 grayscale image using
transposed convolutions and Tanh activation.
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Discriminator Architecture

The discriminator might receive 128 x 128 x 1
grayscale image. LeakyReL U activations and Batch
Normalization come after numerous Conv2D layers
with progressively broader filter widths (64-512).
The network finishes at a Dense layer generating a
probability score reflecting the correctness of the
input using a sigmoid activation function. Dropout
layers help lower overfit. Total there are about 2.34
million parameters.

Model: "sequential _S"

Layer (type) Output Shape Paran #
dense_b5 (Dense) {Nana, 16384) 1654784
reshape_2 (Reshape) {None, B, 8, 256) [
leaky_re_lu_2@ (LeakyRelll} (Nona, 8, 8, 266) 2]
batch_normalization_8 (Bat (Mone, B, 8, 256) 1624
chlormalization)

conv2d_transpose 8 (Conv2l) (None, 16, 16, 128) 524416
Transpose)

leaky_re_Tu_21 (lLeakyRelll} (Mane, 16, 16, 128) 2]
batch_normalization_9 (Bat (Mone, 16, 16, 128) 512
chlormalization)

conv2d_transpose_9 (Conv2} (MNone, 32, 12, h4) 131136
Tranzpose)

leaky_re_lu_22 (LeakyRelU} {(Mone, 12, 12, 64} @
batch_normalization_10 (Ba (Mone, 32, 32, 64) 256
tchNormalization)

ronv2d_transpose_18 (Conv? (None, 64, &4, 32) 12808
DTranspose)

leaky_re_lu_23 (LeakyRellU} {Mano, 64, G4, 32) @
botch_normalizstion_11 (Ba (None, 64, 64, 32) 128
tchNormalization)

conv2d_transpose_11 (Conv2 (None, 128, 128, 1) 513

DTranspose)

Total parans: 23

344609 (8.94 MB)
Mon-trainable params: 968 (3.75 KB)

Trainable params

Figure 2. Architecture of the discriminator network used in the
Vanilla GAN, featuring stacked convolutional layers with batch
normalization and LeakyReLU activations.

This architecture strikes a balance between
complexity and interpretability, making it ideal for
proof-of-concept detection pipelines.

4.3 Dataset Preparation and Preprocessing

To ensure consistent training and evaluation, we
created a balanced dataset comprising generated as
well as actual images. Real images were reduced
from publicly available facial picture databases to
128x 128 pixels. We produced synthetic images
using our Vanilla GAN's trained generator
component. Once the model reached visual
convergence—which came about after about 200
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epochs—these synthetic images were kept and
assigned suitable labels.

Among the chores related to preparation were:

1. All images were grayscale [11] to match the
expected 128x128x1 input format.

2. Pixel values were min-max adjusted to the range
[-1, 1] [12] so allowing constant training.

3. The dataset was randomly shuffled and split, with
80% set for training and 20% for testing, so
guaranteeing a fair mix of actual and synthetic
images [13].

This ongoing preprocessing ensured that the
architectural needs of the network matched the
phases of training and testing, so promoting
effective learning and evaluation.

4.4 Two-Phase Training Process
Phase 1 — Adversarial Training (GAN Training):

Binary Crossentropy loss and the Adam optimizer
(learning rate = 0.0002, B: = 0.5) drove us to train
the GAN for 200 epochs. The generator wanted to
limit the discriminator's capacity to identify fakes
while the discriminator sought to maximize it in this
phase, therefore engaging in a zero-sum game [14].
Typical with GANs, the training graphs displayed
varying loss values together with slow increases in
image quality and discriminator accuracy [15].

generator, ary_crossantrepy’, optimizerzoptimizer)
2 = Input{shape=(100

ing = generals

dizcrininator.trainable = False

valld = discrinin

rothined = Nodel (2,

corbined. conpile(losa='birary _crozsentropy’, optimizerzoptimizen)
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Figure 3. Training metrics from GAN training phase, illustrating
discriminator accuracy improvements and generator loss curves
over 200 epochs.

Phase 2 — Discriminator-Only Supervised Training:
Following GAN convergence, we separated the
discriminator and trained it separately on the labeled
dataset of actual and synthetic images in Phase 2,
discriminator-only supervised training. Treating the
issue as a typical supervised learning job, this phase
consisted of 20 binary classification epochs. Free
from the interference of the generator, this fine-
tuning improved the decision boundary of the model

Figure 4. Accuracy and prediction logs from discriminator-only
training phase showing convergence and improved binary
classification results.

The  discriminator  already has internal
representations of "fakeness," hence the change
between adversarial and standalone training phases
was smooth [16].

4.5 Evaluation Strategy.

We systematically evaluated the performance of our
repurposed discriminator using both quantitative
and qualitative criteria:
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i) Calculated, on the test set in classifications, the
proportion of accurate predictions.

ii) Binary cross- entropy loss is tracked under both
GAN training and discriminator finetuning.

iii) Plotting accuracy and loss values over epochs
helps one to find convergence and spot potential
overfitting.

iv) Visual outputs consisted in comparisons of real
against produced images and performance logs from
both training phases.

Verifying the high detection ability of the model,
final discriminator performance shown 93.75%
accuracy post adversarial training and 100.00%
accuracy following supervised fine-tuning.

V. EXPERIMENTAL SETUP

All of the experiments were carried out in a
controlled software and hardware environment to
provide a consistent and repeatable assessment of
the suggested method. The system configuration,
development libraries, training parameters, and
dataset specifications applied all around the project
are described in this part.

5.1 Hardware Configuration.

All model training and testing are carried out on a
setup with the following specifications:

e Processor — AMD Ryzen 5 4600h
¢ RAM-16GB DDR4

e GPU-GTX 1660Ti 6GB

e OS - Windows 11, 64bit

The GPU-accelerated environment significantly
reduced training time for both the GAN and the
discriminator-only phases.[17]

5.2 Software and Libraries

The following major libraries and frameworks were

used:

e TensorFlow 2.12.0 — For defining and training
the GAN architecture

e Keras API — For model structuring and layer-
level abstraction

e NumPy 1230 - For efficient numerical
computation

e Matplotlib 3.6.2 — For generating training and
accuracy/loss plots

e OpenCV 4.6.0 — For image preprocessing
(resizing, normalization)

e  Scikit-learn 1.1.2 — For additional metrics and
accuracy calculations
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Modularized for training, model evaluation, and
visualization,  the  codebase let  simple
hyperparameter ~ and  architectural ~ change
experimentation.

5.3 Training Configuration and Hyperparameters

Based on previous work on Vanilla GANSs, the
training hyperparameters were selected and
manually refined by experimentation[18]:

|Parameter ||Va|ue |
IGAN Epochs 200 |
Discriminator Fine-Tune

Epochs 20

|Batch Size ||64 |
|Learning Rate ||0.0002 |
|Optimizer ||Adam |
[B: (Adam) 0.5 |
|Loss Function ||Binary Cross entropy |

Table I. Training configuration and hyperparameters used for
both GAN adversarial training and discriminator fine-tuning.

The generator and discriminator were alternately
updated per batch throughout GAN training. The
model was assembled separately independently for
the discriminator-only phase and trained using
binary classification mode with labeled real and fake
images.[19]

VI. RESULTS

The results obtained from training the GAN and
evaluating the repurposed discriminator as a
standalone deepfake detection model are presented
in this section. The evaluation addresses visual
confirmation of learning stability, training loss,
model behavior over epochs, and classification
accuracy.

6.1 GAN Training Performance

While the discriminator built a strong internal
representation to differentiate real from fake inputs,
over 200 adversarial training runs for the Vanilla
GAN progressively raised the generator's capacity to
produce realistic-looking images. But as is common
in GAN training, the adversarial dynamics produced
regular oscillations in the generator and
discriminator losses.[20]

At the final epoch of GAN training:

e Discriminator Accuracy: 93.75%
e Discriminator Loss: 0.1872

e  Generator Loss: 3.3208
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3 Bt
200 [D loss: 0.1872, acc.: 93.75%] [G loss: 3.3208]
1/1 [ ==] - @s 51ms/step

Starting Separate Discriminator Training...

1/3 [ ] - @s 67ms/step

Fig. 5. Training progression during GAN adversarial learning.
The graph reflects discriminator accuracy improvement and
generator loss behavior over 200 epochs.

These results indicate that the discriminator became
relatively strong at identifying fakes, although its
performance was still bound by the adversarial
influence of the generator.[21]

6.2 Discriminator Fine-Tuning Performance

After GAN training, the discriminator was
standalone binary classifier isolated and refined for
20 epochs. Its aim was to improve its decision
boundary free from intervention from a rival
generator.

The Performance improved significantly:
o Final Discriminator Accuracy: 100.00%
e  Discriminator Loss: 0.0005

Lk | ] - ©vs aosms/step
Discriminator Epoch 19: [D loss: ©.0005, acc: 100.00%]

Fig. 6. Discriminator performance during standalone supervised
fine-tuning. The model rapidly converges, achieving 100%
classification accuracy in 20 epochs.

This suggests that the adversarially trained
discriminator, when fine-tuned in a supervised
manner, can evolve into an extremely effective
detector for GAN-generated images.[22],[23]

6.3 Combined Training Progress Visualization

We plotted a unified accuracy graph combining the
200 epochs of adversarial GAN training and the 20
epochs of standalone discriminator fine-tuning to
holistically understand how the model changed
across both training stages.

\g Progress of GAN-based Deepfake Detector (200 + 20 Epochs, Updated)

| J M"W w | "l‘

]

Epochs

Fig. 8. Training progress across GAN adversarial learning and
discriminator fine-tuning. The red dashed line at epoch 200
indicates the shift to supervised discriminator training, where
accuracy quickly converges to 100%.

The nature of the minimax game caused generator
and discriminator to show expected instability
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during adversarial training (epochs 0-200). The
generator's increasing capacity caused inconsistent
results even if discriminator accuracy periodically
peaked above 90%.[24]

But just a few epochs after switching to
discriminator-only training, the accuracy curve
stabilized quite sharply and reached 100%. This
emphasizes how naturally capable the discriminator
is to act as a deepfake classifier released from
adversarial interference.[22]

6.4 Summary of Detection Capability

The overall performance of the repurposed
discriminator can be summarized as:

Accuracy
Phase %) Loss ||Remarks
Strong  but
Post GAN Training |(93.75 0.1872||adversarially
influenced
Highly
Post Discriminator 100.00 0.0005 accurate and
Fine-Tuning consistent
detection

Table Il summarizes the discriminator’s detection performance
across both phases.

VII. ANALYSIS AND DISCUSSION

The results of both training stages support the main
hypothesis of this work: a GAN discriminator
trained adversarially and subsequently fine-tuned
can be efficiently used as a standalone deepfake
detection  model.  Technical  observations,
performance trends, and more general consequences
of the method are covered in this part.

7.1 Adversarial Learning Dynamics

We noted expected variations in generator and
discriminator performance during the GAN training
phase. Because of the adversarial relationship
between the two networks, this behavior is common
in GANSs: as the generator gets better, the
discriminator finds it more difficult to differentiate
real from fake, hence producing brief accuracy
declines.[25]

The discriminator learned meaningful variations in
data distribution despite this volatility, so attaining
an accuracy of 93.75% by the end of GAN training.
This implies that the adversarial process had already
produced a strong set of characteristics helpful for
classification—features that might subsequently be
improved by targeted learning.[26]
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7.2 Model Efficiency and Simplicity

Simplicity of this method is one of its benefits. The
model employs a basic Vanilla GAN architecture
with minimal parameter tuning unlike sophisticated
CNN ensembles or custom-tailored deepfake
detectors. It nevertheless attained great accuracy
using a rather small dataset and without any
architectural changes between training phases.
This makes the method not only highly modular but
also computationally efficient; it can be extended to
more advanced architectures with minimal overhead
or included into current GAN pipelines.

7.3 Limitations and Observations

Though the result is positive, some limitations have
to be acknowledged. The model first was tested in a
controlled environment using synthetic images
produced by its own generator. This arrangement
ignores deepfakes generated by other GAN versions
(e.g., StyleGAN, ProGAN) or tests the durability of
the model against real-world noise including
compression artifacts or post-processing[27].

Moreover amazing is the 100% accuracy attained
during fine-tuning, which considering the small size
and homogeneity of the dataset could suggest
possible overfitting. Generalization capacity needs
future evaluations on larger, more diverse datasets.

VIII. CONCLUSION.

This work presented a new method for deepfake
image detection wusing a Vanilla GAN's
discriminator as a stand-alone binary classifier
repurposed. We showed that the discriminator can
efficiently evolve from a competitive adversarial
component into a highly accurate deepfake detector
by means of a two-phase training pipeline
comprising adversarial GAN training followed by
supervised discriminator fine-tuning.

After GAN training and following 20 epochs of
supervised classification, our tests revealed that the
discriminator—even in a basic GAN setup—
reached an amazing 93.75% accuracy. These
findings confirm our main theory: that the
adversarial training phase essentially gives the
discriminator a deep awareness of the distributional
discrepancies between real and synthetic data, which
can be used in downstream forensic activities.
Simple, modular, computationally efficient, the
method presents a good substitute for heavier, data-
hungry CNN-based detection systems. This
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approach may be directly included into current GAN
systems for real-time or embedded detection
capabilities by skipping the need for architectural
redesign or from-scratch classifier training.
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