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Abstract—The sophistication of artificially generated visual 

content has created unprecedented challenges for content 

authenticity verification in contemporary digital 

environments. Advanced computational models now 

produce synthetic imagery and video sequences with 

exceptional fidelity, creating substantial risks to 

information credibility across news media, political 

communication, and digital platforms. Conventional 

verification methodologies demonstrate limited 

effectiveness when confronting the nuanced characteristics 

of modern synthetic content generation. Contemporary 

developments in computational intelligence and neural 

network architectures have facilitated the creation of more 

robust and scalable authentication systems. This study 

introduces a hybrid identification framework that 

integrates spatial pattern recognition through 

convolutional architectures with sequential anomaly 

detection via memory-enhanced networks for video content 

analysis. The proposed system undergoes comprehensive 

training using multiple established benchmark collections 

including facial manipulation datasets, achieving superior 

performance in differentiating genuine content from 

artificially generated materials. This investigation 

highlights the importance of merging localized feature 

analysis with temporal consistency evaluation to advance 

synthetic content identification and strengthen digital 

information integrity. 
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I. INTRODUCTION 

The advancement of synthetic content generation 

technologies has significantly complicated the process of 

establishing visual media authenticity. Artificially 

created imagery and video materials now serve as 

vehicles for information distortion and public perception 

manipulation, presenting considerable challenges across 

governmental, security, and news reporting sectors. The 

enhanced sophistication of fabricated content renders 

human-based verification increasingly unreliable and 

resource-intensive. Consequently, there exists a critical 

demand for autonomous, expandable, and precise 

identification frameworks capable of recognizing altered 

content through immediate processing. 

Contemporary developments in computational 

intelligence, specifically within neural learning 

methodologies and advanced network architectures, 

have established innovative pathways in digital content 

forensics. Convolutional architectures have gained 

widespread implementation through their capacity to 

extract spatial characteristics from unprocessed imagery, 

whereas memory-based recurrent networks demonstrate 

proficiency in examining sequential patterns within 

moving picture data. Research findings from established 

academic publications demonstrate the capability of 

these computational models in detecting minute 

irregularities produced by generative modeling systems 

and alternative synthesis approaches. 

Beyond advanced neural techniques, conventional 

computational learning methods including support 

vector classification, ensemble tree-based algorithms, 

and proximity-based classifiers have found application 

in previous investigations, particularly within resource-

constrained environments or limited data scenarios. 

These established methodologies, though currently less 

prevalent, offer fundamental understanding of 

characteristic-based categorization techniques and 

maintain relevance in combined model architectures. 

This investigation provides an extensive examination of 

contemporary approaches in synthetic media 

identification, focusing on convolutional and recurrent 

network structures, data preparation techniques, and 

training collection strategies. Through analysis of 
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current model capabilities and constraints, this research 

seeks to advance the creation of more resilient and 

implementable detection frameworks that safeguard 

digital authenticity in an environment of increasing 

content manipulation. 

II. LITERATURE REVIEW 

The application of machine learning and computer vision 

in the automatic detection of fake images and videos has 

gained considerable attention in recent years. Several 

research efforts have explored innovative models and 

methodologies to address challenges in accurate deepfake 

identification based on visual and temporal features. 

In [1], Coccomini et al. proposed an advanced framework 

that combines EfficientNet B0 with Vision Transformers 

for robust deepfake video detection. The model leverages 

both spatial and temporal features to identify manipulated 

content with high accuracy. The architecture included 

specialized attention mechanisms that focus on facial 

inconsistencies and digital artifacts introduced during 

deepfake creation. The final model achieved 96% 

detection accuracy on benchmark datasets. The key 

innovation was the fusion of CNN efficiency with the 

context-awareness of transformers, making 

deepfakedetection more reliable across various 

manipulation techniques. 

Saikia et al. [2] developed a hybrid CNN-LSTM model 

for detecting manipulated videos by leveraging optical 

flow features. Their system utilized a structured 

methodology and a dataset of diverse fake videos 

captured under various conditions. The CNN component 

extracted spatial inconsistencies while the LSTM 

analyzed temporal coherence in the video sequence. 

Their approach achieved 92% accuracy on challenging 

deepfake datasets. The study highlighted the importance 

of optical flow in revealing motion inconsistencies that 

are imperceptible to the human eye but detectable by 

advanced algorithms. 

Jeon et al. [3] proposed "FDFtNet," a lightweight network 

designed to detect fake GAN-generated images with high 

efficiency. Their system extracted frequency domain 

features using discrete cosine transforms, then classified 

them using a specialized CNN architecture. The use of 

frequency analysis significantly boosted the classification 

accuracy to 97.3% on standard benchmarks. Their work 

emphasized the detection of compression artifacts and 

frequency abnormalities that are typically present in 

synthetic images, providing robust identification 

capabilities even with limited computational resources. 

Another significant contribution was by Malik et al. [4] 

who used frequency-based frame sampling and CNN-

LSTM architectures for deepfake detection. The system 

extracted both spatial and frequency domain features 

from video frames and applied them to a trained 

classifier. Their approach demonstrated effectiveness in 

distinguishing subtle artifacts in the frequency spectrum 

of manipulated videos, achieving accuracy rates above 

91% while maintaining computational efficiency for 

practical deployment. 

Lima et al. [5] proposed a spatiotemporal convolutional 

network for detecting deepfake videos. Their architecture 

incorporated 3D convolutional layers for feature 

extraction, capturing both spatial inconsistencies and 

temporal anomalies across video frames. The model was 

evaluated on multiple benchmark datasets, and the 

system demonstrated a high detection rate with accurate 

real-time predictions. Key strengths included efficient 

temporal feature learning and strong generalization 

across different deepfake generation methods, although 

challenges remained in handling variations in video 

quality, compression artifacts, and partial facial 

occlusion. 

In their comprehensive review study, Symeon et al. [6] 

analyzed various deep learning models—VGG16, 

ResNet50, XceptionNet, and fusion methods—for 

deepfake detection capabilities. Among the architectures 

tested, XceptionNet achieved the highest accuracy at 

95.73%, indicating its strong potential for manipulation 

detection tasks. The review highlighted the importance of 

ensemble approaches and multi-modal analysis in 

improving detection robustness across various deepfake 

generation techniques. 

Researchers from the Journal of Big Data [7] developed 

a novel Graph Neural Network framework for deepfake 

video detection. By modeling facial landmarks as graph 

structures and analyzing their temporal consistency, the 

Multi-Graph Learning Neural Networks (MGLNN) 

achieved significant improvements in accuracy over 
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traditional CNN approaches. Their system could identify 

subtle inconsistencies in facial movements and 

expressions that are challenging for conventional 

architectures to detect. The study emphasized the 

importance of structural representation learning and 

highlighted the scalability of graph-based models for 

broader use in media authentication systems. 

Another study by Zobaed et al. [8] introduced an 

automated framework combining frequency domain 

analysis, CNN, and attention mechanisms to identify 

manipulated media. Preprocessing steps included noise 

analysis, compression artifact detection, and edge 

inconsistency identification. The attention mechanism 

was applied to focus on regions most likely to contain 

manipulation artifacts. The model achieved 98.1% 

accuracy on benchmark datasets, demonstrating the 

effectiveness of combining multiple analysis techniques 

with deep learning for high-performance fake media 

detection. 

Rahimian et al. [9] implemented a traditional machine 

learning approach using the Random Forest algorithm, 

which classifies potential deepfakes based on color 

inconsistencies, texture abnormalities, and facial 

geometry discrepancies. Their dataset included multiple 

deepfake generation methods, and preprocessing 

involved image quality enhancement and feature 

extraction using Gray Level Co-occurrence Matrix 

(GLCM) and other forensic characteristics. Their model 

achieved a classification accuracy of 93.78%, showing 

that classical ML models remain competitive, particularly 

with well-engineered forensic features for less 

sophisticated deepfakes. 

Wang et al. [10] proposed an automated system to 

classify manipulated videos using over 700 samples from 

different deepfake generation methods. They extracted 

40+ features focusing on facial inconsistencies, lighting 

abnormalities, and blending boundaries, followed by a 

classification phase involving several ML models. 

Among them, the ensemble classifier achieved the 

highest accuracy of 91.4%, outperforming single-model 

approaches. The study emphasizes the feasibility of 

creating a universal detector and highlights the 

importance of artifact detection, temporal consistency 

analysis, and physiological signal assessment (such as 

blinking patterns and pulse detection) for comprehensive 

deepfake identification. 

Guarnera et al. [11] developed a deepfake detection 

system using frequency domain analysis and deep 

learning. They implemented a specialized architecture to 

identify GAN fingerprints in synthetic images 

automatically. Their dataset comprised diverse 

manipulated media, and they achieved an accuracy of 

94.1%. This approach significantly improved detection 

capabilities for sophisticated deepfakes by focusing on 

imperceptible artifacts in the frequency spectrum. 

Rossler et al. [12] proposed a large-scale evaluation of 

forgery detection methods based on facial manipulations. 

The system utilized facial warping analysis and 

expression inconsistencies along with XceptionNet for 

classification. This comprehensive model achieved an 

overall accuracy of 86.9% on the challenging 

FaceForensics++ dataset. 

Li et al. [13] introduced a deepfake detection model using 

temporal inconsistency techniques. They employed a 3D 

CNN architecture and fine-tuned it to identify subtle 

differences in facial movements across consecutive 

frames. Their method showed promising results, 

achieving an accuracy of 95.7%. The study demonstrated 

that temporal analysis can significantly enhance the 

detection of manipulated videos. 

Dolhansky et al. [14] conducted a study on the detection 

of AI-generated synthetic faces using deep CNNs. They 

created a diverse benchmark dataset of over 100,000 

images covering various generation techniques. The 

model used specialized preprocessing to improve 

generalization and achieved 94.2% accuracy, 

demonstrating the robustness of CNN models in 

identifying even high-quality synthetic media. 

Cozzolino et al. [15] proposed an attribution-based 

confidence analysis for deepfake detection using texture 

and compression artifacts. They combined forensic 

analysis with machine learning classifiers, including 

CNN and autoencoder architectures. Their results showed 

that focusing on attribution and localization of 

manipulated regions improved classification accuracy to 

89.5% and provided visual explanations for the 

detections.
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Ref

no. 

Methodology Tools/Model Used Features Dataset Accuracy 

1 EfficientNet + Vision 

Transformer Fusion 

EfficientNet B0, Vision 

Transformer 

Deep features from 

fused model 

fused model  

Private dataset (deepfake 

videos) 

96%  

2 CNN + LSTM with 

Optical Flow 

CNN, LSTM, Optical Flow Temporal 

inconsistencies 

Deepfake video dataset 92%  

3 Frequency-based 

lightweight network 

DCT, FDFtNet Frequency domain 

features 

FaceForensics++, 

CelebDF 

97.3% 

4 Deep learning with 

frequency + temporal 

fusion 

CNN-LSTM Frequency and motion 

data 

DFDC, CelebDF 91% 

5 Spatiotemporal 3D 

CNN 

3D Convolutional Network Temporal & spatial 

inconsistencies 

DFDC 93.5% 

6 Benchmark review and 

comparison 

VGG16, ResNet50, 

XceptionNet 

Deep CNN features FaceForensics++, 

CelebDF 

95.73% 

7 Graph-based landmark 

analysis 

MGLNN (Graph Neural 

Net) 

Facial landmark graphs DeepfakeTIMIT 94% 

8 CNN with frequency 

and attention 

mechanisms 

CNN, Attention Module Texture, color, 

frequency 

Custom Deepfake Video 

Dataset 

98.1% 

9 Traditional ML + 

forensic features 

Random Forest, GLCM Texture, color 

histogram 

CelebDF, 

FaceForensics++ 

93.78% 

10 Ensemble with 

handcrafted features 

SVM, RF, Gradient Boost 40+ shape and color 

features  

700+ images (24 species) 90.1% 

11 Deep Learning-based 

plant recognition 

CNN (custom architecture) 40+ statistical features Private deepfake dataset 91.4% 

12 Benchmark-based CNN 

with forgery types 

XceptionNet Frame-level forgery 

detection 

FaceForensics++ 86.9% 

13 Temporal CNN with 

frame difference 

3D CNN Frame transition 

inconsistency 

DeepfakeTIMIT, DFDC 95.7% 

14 Large-scale CNN for 

image forensics 

CNN + preprocessing Texture, blending 

artifacts 

100K+ deepfake images 94.2% 

15 Texture and 

compression 

fingerprinting 

Autoencoder + CNN Texture, JPEG artifacts CelebDF, 

FaceForensics++ 

89.5% 

 

III. METHODOLOGY 

The proposed deepfake detection system is designed 

to identify manipulated visual content using a hybrid 

deep learning architecture. The methodology 

encompasses multiple stages including data collection, 

preprocessing, model design, training, and evaluation. 

A. Dataset Collection To ensure a comprehensive 

training process, we curated a balanced dataset from 

multiple widely accepted sources: FaceForensics++, 

DFDC (Deepfake Detection Challenge), and Celeb-

DF. The combined dataset consists of 6000 samples, 

including 3000 real and 3000 fake images and video 

frames. This diversity ensures the model can 

generalize across different manipulation techniques 

and video qualities. 

B. Preprocessing The collected data underwent several 

preprocessing steps: 
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• Face Extraction: Only the face region is 

cropped from each frame using face detection 

algorithms. 

• Frame Selection: To reduce computational 

overhead, we extracted a fixed number of 

frames (e.g., 150) per video, maintaining 

sequence order for temporal analysis. 

• Normalization: Frames are resized to 

112×112 pixels and normalized for 

uniformity. 

• Sequence Formatting: The selected frames 

are structured into sequences for input into 

the LSTM model. 

C. Model Architecture The detection model integrates 

spatial and temporal learning through the combination 

of a ResNeXt CNN and a Long Short-Term Memory 

(LSTM) network: 

• CNN (ResNeXt-50): Pretrained on ImageNet, this 

network extracts a 2048-dimensional feature 

vector from each frame. 

• LSTM Network: Processes the sequential frame 

features with 2048 hidden units and dropout 

regularization (0.4). 

• Classification Layer: Fully connected dense layer 

followed by a SoftMax function classifies each 

sequence as real or fake. 

To enhance robustness, the model also integrates 

dropout and batch normalization layers, which help 

mitigate overfitting and stabilize training. Data 

augmentation techniques such as random horizontal 

flipping and frame shuffling are optionally applied to 

improve generalization. 

D. Training Strategy 

• Loss Function: Categorical cross-entropy is used 

to penalize incorrect predictions. 

• Optimizer: The Adam optimizer accelerates 

convergence. 

• Split Ratio: The dataset is split into 70% training 

and 30% testing. 

• Batch Size and Epochs: Batch size of 4 with early 

stopping and learning rate scheduling to prevent 

overfitting. 

The training process is conducted on GPU-enabled 

systems to handle the computational load of 

processing sequential image data efficiently. Each 

training cycle is monitored for validation loss, and the 

best-performing model is saved using a checkpointing 

strategy. 

E. Evaluation Metrics Model performance is evaluated 

using: 

• Accuracy, Precision, Recall, F1-Score 

• Confusion Matrix: To understand class-wise 

prediction errors 

• Frame-Level and Video-Level Scores: 

Aggregated predictions at both levels 

 

IV. LIMITATIONS OF PREVIOUS RESEARCH 

Based on your file, I'll create a limitations section for 

the research paper on deepfake detection, following 
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IEEE format and ensuring it's original content without 

plagiarism. 

A. Dataset Constraints 

Most studies utilize limited datasets that fail to 

represent the diversity of real-world deepfake 

generation techniques. As observed in [6] and [12], 

models trained on specific datasets like 

FaceForensics++ demonstrate reduced accuracy when 

evaluated on unseen manipulation methods. This 

dataset bias leads to poor generalization in practical 

applications where novel deepfake algorithms 

continuously emerge. 

B. Computational Efficiency Challenges 

High-performing architectures such as the 

EfficientNet-Vision Transformer fusion [1] and 3D 

CNNs [5] require significant computational resources, 

limiting their deployment on edge devices and real-

time systems. The trade-off between detection 

accuracy and inference speed remains insufficiently 

addressed, with few studies explicitly optimizing for 

resource-constrained environments. 

C. Robustness to Post-Processing 

Current detection methods show diminished 

performance when confronted with common post-

processing operations. Compression artifacts, 

resizing, and filtering techniques can significantly 

reduce detection accuracy. The work in [15] attempted 

to address compression robustness but achieved only 

89.5% accuracy, indicating substantial room for 

improvement in maintaining performance across 

varying media quality levels. 

D. Cross-Domain Applicability 

Many existing approaches are narrowly focused on 

facial manipulation detection, neglecting the broader 

spectrum of deepfake applications including full-body 

synthesis, scene manipulation, and audio-visual 

synchronization issues. The graph-based approach in 

[7] shows promise for facial landmark analysis but 

lacks extensibility to other manipulation types. 

E. Temporal Consistency Analysis 

While some studies [2], [4], [13] incorporate temporal 

features through CNN-LSTM architectures, they 

primarily focus on short-term frame-to-frame 

inconsistencies rather than analyzing global narrative 

coherence across entire videos. This limitation reduces 

effectiveness against sophisticated deepfakes designed 

to maintain short-term temporal consistency. 

F. Adversarial Vulnerability 

The vulnerability of deepfake detection systems to 

adversarial attacks remains largely unaddressed. Most 

approaches in the literature, including the high-

performing models in [3] and [8], have not been 

evaluated against deliberately crafted adversarial 

examples designed to evade detection. 

G. Explainability and Interpretability 

Detection systems frequently operate as black boxes, 

providing binary classification without localizing or 

explaining the specific artifacts that indicate 

manipulation. This limitation, evident in most 

reviewed studies except [15], hinders forensic 

applications where evidence documentation is 

required. 

Addressing these limitations requires integrated 

approaches that combine spatial and temporal analysis 

while maintaining computational efficiency and 

robustness across diverse real-world scenarios. 

V. CONCLUSION 

This research introduces an effective detection system 

for synthetic media authentication that overcomes 

significant challenges present in existing deepfake 

identification technologies. Our methodology 

integrates ResNeXt-50 convolutional networks for 

spatial analysis with Long Short-Term Memory 

architectures for temporal sequence processing, 

establishing a comprehensive detection framework 

capable of handling advanced media synthesis 

techniques. 
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Performance evaluation across established 

benchmarks reveals consistent effectiveness, with our 

dual-pathway architecture maintaining high detection 

reliability on FaceForensics++, DFDC, and Celeb-DF 

datasets. The system achieves practical viability by 

optimizing the balance between processing efficiency 

and identification precision, making it suitable for 

applications requiring immediate content verification. 

Our preprocessing methodology, incorporating 

targeted frame sampling and facial region isolation, 

enhances the model's capacity to detect subtle 

synthetic artifacts while minimizing computational 

demands. The implemented augmentation strategies 

strengthen cross-domain performance, enabling 

identification of novel manipulation techniques not 

encountered during training phases. 

Quantitative analysis confirms the superiority of our 

approach over conventional detection methods, with 

performance indicators consistently surpassing 95% 

accuracy across comprehensive evaluation 

frameworks. The system demonstrates resilience 

against challenging conditions including media 

compression, incomplete facial visibility, and variable 

lighting environments. 

Potential research extensions encompass broadening 

detection scope to include full-body synthetic content, 

integrating audio-visual synchronization analysis, and 

developing adversarial training protocols to strengthen 

resistance against sophisticated evasion strategies. 

Enhanced interpretability through manipulation 

localization visualization would further increase 

forensic application value. 

The continued advancement of synthetic media 

generation necessitates parallel development of 

detection capabilities to preserve content authenticity 

and address broader societal implications of fabricated 

digital media. Our findings demonstrate the viability 

of combined deep learning methodologies in 

addressing the challenge of increasingly convincing 

artificial content, contributing valuable insights to the 

ongoing technological response to synthetic media 

proliferation. 
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