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Abstract— Differentiating between actual and 

deepfakes becomes increasingly challenging in digital 

forensics as synthetic picture production advances. 

This paper offers a practical approach to detect images 

generated by a Vanilla Generative Adversarial 

Network (GAN) by use of the discriminator of another 

vanilla generator. Since the GAN discriminator is 

adversarially trained to uncover minute deviations 

from true data distributions, it is naturally suited for 

deepfake detection unlike traditional classifiers. 

Following Vanilla GAN training, we ran a fine-tuning 

step in which the discriminator acted as a stand-alone 

classifier. In controlled settings the model achieved a 

final detection accuracy of 100%. This work 

significantly clarifies the possibilities of adversarial 

components as forensic tools by offering information 

on the technique, architecture, training phases, and 

performance results. Future directions demand 

evaluating cross-GAN generalization and 

enhancement of model robustness for pragmatic 

environments. 
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I. INTRODUCTION 

Generative Adversarial Networks (GANs) have 

become among the most important developments in 

artificial intelligence recently. Comprising a 

generator and a discriminator taught in opposition, 

these models have shown amazing success creating 

hyper-realistic images, audio, and video material. 

Although their contributions to fields including 

creative media, medical imaging, and simulation are 

noteworthy, their use has also raised questions about 

abuse—most famously in the form of deepfakes. 

Often without permission, deepfakes—synthetic 

images or videos that convincingly copy real 

people—may compromise information authenticity, 

privacy, and trust. 

Finding such synthetic media gets more difficult as 

the realism of GAN-generated content keeps 

improving. Currently used deepfake detection 

methods mostly rely on CNN-based classifiers 

educated on labeled datasets of real and synthetic 

images. Although these methods produce good 

results on known data, they sometimes cannot 

generalize over various GAN architectures or 

datasets not observed during training. This 

restriction drives a great demand for more flexible 

and architecture-agnostic detection systems able to 

detect deepfakes in dynamic and various 

environments. 

We present in this work a fresh but simple method: 

using the discriminator from a trained Vanilla GAN 

as a detection engine for images produced by GANs. 

We speculate that the discriminator has latent ability 

for deepfake detection since it is naturally optimized 

to differentiate real from fake samples during 

adversarial training. First we separate and fine-tune 

the discriminator for binary classification after 

training a Vanilla GAN using conventional 

adversarial techniques. Our results show that this 

basic framework can attain high accuracy in 

controlled experiments, implying that GAN 

discriminators—often neglected after training—can 

be lightweight, efficient detectors of synthetic 

content [1], [2]. 

 

II. LITERATURE REVIEW 

 

Generative Adversarial Networks' (GANs') 

development has revolutionized synthetic media 

generation's field. Deepfakes are becoming more 

and more similar to real content, thus parallel 

development in detection techniques has started to 

counteract their use. Conventions for deepfake 

detection mostly rely on frequency-based analysis or 

Convolutional Neural Networks (CNNs). These 
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approaches, however, sometimes fail to generalize 

across various GAN architectures or image domains, 

which results in brittle detection frameworks when 

used in practical settings.[3] 

Emphasizing that deep learning models trained on 

frequency artifacts and color anomalies typically 

outperform passive forensics but still lack 

transferability across domains, Remya Revi et al.[4] 

surveyed GAN-based deepfake detection methods. 

Abdullah et al.[5] underlined similar limits in 

detection generalization and suggested architectural 

improvements depending on content-agnostic 

feature extraction. They also demanded models who 

could change with the times to fit changing deepfake 

generating techniques. 

Yang et al.,[6] who first proposed the idea of a 

dynamic discriminator, go over a particularly 

pertinent method here. Their work suggested that the 

capacity of a discriminator should change during 

training to correspond with the different generator 

output difficulty. Without adding computational 

complexity, this adaptive capacity model—

DynamicD—showered better performance in both 

synthesis quality and downstream classification. 

Their work emphasizes training dynamics, but it also 

supports the notion that discriminators have deep 

representational insights fit for use in detection 

tasks. 

Moreover, basic research by Goodfellow et al.[7] 

established the theoretical framework for adversarial 

networks, in which the generator is guided toward 

realism by means of imperfection identification in 

synthetic data, hence the discriminator is central. 

Although most studies concentrate on generator 

enhancements, more recently conducted studies 

have turned their focus to using discriminator 

knowledge after training. One such research 

proposes to use pre-trained discriminators as 

forensic tools, especially when refined using 

supervised learning to differentiate between real and 

fake images. 

With PCA and SVMs, Hanady S. A. Kareem et al.[8] 

presented a machine learning-based method for 

deepfake face classification attaining over 96% 

accuracy. Although their pipelines are different, the 

use of reduced feature representations is similar to 

how GAN discriminators isolate important 

distinguishing features by adversarial learning. 

Focusing on small discrepancies brought about 

during image synthesis, further works by Li et al. 

and McCloskey et al.[9] investigated color-space 

transformations and high-pass filtering. These 

methods confirm the relevance of fine-grained 

artifact detection—a natural ability of adversarially 

trained discriminators—even if they are not directly 

related to GAN discriminators. 

All things considered, the literature shows 

increasing awareness of GAN discriminators as rich 

sources of forensic information. Still underexplored, 

though, their reusing outside adversarial training. 

This work fills in that void by suggesting a 

structured pipeline isolating and optimizing a 

Vanilla GAN discriminator to operate as a stand-

alone deepfake detector. We want to use the 

embedded feature space of the discriminator to 

create a lightweight, architecture-agnostic detection 

framework by merging adversarial training with 

focused fine-tuning. 

III. PROBLEM STATEMENT 

 

Generative Adversarial Networks (GANs) have 

significantly advanced the field of synthetic media 

generation. The rapid development of generative 

models has led to the widespread creation of highly 

realistic synthetic media, commonly referred to as 

deepfakes. These synthetic images and videos can 

convincingly replicate human faces, expressions, 

and environments, making them increasingly 

difficult to distinguish from real content using 

traditional inspection or forensic techniques. While 

this innovation has enabled valuable applications in 

art, medicine, and education, it also poses significant 

risks, including the spread of misinformation, 

identity fraud, and erosion of public trust in digital 

content. 

To counter these threats, numerous deepfake 

detection methods have been developed, primarily 

relying on frequency spectrum anomalies, artifact-

based forensic cues, or supervised learning 

techniques employing convolutional neural 

networks (CNNs). However, these models often face 

two major limitations. First, they tend to be domain-

specific, tailored to detect fakes from particular 

datasets or GAN architectures (e.g., StyleGAN, 

CycleGAN), and struggle to generalize to images 

produced by other techniques. Second, training these 

models from scratch or maintaining large ensembles 

for robust detection incurs substantial computational 

and data costs, making them less practical for 

lightweight or real-time deployment. 
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Each GAN inherently includes a discriminator 

network trained to differentiate between real images 

and those generated by its corresponding generator. 

This discriminator is adversarially optimized by 

continuously analyzing real and synthetic data to 

identify subtle differences between the two 

distributions. Despite its central role in GAN 

training, the discriminator is seldom repurposed for 

real-world applications, particularly in detection 

tasks. This underutilization represents a missed 

opportunity, as the discriminator possesses a learned 

representation of synthetic features that could be 

leveraged in downstream classification problems 

[10]. 

This study explores the potential of employing a 

trained discriminator as an independent deepfake 

detection engine to address the underutilization of 

GAN discriminators in post-training scenarios. 

Specifically, we examine the effectiveness of fine-

tuning the discriminator from a trained Vanilla GAN 

for binary classification tasks distinguishing real 

images from GAN-generated ones. Our objective is 

to determine whether the latent knowledge 

embedded in the discriminator—originally shaped 

through adversarial training—can serve as a rapid, 

accurate, and broadly applicable tool for identifying 

synthetic visual data [11]. 

The primary challenge lies in the absence of 

lightweight, reusable detection models that do not 

require architectural overhauls or extensive 

retraining. This work proposes a novel yet 

straightforward pipeline to bridge this gap by 

validating the GAN discriminator as a viable 

solution for detecting deepfake images, potentially 

reducing computational overhead and enhancing the 

adaptability of detection systems across various 

generative environments. 

IV. METHODOLOGY 

The design, implementation, and workflow of our 

suggested method—repurposing a Vanilla GAN 

discriminator for the detection of GAN-generated 

(fake) images—are described in this section. 

Architectural design, dataset curation, adversarial 

training, discriminator fine-tuning, and performance 

evaluation are the five main phases that make up the 

methodology. 

4.1 GAN-Based Detection Framework Overview 

A Vanilla Generative Adversarial Network (GAN), 

which is the basis of this work, is made up of two 

neural networks—a discriminator and a generator—

that have been trained in opposition to one another. 

While the discriminator is trained to discern between 

authentic and fraudulent inputs, the generator learns 

to create progressively more realistic images from 

random noise during adversarial training. We 

decouple the discriminator from the GAN 

framework after the adversarial training is finished, 

and then retrain it under supervision to identify real 

or fake images. 

Compared to conventional deepfake detection 

pipelines, which train classifiers from scratch on 

labeled datasets, this method is essentially different. 

Here, the discriminator has a solid representational 

foundation for classification because it has already 

been exposed to both kinds of data during 

adversarial training [10], [11]. 

4.2 Architectural Details 

Generator Architecture 

Early in the generator network, a dense layer 

expands the noise vector into a high-dimensional 

tensor, which is then transformed into an initial 

feature map. Four Conv2DTranspose 

(deconvolution) layers—each with LeakyReLU 

activations and Batch Normalization—follow next. 

To create 128×128 grayscale images, the last layer 

scales pixel values between -1 and 1 using a Tanh 

activation function. The generator boasts roughly 

2.78 million trainable parameters overall. 

 
Fig 1. Generator architecture showing the transformation of a 

random noise vector into a 128×128 grayscale image using 

transposed convolutions and Tanh activation. 



© June 2025| IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 
 

IJIRT 180296          INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1072 

Discriminator Architecture 

The discriminator might receive 128 x 128 x 1 

grayscale image. LeakyReLU activations and Batch 

Normalization come after numerous Conv2D layers 

with progressively broader filter widths (64–512). 

The network finishes at a Dense layer generating a 

probability score reflecting the correctness of the 

input using a sigmoid activation function. Dropout 

layers help lower overfit. Total there are about 2.34 

million parameters. 

 

Figure 2. Architecture of the discriminator network used in the 

Vanilla GAN, featuring stacked convolutional layers with batch 

normalization and LeakyReLU activations. 

This architecture strikes a balance between 

complexity and interpretability, making it ideal for 

proof-of-concept detection pipelines. 

4.3 Dataset Preparation and Preprocessing 

To ensure consistent training and evaluation, we 

created a balanced dataset comprising generated as 

well as actual images. Real images were reduced 

from publicly available facial picture databases to 

128x 128 pixels. We produced synthetic images 

using our Vanilla GAN's trained generator 

component. Once the model reached visual 

convergence—which came about after about 200 

epochs—these synthetic images were kept and 

assigned suitable labels. 

Among the chores related to preparation were: 

1. All images were grayscale [11] to match the 

expected 128x128x1 input format. 

2. Pixel values were min-max adjusted to the range 

[-1, 1] [12] so allowing constant training. 

3. The dataset was randomly shuffled and split, with 

80% set for training and 20% for testing, so 

guaranteeing a fair mix of actual and synthetic 

images [13]. 

This ongoing preprocessing ensured that the 

architectural needs of the network matched the 

phases of training and testing, so promoting 

effective learning and evaluation. 

4.4 Two-Phase Training Process 

Phase 1 – Adversarial Training (GAN Training): 

Binary Crossentropy loss and the Adam optimizer 

(learning rate = 0.0002, β₁ = 0.5) drove us to train 

the GAN for 200 epochs. The generator wanted to 

limit the discriminator's capacity to identify fakes 

while the discriminator sought to maximize it in this 

phase, therefore engaging in a zero-sum game [14]. 

Typical with GANs, the training graphs displayed 

varying loss values together with slow increases in 

image quality and discriminator accuracy [15]. 
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Figure 3. Training metrics from GAN training phase, illustrating 

discriminator accuracy improvements and generator loss curves 

over 200 epochs. 

Phase 2 – Discriminator-Only Supervised Training: 

Following GAN convergence, we separated the 

discriminator and trained it separately on the labeled 

dataset of actual and synthetic images in Phase 2, 

discriminator-only supervised training. Treating the 

issue as a typical supervised learning job, this phase 

consisted of 20 binary classification epochs. Free 

from the interference of the generator, this fine-

tuning improved the decision boundary of the model 

[16]. 

 
Figure 4. Accuracy and prediction logs from discriminator-only 

training phase showing convergence and improved binary 

classification results. 

The discriminator already has internal 

representations of "fakeness," hence the change 

between adversarial and standalone training phases 

was smooth [16]. 

4.5 Evaluation Strategy. 

We systematically evaluated the performance of our 

repurposed discriminator using both quantitative 

and qualitative criteria: 

i) Calculated, on the test set in classifications, the 

proportion of accurate predictions. 

ii) Binary cross- entropy loss is tracked under both 

GAN training and discriminator finetuning. 

iii) Plotting accuracy and loss values over epochs 

helps one to find convergence and spot potential 

overfitting. 

iv) Visual outputs consisted in comparisons of real 

against produced images and performance logs from 

both training phases. 

Verifying the high detection ability of the model, 

final discriminator performance shown 93.75% 

accuracy post adversarial training and 100.00% 

accuracy following supervised fine-tuning. 

 

V. EXPERIMENTAL SETUP 

All of the experiments were carried out in a 

controlled software and hardware environment to 

provide a consistent and repeatable assessment of 

the suggested method. The system configuration, 

development libraries, training parameters, and 

dataset specifications applied all around the project 

are described in this part. 

5.1 Hardware Configuration. 

All model training and testing are carried out on a 

setup with the following specifications:  

• Processor – AMD Ryzen 5 4600h 

• RAM – 16GB DDR4 

• GPU – GTX 1660Ti  6GB 

• OS – Windows 11, 64bit 

The GPU-accelerated environment significantly 

reduced training time for both the GAN and the 

discriminator-only phases.[17] 

5.2 Software and Libraries 

The following major libraries and frameworks were 

used: 

• TensorFlow 2.12.0 – For defining and training 

the GAN architecture 

• Keras API – For model structuring and layer-

level abstraction 

• NumPy 1.23.0 – For efficient numerical 

computation 

• Matplotlib 3.6.2 – For generating training and 

accuracy/loss plots 

• OpenCV 4.6.0 – For image preprocessing 

(resizing, normalization) 

• Scikit-learn 1.1.2 – For additional metrics and 

accuracy calculations 
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Modularized for training, model evaluation, and 

visualization, the codebase let simple 

hyperparameter and architectural change 

experimentation. 

5.3 Training Configuration and Hyperparameters 

Based on previous work on Vanilla GANs, the 

training hyperparameters were selected and 

manually refined by experimentation[18]: 

Parameter Value 

GAN Epochs 200 

Discriminator Fine-Tune 

Epochs 
20 

Batch Size 64 

Learning Rate 0.0002 

Optimizer Adam 

β₁ (Adam) 0.5 

Loss Function Binary Cross entropy 

Table I. Training configuration and hyperparameters used for 

both GAN adversarial training and discriminator fine-tuning. 

The generator and discriminator were alternately 

updated per batch throughout GAN training. The 

model was assembled separately independently for 

the discriminator-only phase and trained using 

binary classification mode with labeled real and fake 

images.[19] 

VI. RESULTS 

The results obtained from training the GAN and 

evaluating the repurposed discriminator as a 

standalone deepfake detection model are presented 

in this section. The evaluation addresses visual 

confirmation of learning stability, training loss, 

model behavior over epochs, and classification 

accuracy. 

6.1 GAN Training Performance 

While the discriminator built a strong internal 

representation to differentiate real from fake inputs, 

over 200 adversarial training runs for the Vanilla 

GAN progressively raised the generator's capacity to 

produce realistic-looking images. But as is common 

in GAN training, the adversarial dynamics produced 

regular oscillations in the generator and 

discriminator losses.[20] 

 

At the final epoch of GAN training: 

• Discriminator Accuracy: 93.75% 

• Discriminator Loss: 0.1872 

• Generator Loss: 3.3208 

 
Fig. 5. Training progression during GAN adversarial learning. 

The graph reflects discriminator accuracy improvement and 

generator loss behavior over 200 epochs. 

These results indicate that the discriminator became 

relatively strong at identifying fakes, although its 

performance was still bound by the adversarial 

influence of the generator.[21] 

6.2 Discriminator Fine-Tuning Performance 

After GAN training, the discriminator was 

standalone binary classifier isolated and refined for 

20 epochs. Its aim was to improve its decision 

boundary free from intervention from a rival 

generator. 

The Performance improved significantly:  

• Final Discriminator Accuracy: 100.00% 

• Discriminator Loss: 0.0005 

 

Fig. 6. Discriminator performance during standalone supervised 

fine-tuning. The model rapidly converges, achieving 100% 

classification accuracy in 20 epochs. 

This suggests that the adversarially trained 

discriminator, when fine-tuned in a supervised 

manner, can evolve into an extremely effective 

detector for GAN-generated images.[22],[23] 

6.3 Combined Training Progress Visualization 

We plotted a unified accuracy graph combining the 

200 epochs of adversarial GAN training and the 20 

epochs of standalone discriminator fine-tuning to 

holistically understand how the model changed 

across both training stages. 

 

Fig. 8. Training progress across GAN adversarial learning and 

discriminator fine-tuning. The red dashed line at epoch 200 

indicates the shift to supervised discriminator training, where 

accuracy quickly converges to 100%. 

The nature of the minimax game caused generator 

and discriminator to show expected instability 
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during adversarial training (epochs 0–200). The 

generator's increasing capacity caused inconsistent 

results even if discriminator accuracy periodically 

peaked above 90%.[24] 

But just a few epochs after switching to 

discriminator-only training, the accuracy curve 

stabilized quite sharply and reached 100%. This 

emphasizes how naturally capable the discriminator 

is to act as a deepfake classifier released from 

adversarial interference.[22] 

6.4 Summary of Detection Capability 

The overall performance of the repurposed 

discriminator can be summarized as: 

Phase 
Accuracy 

(%) 
Loss Remarks 

Post GAN Training 93.75 0.1872 

Strong but 

adversarially 

influenced 

Post Discriminator 

Fine-Tuning 
100.00 0.0005 

Highly 

accurate and 

consistent 

detection 

Table II summarizes the discriminator’s detection performance 

across both phases. 

VII. ANALYSIS AND DISCUSSION 

 

The results of both training stages support the main 

hypothesis of this work: a GAN discriminator 

trained adversarially and subsequently fine-tuned 

can be efficiently used as a standalone deepfake 

detection model. Technical observations, 

performance trends, and more general consequences 

of the method are covered in this part. 

7.1 Adversarial Learning Dynamics  

We noted expected variations in generator and 

discriminator performance during the GAN training 

phase. Because of the adversarial relationship 

between the two networks, this behavior is common 

in GANs: as the generator gets better, the 

discriminator finds it more difficult to differentiate 

real from fake, hence producing brief accuracy 

declines.[25] 

The discriminator learned meaningful variations in 

data distribution despite this volatility, so attaining 

an accuracy of 93.75% by the end of GAN training. 

This implies that the adversarial process had already 

produced a strong set of characteristics helpful for 

classification—features that might subsequently be 

improved by targeted learning.[26] 

 

7.2 Model Efficiency and Simplicity 

Simplicity of this method is one of its benefits. The 

model employs a basic Vanilla GAN architecture 

with minimal parameter tuning unlike sophisticated 

CNN ensembles or custom-tailored deepfake 

detectors. It nevertheless attained great accuracy 

using a rather small dataset and without any 

architectural changes between training phases. 

This makes the method not only highly modular but 

also computationally efficient; it can be extended to 

more advanced architectures with minimal overhead 

or included into current GAN pipelines. 

 

7.3 Limitations and Observations 

Though the result is positive, some limitations have 

to be acknowledged. The model first was tested in a 

controlled environment using synthetic images 

produced by its own generator. This arrangement 

ignores deepfakes generated by other GAN versions 

(e.g., StyleGAN, ProGAN) or tests the durability of 

the model against real-world noise including 

compression artifacts or post-processing[27]. 

Moreover amazing is the 100% accuracy attained 

during fine-tuning, which considering the small size 

and homogeneity of the dataset could suggest 

possible overfitting. Generalization capacity needs 

future evaluations on larger, more diverse datasets. 

VIII. CONCLUSION. 

This work presented a new method for deepfake 

image detection using a Vanilla GAN's 

discriminator as a stand-alone binary classifier 

repurposed. We showed that the discriminator can 

efficiently evolve from a competitive adversarial 

component into a highly accurate deepfake detector 

by means of a two-phase training pipeline 

comprising adversarial GAN training followed by 

supervised discriminator fine-tuning. 

After GAN training and following 20 epochs of 

supervised classification, our tests revealed that the 

discriminator—even in a basic GAN setup—

reached an amazing 93.75% accuracy. These 

findings confirm our main theory: that the 

adversarial training phase essentially gives the 

discriminator a deep awareness of the distributional 

discrepancies between real and synthetic data, which 

can be used in downstream forensic activities. 

Simple, modular, computationally efficient, the 

method presents a good substitute for heavier, data-

hungry CNN-based detection systems. This 
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approach may be directly included into current GAN 

systems for real-time or embedded detection 

capabilities by skipping the need for architectural 

redesign or from-scratch classifier training. 
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