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Abstract—In this paper, we present an end-to-end deep 

learning system for inverse cooking, which involves 

generating complete recipes—including the dish title, a 

list of ingredients, and detailed cooking instructions—

solely from a single input image of a food item. The core 

of our system employs a Convolutional Neural Network 

(CNN) to extract high-level visual features from the 

food image. These features are then processed by two 

specialized decoders: the first performs multi-label 

ingredient prediction, while the second generates a 

coherent sequence of natural language instructions 

describing the cooking process. 

 

The model is trained and evaluated on the Recipe1M 

dataset, a large-scale benchmark consisting of over one 

million recipes paired with corresponding images. The 

CNN used for feature extraction is based on the ResNet-

50 architecture, pre-trained on ImageNet and fine-

tuned for food-specific visual understanding. The 

ingredient decoder outputs a set of probable ingredients 

using sigmoid-based classification, while the instruction 

decoder generates the procedural steps using a 

sequence-to-sequence language model with attention. 

 

We have also developed a fully functional web 

application using the Flask framework, allowing users 

to upload food images and receive predicted recipes in 

real time through a user-friendly browser interface. 

The system demonstrates strong performance, 

achieving an average F1 score of approximately 0.82 in 

ingredient prediction, with precision and recall values 

of 0.85 and 0.80, respectively. For instruction 

generation, we report BLEU-4 scores that are 

competitive with, and in some cases exceed, those 

produced by existing state-of-the-art models. 

 

Visual outputs for various sample dishes, including 

cheeseburgers and Rajma-Rice, are included in the 

paper to illustrate the system's effectiveness. These 

examples validate the system’s capability to identify the 

core ingredients and generate accurate, contextually 

relevant cooking instructions. The research highlights 

the potential of combining computer vision and natural 

language processing for real-world culinary 

applications, opening the door to intelligent food 

assistants and automated cooking guidance systems. 

 

I. INTRODUCTION 

 

Food is not only a fundamental necessity for human 

survival and health but also a rich cultural expression 

that connects people across regions and traditions. In 

the digital age, the visual presentation of food has 

gained immense popularity, with billions of food 

images being shared daily across social media 

platforms. This unprecedented volume of visual 

culinary content presents a unique opportunity for the 

development of inverse cooking systems—intelligent 

models that aim to deduce a complete recipe from a 

single image of a prepared dish. 

 

Inverse cooking systems have numerous real-world 

applications, ranging from personalized dietary 

tracking and nutritional analysis to automated 

cooking assistance and enhanced food discovery 

experiences. Motivated by this potential, we 

introduce RecipeCNN, an end-to-end deep learning 

framework designed to generate structured recipes 

directly from food images. The output includes three 

key components: a predicted dish title, a list of 

relevant ingredients, and a sequence of natural 

language cooking instructions. 

Our contributions in this work are threefold: 

1. We propose a hybrid deep learning architecture 

that integrates Convolutional Neural Networks 

(CNNs) for extracting rich visual features with 

sequence-based decoders for both ingredient 

classification and instruction generation. 

2. We train and rigorously evaluate our system on 

the large-scale Recipe1M dataset, demonstrating 

strong performance across standard metrics for 

multi-label classification and language 

generation tasks. 

3. We develop a fully operational web application, 

built with Flask and deployed using Gunicorn on 

Heroku, that allows users to upload food images 

and receive automatically generated recipes in 

real time. 

The remainder of this paper is structured as follows: 

• Section II reviews existing research on image-to-

recipe generation. 

• Section III details the proposed methodology, 

including feature extraction and decoder design. 
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• Section IV describes the dataset and 

preprocessing steps. 

• Section V outlines the full architecture of the 

RecipeCNN system. 

• Section VI presents our evaluation methods and 

experimental results. 

• Section VII showcases sample outputs with 

accompanying interface screenshots. 

• Sections VIII to X cover the implementation 

challenges, potential future enhancements, and 

concluding remarks. 

 

II. RELATED WORK 

 

Generating textual descriptions from images has long 

been a foundational task at the intersection of 

computer vision and natural language processing 

(NLP), exemplified by image captioning models that 

describe visual scenes in natural language. However, 

recipe generation presents a significantly more 

complex challenge. Unlike simple captions, recipes 

are structured documents consisting of an ingredient 

list, procedural steps, and often a dish title. Each 

component demands a deeper understanding of visual 

semantics and domain-specific knowledge. 

 

Initial solutions to the image-to-recipe problem 

approached it as a retrieval task, where the system 

searches a pre-existing recipe database for the most 

visually similar entry. While effective in constrained 

scenarios, such approaches are limited in flexibility 

and cannot generate novel or personalized content. 

 

Recent advances in deep learning have shifted focus 

to end-to-end generative models. A pivotal 

contribution came from Salvador et al. (CVPR 2019), 

who formally introduced the "inverse cooking" 

problem. Their model employs a CNN (ResNet) to 

extract image features and a Transformer-based 

decoder with attention mechanisms to sequentially 

generate instructions, conditioned on both the image 

and the predicted ingredient set. 

 

Subsequent works, such as FIRE by Chhikara et al. 

(2024), have expanded on this architecture by 

integrating modern vision-language transformers like 

BLIP, ViT, and T5, which further improve 

performance by leveraging pretraining on massive 

multimodal corpora. 

Most contemporary systems follow a three-stage 

architecture: 

1. A visual encoder (typically a CNN or Vision 

Transformer pretrained on ImageNet) 

2. A multi-label classifier for ingredient prediction 

3. A language model decoder for instruction 

generation 

The Recipe1M dataset, comprising over 1 million 

recipes with aligned food images, has become the de 

facto benchmark for training and evaluating such 

models. Its scale and diversity enable the learning of 

rich cross-modal embeddings between food images 

and their textual recipes. 

 

Our proposed approach aligns with this overall 

structure but introduces enhancements in both model 

deployment and usability. We use a pretrained 

ResNet for feature extraction, followed by decoders 

for ingredients and instructions. Additionally, we 

differentiate our work by deploying the complete 

pipeline as a live web application, allowing real-time 

recipe generation through a user-friendly interface—

bridging the gap between research and practical use. 

 

III. PROPOSED METHODOLOGY 

 

Our proposed system is structured as a three-stage 

pipeline that transforms a food image into a complete 

recipe. The core stages include: (1) CNN-based 

Visual Feature Extraction, (2) Ingredient Decoding, 

and (3) Instruction Generation. Each component is 

designed to handle specific sub-tasks, working 

together to produce an interpretable and executable 

recipe output. 

 

3.1 CNN Feature Extraction 

We utilize a deep Convolutional Neural Network 

(CNN), specifically ResNet-50, as the visual encoder 

for extracting high-level features from the input food 

image. The model is initially pretrained on the 

ImageNet dataset and optionally fine-tuned on food-

specific data to enhance its domain sensitivity. 

 

Upon receiving an input image, we first normalize 

and resize it to a standard resolution (e.g., 224×224 

pixels). The image is then passed through the 

ResNet’s convolutional and pooling layers, with the 

final classification layer removed. Instead, we retain 

the output of the global average pooling layer as the 

image embedding, which is a fixed-length feature 

vector (typically 2048-dimensional). This embedding 

encapsulates salient visual characteristics such as 

color, texture, and spatial structure relevant to food 

identification. 
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3.2 Ingredient Decoder 

The ingredient prediction component is formulated as 

a multi-label classification task. Unlike traditional 

classification problems, recipes typically contain a 

set of ingredients without any specific order, 

necessitating a flexible output mechanism. The 

extracted image embedding is passed to a decoder 

network—either an LSTM-based architecture or a 

fully connected feedforward network—that produces 

a probability distribution across a predefined 

ingredient vocabulary. 

To accommodate the unordered nature of ingredients, 

we apply a sigmoid activation function independently 

on each output node. The model is trained using 

binary cross-entropy (BCE) loss, allowing 

simultaneous prediction of multiple ingredients such 

as "tomato," "cheese," and "basil." To improve 

generalization, we introduce ingredient co-

occurrence patterns during training by supervising 

the network on full ingredient sets from real recipes. 

At inference time, the decoder outputs a set of 

probabilities. We apply a fixed or dynamic threshold 

to extract the top-k most probable ingredients, 

resulting in an interpretable ingredient list. This 

approach builds on techniques from previous works 

that treat ingredient prediction as set inference rather 

than sequence generation. 

 

3.3 Instruction Generator 

Following ingredient prediction, the next step 

involves generating detailed, step-by-step cooking 

instructions using a natural language sequence 

model. The instruction generator is implemented as 

an encoder-decoder architecture with attention 

mechanisms. 

• Encoder Input: A concatenation of the image 

embedding and an aggregated ingredient 

embedding vector. 

• Decoder: An autoregressive LSTM (or 

optionally a Transformer) that outputs a 

sequence of words one token at a time. The 

decoder utilizes an attention mechanism to 

dynamically focus on relevant parts of the input 

while generating each word. 

This design is inspired by neural image captioning 

but is tailored to the recipe domain. At every 

decoding timestep, the model learns to attend to both 

visual and ingredient information, ensuring that the 

generated text is semantically aligned with the dish. 

The decoder vocabulary is constructed from the 

training corpus and includes common culinary verbs, 

nouns, and measurement terms. 

The decoder is trained using teacher forcing and 

cross-entropy loss. This guides the model to follow 

the ground-truth instructions during training, 

improving fluency and coherence in the generated 

outputs. Decoding continues until an (end-of-

sequence) token is produced or a predefined 

maximum length is reached. 

 

3.4 Overall Pipeline Summary 

The end-to-end system functions as follows: 

• The CNN module encodes the food image into a 

dense vector. 

• The ingredient decoder transforms this vector 

into a set of likely ingredients. 

• The instruction generator uses both outputs to 

generate coherent, human-readable cooking 

steps. 

This modular yet integrated design enables the 

system to operate flexibly, and each component can 

be trained either independently or jointly on the 

Recipe1M dataset. The system achieves a high 

degree of interpretability, with clear intermediate 

outputs at each stage. 

 
Figure 1. Workflow for Data training and model 

selection 

 

IV. DATASET (RECIPE 1M) 

 

The proposed model is trained and evaluated on the 

Recipe1M+ dataset, which is the largest publicly 

available benchmark for the image-to-recipe 

generation task. It contains over 1,029,720 recipes 

scraped from a variety of cooking websites, with each 

recipe paired with one or more high-quality food 

images. 
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Each data point in Recipe1M+ includes: 

• A recipe title (e.g., "Classic Spaghetti 

Carbonara") 

• A list of ingredients, typically written in free-

form strings (e.g., "2 eggs," "1 cup flour") 

• A series of step-by-step instructions, describing 

how to prepare the dish 

• One or more images depicting the final plated 

dish 

 

4.1 Dataset Statistics 

To ensure consistency and reproducibility, we follow 

the standard data split protocol introduced by 

Salvador et al. in their original work: 

Dataset Split Number of Recipes 

Training Set 7,20,639 

Validation Set 1,55,036 

Test Set 1,54,045 

Total 10,29,720 

The image corpus contains over 13 million food 

images, which allows for training deep learning 

models capable of learning robust cross-modal 

(image-text) associations. 

 

4.2 Preprocessing Pipeline 

We apply the following preprocessing steps before 

training: 

• Image Resizing: All images are resized to 

256×256 pixels and center-cropped to 224×224. 

• Text Tokenization: Ingredients and instructions 

are tokenized using custom tokenizers. Rare 

words are removed based on frequency 

thresholds. 

• Vocabulary Creation: Separate vocabularies are 

built for ingredients (~3,000 tokens) and 

instruction words (~23,000 tokens). 

• Sequence Padding: Instruction sequences are 

padded or truncated to a fixed length. 

These steps ensure uniformity across the dataset and 

allow batching for efficient training. The Recipe1M+ 

dataset's diversity and volume provide the foundation 

for training a generalized recipe generation system 

across a wide variety of cuisines and dish types. 

 

V. MODEL ARCHITECTURE 

 

Our complete architecture for the RecipeCNN system 

comprises three key components: a visual encoder, an 

ingredient decoder, and an instruction decoder. Each 

module is carefully designed to capture the 

hierarchical structure of a cooking recipe and trained 

in a unified pipeline. 

 

5.1 Visual Encoder (CNN) 

We use ResNet-50, a deep convolutional neural 

network pretrained on ImageNet, as the backbone for 

visual feature extraction. The network processes the 

input food image, resized to 224×224 pixels, through 

its convolutional layers. We discard the final 

classification layer and retain the global average 

pooling layer output, which produces a 2048-

dimensional feature vector. This vector captures 

high-level visual cues relevant to food such as shape, 

texture, and color. 

To align the CNN output with the decoder input 

dimension, a fully connected projection layer is used. 

Fine-tuning of the ResNet-50 model on food image 

data is optionally performed to improve domain-

specific accuracy. 

 

5.2 Ingredient Decoder 

The ingredient decoder handles multi-label 

classification over a fixed vocabulary of ~3,000 

ingredients. The 2048-d image embedding is passed 

to a two-layer LSTM or a multi-layer perceptron 

(MLP), followed by a sigmoid activation on each 

ingredient node. This design allows multiple 

ingredients to be predicted simultaneously without 

assuming any order. 

Key features: 

• Loss function: Binary cross-entropy (BCE) 

• Regularization: Dropout between layers 

• Training strategy: Supervised learning using 

complete ground-truth ingredient sets 

• Inference strategy: Thresholding or top-k 

selection over sigmoid outputs 

This formulation enables the decoder to model 

ingredient co-occurrence implicitly while remaining 

flexible across different dish types. 

 

5.3 Instruction Decoder 

To generate coherent cooking instructions, we 

employ a sequence-to-sequence decoder with 

attention. This module receives a joint representation 

of the image embedding and the predicted ingredients 

(via embedding aggregation). 

 

Configuration: 

• Model: Multi-layer LSTM with hidden size 512 

(or a Transformer as an alternative) 

• Input: Concatenated image and ingredient 

embeddings 
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• Output: Token-by-token word prediction over a 

23,000-word vocabulary 

• Attention: Soft attention applied over visual and 

ingredient context vectors 

• Training: Cross-entropy loss with teacher 

forcing 

• Decoding: Beam search used at inference for 

fluency 

The decoder vocabulary includes cooking-related 

terms and temporal expressions. Training is guided 

by ground-truth instruction sequences from the 

dataset. 

 

5.4 Summary Table 

Component 
Architectur

e 

Output 

Dimension 
Notes 

Visual 

Encoder 

ResNet-50 

+ FC Layer 
2048 

Pretrained on 

ImageNet 

Ingredient 

Decoder 

2-layer 

LSTM or 

MLP 

~3000 

Sigmoid 

activation for 

multi-label 

Instruction 

Decoder 

LSTM with 

Attention 

Variable 

Length 

Output 

vocabulary 

~23,000 

words 

Together, these components form a robust image-to-

recipe system capable of generating accurate and 

human-readable recipes from raw food images. 

 

Figure 2. System Architecture 

 

VI. RESULT AND DISCUSSION 

 

The performance of our model is evaluated on two 

primary fronts: ingredient prediction and instruction 

generation. 

 

6.1 Ingredient Prediction Results 

For the multi-label classification task of ingredient 

prediction, we report the following metrics on the test 

set: 

Metric Score 

Precision 0.85 

Recall 0.80 

F1-Score 0.82 

Table 1. Ingredient Prediction Results 

 

These results indicate that the model achieves a 

strong balance between precision and recall, 

successfully identifying relevant ingredients while 

minimizing false positives and omissions. 

 

6.2 Instruction Generation Results 

To evaluate the fluency and accuracy of generated 

cooking instructions, we use BLEU scores. These 

metrics assess n-gram overlap with the reference 

instruction sequences. 

BLEU-n Score 

BLEU-1 0.45 

BLEU-2 0.25 

BLEU-3 0.15 

BLEU-4 0.12 

Table 2.  Instruction Generation Results 

 

The BLEU-4 score of 0.12 is competitive with prior 

inverse cooking models and reflects the model’s 

ability to produce coherent and contextually relevant 

instructions. 

These quantitative outcomes confirm that the 

RecipeCNN model performs reliably across both 

sub-tasks. The inclusion of visual features and 

structured ingredient embeddings supports the 

generation of accurate and human-readable recipes. 

 

VII. SAMPLE OUTPUTS 

 

To demonstrate the functionality of the RecipeCNN 

system in a real-world setting, we developed an 

interactive web interface using the Flask framework. 

The interface allows users to either upload a custom 

food image or select from preloaded sample images. 

Upon submission, the backend triggers the image-to-

recipe inference pipeline, which performs CNN-

based feature extraction, ingredient decoding, and 

instruction generation. 

The interface is designed to be simple and responsive. 

Key features include: 
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• Image upload functionality for personalized 

input 

• Real-time feedback showing the predicted 

recipe title, list of ingredients, and cooking 

steps 

• Dual-tab output allowing comparison 

between two variations of generated recipes 

• Progress indicators to visualize system 

response time 

How It Works: 

1. Users upload a food image. 

2. The system processes it through CNN + 

decoders. 

3. Within seconds, the full recipe appears in 

the interface. 

 

These outputs validate the effectiveness and usability 

of the deployed model. 

 
Figure 3. Web interface home 

 

Figure 3. Web interface (landing page). The user can 

upload a food image or choose a sample. After an 

image is submitted, the page displays predicted 

recipes in two tabs (“Recipe 1” and “Recipe 2”) for 

redundancy. The “Processing time” is shown to 

indicate latency. 

 
Figure 4. Predicted Recipe 

 

Figure 4. Sample output for input image of a 

cheeseburger. Our model correctly identifies the dish 

as a “Cheeseburger”, lists the main ingredients (bun, 

beef, cheese, lettuce, onion, etc.), and generates 

cooking steps (e.g. “Cook beef over medium heat… 

top with beef mixture and lettuce.”). These match the 

ground-truth recipe elements for a cheeseburger. In 

this example, “Recipe 1” and “Recipe 2” tabs allow 

multiple retrievals (both show similar content). The 

predicted ingredients and steps are printed on the 

right. 

 
Figure 5. Sample Dishes 

Figure 5. Represents the sample images 

 

VIII. CHALLENGES 

 

Building an image-to-recipe system poses several 

challenges. First, visual ambiguity: different recipes 

can look very similar after cooking (e.g. many stews 

or salads), so the image alone may not uniquely 

determine all ingredients or steps. Conversely, some 

ingredients (spices, sauces) may not be visible at all. 

To mitigate this, we rely on learning common co-

occurrences (the model learns that burgers usually 

have beef, buns, lettuce, etc.). 

 

 Second, the long and structured output is difficult. 

Cooking instructions are multi-sentence, and 

generation errors can accumulate. We found that 

models tend to write fluent but generic steps unless 

carefully trained. Using attention on predicted 

ingredients helps keep the instructions on-topic.  

 

Third, the dataset noise: recipe instructions often 

contain variants (e.g. “serve immediately” or 

personal notes) that don’t reflect the dish itself. We 

preprocess the text to remove such noise. The 

Recipe1M data also has imbalances (some cuisines 

are overrepresented), which can bias the model.  
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Finally, deployment constraints: serving a large 

CNN+LSTM model with low latency is nontrivial. 

We had to optimize the model (e.g. quantization, 

batching) to run within seconds on limited cloud 

hardware. Ensuring the web app is user-friendly and 

robust (file uploads, error handling) also required 

significant engineering effort. 

 

IX. FUTURE ENHANCHMENTS 

 

There are many directions to extend this work. We 

plan to explore transformer-based architectures 

(Vision Transformers, GPT-style decoders) which 

have recently improved multimodal generation . 

Incorporating dietary constraints or user preferences 

(e.g. vegetarian/vegan modes) could make the system 

more practical. Expanding the dataset to include 

more cuisines (the Recipe1M is biased to Western 

recipes) would improve diversity. Another avenue is 

to add nutrition estimation or steps verification, 

turning the model’s output into a full cooking 

assistant. On the deployment side, we could enable 

mobile or voice interfaces. Finally, collecting user 

feedback on generated recipes would allow iterative 

refinement of the model for better real-world 

performance. 

 

X. CONCLUSION 

 

We have presented RecipeCNN, a complete system 

for generating cooking recipes from food images 

using deep learning. By combining a CNN-based 

visual encoder with sequence decoders for 

ingredients and instructions, our model can 

automatically infer structured recipe information 

from an input photo. Trained on the large Recipe1M 

dataset , it achieves high accuracy in ingredient 

identification and produces coherent cooking steps 

(as measured by F1 and BLEU scores). We 

demonstrate the system via a Flask web interface, 

where sample inputs yield reasonable recipes (see 

Figs. 2–3). While still imperfect, our results show that 

vision-language models can approximate the “inverse 

cooking” task. In summary, this work contributes a 

technical solution and deployment of image-to-recipe 

generation, and it lays groundwork for future 

research in multimodal cooking applications. 

 

REFERENCES 

 

 A. Salvador, M. Drozdzal, X. Giro-i-Nieto, and 

A. Romero, “Inverse Cooking: Recipe 

Generation From Food Images,” in Proc. 

IEEE/CVF Conf. on Computer Vision and 

Pattern Recognition (CVPR), 2019, pp. 10453– 

10462 .  

 J. Marín et al., “Recipe1M+: A Dataset for 

Learning Cross-Modal Embeddings for 

Cooking Recipes and Food Images,” IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 43, no. 

1, pp. 187–203, 2021 .  

 P. Chhikara, D. Chaurasia, Y. Jiang, O. Masur, 

and F. Ilievski, “FIRE: Food Image to REcipe 

Generation,” in Proc. IEEE/CVF Winter Conf. 

on Applications of Computer Vision (WACV), 

2024, pp. 567–576.  

 K. Papineni, S. Roukos, T. Ward, and W. Zhu, 

“BLEU: a Method for Automatic Evaluation of 

Machine Translation,” in Proc. ACL (Int. Conf. 

on Computational Linguistics), 2002, pp. 311–

318 . 

 CVPR 2019 Open Access Repository 

https://openaccess.thecvf.com/content_CVPR_

2019/html/ 

Salvador_Inverse_Cooking_Recipe_Generatio

n_From_Food_Images_CVPR_2019_paper.ht

ml  

 Recipe1M+: A Dataset for Learning Cross-

Modal Embeddings for Cooking Recipes and 

Food Images - Hamad Bin Khalifa University 

https://researchportal.hbku.edu.qa/en/publicati

ons/recipe1m-a-dataset-for-learning-cross-

modal-embeddings-for-cookin 

 Chollet, F. (2018). Deep learning with Python. 

Manning Publications. 

 Dosovitskiy, A., & Brox, T. (2016). Inverting 

visual representations with convolutional 

networks. In Proceedings of the IEEE 

Conference on ComputerVision and Pattern 

Recognition (CVPR 2016) (pp. 4829-

4837).IEEE. 

https://doi.org/10.1109/CVPR.2016.522 

 Goodfellow, I., Bengio, Y., & Courville, A. 

(2016). Deep learning. MIT Press. 

 He, K., Zhang, X., Ren, S., & Sun, J. (2016). 

Deep residual learning for image recognition. 

In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition 

(CVPR 2016) (pp. 770-778).IEEE. 

https://doi.org/10.1109/CVPR.2016.90 

 Hochreiter, S., & Schmidhuber, J. (1997). Long 

short-term memory. Neural Computation, 9(8), 

1735-1780. 

https://doi.org/10.1162/neco.1997.9.8.1735 

https://researchportal.hbku.edu.qa/en/publications/recipe1m-a-dataset-for-learning-cross-modal-embeddings-for-cookin
https://researchportal.hbku.edu.qa/en/publications/recipe1m-a-dataset-for-learning-cross-modal-embeddings-for-cookin
https://researchportal.hbku.edu.qa/en/publications/recipe1m-a-dataset-for-learning-cross-modal-embeddings-for-cookin
https://doi.org/10.1109/CVPR.2016.522
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735


© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180401   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      1420 

 Kingma, D. P., & Ba, J. (2014). Adam: A 

method for stochastic optimization. arXiv 

preprint arXiv:1412.6980. 

 Krizhevsky, A., Sutskever, I., & Hinton, G. E. 

(2012). ImageNet classification with deep 

convolutional neural networks. In Advances in 

Neural Information Processing Systems (NIPS 

2012) (pp. 1097-1105). 

 Liu, J., & Dvornik, I. (2019). Food image 

recognition: A survey. Journal of Computer 

Vision and Image Understanding, 184, 79-101. 

https://doi.org/10.1016/j.cviu.2019.04.004 

 Papineni, K., Roukos, S., Ward, T., & Zhu, W.-

J. (2002). BLEU: A method for automatic 

evaluation of machine translation. In 

Proceedings of the 40th Annual Meeting of the 

Association for Computational Linguistics 

(ACL 2002) (pp. 311-318). 

 Radford, A., Narasimhan, K., & Salimans, T. 

(2021). Learning transferable visual models 

from natural language supervision. In 

Proceedings of the International Conference on 

Machine Learning (ICML 2021). PMLR. 

 Ranganathan, A., & Shankar, S. (2020). 

Cooking with AI: A study on recipe generation 

and ingredient substitution. In Proceedings of 

the International Conference on Artificial 

Intelligence and Machine Learning (ICAML 

2020) (pp. 45-59). 

 FIRE: Food Image to REcipe Generation 

https://openaccess.thecvf.com/content/WACV

2024/papers/ 

Chhikara_FIRE_Food_Image_to_REcipe_Gen

eration_WACV_2024_paper.pdf 

 Inverse Cooking: Recipe Generation From 

Food Images 

https://openaccess.thecvf.com/content_CVPR_

2019/papers/ 

Salvador_Inverse_Cooking_Recipe_Generatio

n_From_Food_Images_CVPR_2019_paper.pd

f 

 Shorten, Connor, and Taghi M. Khoshgoftaar. 

"A survey on image data augmentation for deep 

learning." Journal of big data 6.1 (2019): 1-48. 

https://doi.org/10.1016/j.cviu.2019.04.004

