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Abstract—This study introduces the Adaptive Q-Policy 

for Trading (AQPT), an advanced Deep Reinforcement 

Learning (DRL) algorithm designed to optimize 

algorithmic trading strategies within highly stochastic 

and low-observability market environments. AQPT is 

built on traditional Q-learning frameworks. AQPT 

incorporates enhanced market indicators and a refined 

reward function that emphasizes risk-adjusted returns, 

specifically optimizing the Sharpe ratio to guide 

decision-making. This novel approach enables AQPT to 

adapt dynamically to market shifts, significantly 

improving profitability and risk management relative to 

baseline models. Through simulations and historical 

market data, AQPT was tested against traditional 

trading algorithms, demonstrating notable performance 

gains across key metrics. However, AQPT's limitations 

in high-frequency trading and sensitivity to extreme 

market volatility highlight areas for future 

enhancement. Ongoing research will explore the 

expansion of AQPT into diverse asset classes, including 

commodities and cryptocurrencies, and the integration 

of multi-agent DRL strategies to increase adaptability 

across varied market conditions. 

 

Index Terms—Deep Reinforcement Learning, 

Algorithmic Trading, Adaptive Q-Policy, Trading 

Optimization, Sharpe Ratio, and Risk Management. 

 

I. INTRODUCTION 

 

Recent advances in artificial intelligence (AI) and 

machine learning (ML) have significantly propelled 

the financial technology (FinTech) sector, 

particularly in algorithmic trading, which automates 

trading decisions using quantitative models. 

However, traditional approaches often lack 

adaptability and struggle with market unpredictability 

and risk management, especially in volatile 

environments [33]. Deep Reinforcement Learning 

(DRL) has emerged as a promising solution, enabling 

adaptive trading policies that learn optimal actions 

through continuous market interaction [34]. 

 

Despite this promise, existing DRL models like Deep 

Q-Networks (DQNs) are limited by their finite action 

space and insufficient adaptability to stochastic 

market dynamics. The Trading Deep Q-Network 

(TDQN), introduced in [7], sought to address these 

issues but was constrained by a narrow observation 

space and a simplistic reward structure, limiting its 

effectiveness in high-frequency trading. 

 

To overcome these limitations, this research proposes 

the Adaptive Q-Policy for Trading (AQPT), which 

extends TDQN by incorporating a broader set of 

technical and macroeconomic indicators and an 

advanced reward function to maximize risk-adjusted 

returns. AQPT’s improvements include enhanced 

adaptability to unpredictable market changes [26] and 

a more robust risk management mechanism aligned 

with the Sharpe ratio. 

 

Key contributions are: (1) AQPT integrates diverse 

market indicators and a refined reward structure; (2) 

it adapts dynamically to various market conditions; 

and (3) its performance, evaluated using the Sharpe 

ratio, surpasses traditional and existing DRL-based 

models. 

 

II. RELATED WORK 

 

The application of Deep Reinforcement Learning 

(DRL) in financial markets, particularly for 

algorithmic trading, has seen growing interest due to 

its potential for adaptive decision-making in dynamic 

and uncertain environments. Traditional machine 

learning models, such as Support Vector Machines 

(SVM) [8], Long Short-Term Memory (LSTM) [4] 
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networks, and Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models 

[28], have primarily been used for market forecasting 

and trading strategies. These methods focus on 

predicting market trends or prices but often fall short 

when deployed in real-time trading environments, 

where adaptability and fast response to changing 

market conditions are critical. As such, DRL, 

particularly Deep Q-Learning (DQN), has emerged as 

a promising alternative, enabling trading systems to 

evolve through continuous interaction with market 

data.  

 

Recent DRL-based approaches in algorithmic trading 

highlight both successes and limitations. João 

Carapuço et. [27] demonstrated the application of 

DQN to Forex trading, achieving effective trading 

decisions without relying on forecasting models. The 

financial trading decisions improvement using deep 

Q-learning, using the advanced integrating transfer 

learning into DRL to compensate for limited financial 

data, showing improved performance in diverse 

trading scenarios [29]. A constrained portfolio 

trading system combining DRL with a particle swarm 

optimization algorithm, demonstrating the potential 

for DRL in portfolio management [30]. A multi-asset 

portfolio trading strategy [31] proposed a DQN-based 

model for portfolio trading with a novel discrete 

combinatorial action space, which allowed the agent 

to handle various asset classes effectively. In a 

similar vein, [32] introduced a feature-aware DRL 

model that leverages time-driven features to enhance 

financial signal representation, which allowed the 

model to generalize better across volatile market 

conditions. 

 

Thibaut and Damien Ernst [7] presented their Trading 

Deep Q-Network (TDQN), specifically adapted for 

algorithmic trading. TDQN introduced a risk-

adjusted reward function focused on optimizing the 

Sharpe ratio, a widely accepted metric in finance that 

evaluates the balance between risk and return. 

However, limitations were evident in its restricted 

observation space, primarily limited to historical 

prices, which hindered the model's ability to adapt to 

broader market signals. Additionally, TDQN's 

performance in high-frequency trading settings was 

constrained by its lack of flexibility in handling 

sudden market shifts, an area often highlighted as a 

crucial gap in the literature on DRL-based trading 

models [26]. 

 

A comparative analysis of these approaches 

highlights several challenges in DRL-based trading 

research, shown in Table 1. While many DRL models 

improve trading performance, they often face issues 

with action space limitations, generalization to new 

data, and adaptability to market volatility. 

 

Table 1: Summarizes the methodologies of recent 

DRL applications in algorithmic trading 

Author Methodologies Limitations 

Carapuço et 

al. (2018) 

DQN in Forex 

trading 

Limited to 

Forex trading 

Jeong, Kim 

(2019) 

Transfer 

Learning, DRL 

Dependent on 

pre-existing 

data 

Almahdi, 

Yang 

(2019) 

Particle Swarm, 

Recurrent RL 

Complex 

multi-agent 

setup 

Park et al. 

(2020) 

DQN, Discrete 

Action Space 

Limited to 

high-volume 

stocks 

Lei et al. 

(2020) 

Time-Driven 

DRL Model 

Sensitive to 

overfitting 

Theate , 

Ernst 

(2021) 

TDQN 

Limited 

observation 

space 

  

The Adaptive Q-Policy for Trading (AQPT) 

proposed in this study addresses several gaps 

identified in the literature. Unlike TDQN, AQPT 

incorporates an expanded observation space that 

includes technical and macroeconomic indicators, 

enabling a more comprehensive understanding of 

market conditions. This enhancement allows AQPT 

to adapt dynamically to market changes, aligning its 

decisions with risk management objectives through 

an optimized Sharpe ratio. Additionally, AQPT 

introduces a modified reward structure that 

encourages the agent to prioritize long-term stability 

over short-term gains, a crucial improvement given 

the high-risk nature of financial markets. 

 

The existing literature has laid the groundwork for 

DRL-based algorithmic trading, but the limitations of 

narrow observation spaces, constrained adaptability, 
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and limited risk management strategies underscore 

the need for models like AQPT. By expanding upon 

these research gaps, AQPT contributes a robust 

approach to algorithmic trading that addresses the 

dynamic and high-risk characteristics of financial 

markets. 

 

III. METHODOLOGY 

 

The Adaptive Q-Policy for Trading (AQPT) is 

inspired by the limitations of the Trading Deep Q-

Network (TDQN) and aims to address key challenges 

in algorithmic trading by enhancing the observation 

space and reward structure. AQPT employs a refined 

Deep Q-Learning approach, incorporating a broader 

set of market indicators and advanced reward 

mechanisms for dynamic risk-adjusted trading. The 

following sections outline the foundational 

algorithms, experimental setup, dataset, and 

performance assessment metrics. 

 

A. Base Algorithm 

AQPT is developed as an improvement upon the 

traditional Deep Q-Network (DQN) and its extension, 

TDQN. The base DQN model was originally 

designed to handle discrete action spaces in 

environments like video games and Atari games [3]. 

However, for financial trading, an off-policy 

algorithm capable of managing the stochastic, 

continuous nature of the stock market is necessary. 

TDQN introduced risk-adjusted returns through the 

Sharpe ratio but had a limited observation space and 

struggled with real-time adaptability [7]. Our 

modifications to TDQN focus on extending the 

model's environmental awareness and optimizing its 

reward function for better real-world performance. 

The traditional Deep Q-Network is based on 

reinforcement learning that needs to maximize 

policy. 

𝜋 ∗= ∑𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

 
 

(1) 

Deep Q-Network (DQN) estimates a Q-value through 

Bellman's equation: 

𝑄∗(𝑠, 𝑎) = 𝐸 [𝑅𝑡+1 + 𝛾max
𝑎′

𝑄∗ (𝑠′, 𝑎′) ∣∣
∣ 𝑠, 𝑎 ] (2) 

The Q-values are structured within a comprehensive 

table, serving as a resource for the agent to access the 

Q-values of all potential actions from the current 

state, a process known as exploration. Subsequently, 

the agent can then choose the action with the highest 

Q-value, a strategy referred to as exploitation. While 

effective in a finite space, this approach proves 

insufficient in a stochastic setting with infinite 

combinations. A neural network is used to tackle this 

challenge. 

In this study, the observation space is comprised of 

High, Low, Open, Close, and Volume as the agent's 

environmental state. Subsequent trials will expand 

the observation space to include three technical 

indicators and macroeconomic indicators. These 

indicators encompass MACD, APT, and daily VIX, 

serving as proxies for market volatility and fear, 

while the 10-year T-note acts as a proxy for inflation 

and interest. 

𝑜𝑡(𝑎) = 𝑠𝑡
∈ {High

𝑡
,Low𝑡 ,Open

𝑡
,Close𝑡 ,Volume𝑡} 

(3) 

 

𝑜𝑡(𝑏) = 𝑠𝑡
∈ {FastEMA𝑡 , SlowEMA𝑡 ,VIX𝑡 , 𝑇2𝑌𝑅𝑡} 

(4) 

The initial observations space is shown in reference 

3, and the Subsequent macroeconomic indicators 

observations space is shown in reference 4. 

 

IV. RESULTS 

 

The Adaptive Q-Policy for Trading (AQPT) was 

rigorously evaluated against baseline models, 

including the Trading Deep Q-Network (TDQN) and 

traditional algorithmic trading strategies, using a 

series of simulations across historical stock market 

data from 2016 to 2024. The performance metrics 

focused on risk-adjusted return (Sharpe ratio), 

profitability (annualized return), risk management 

(max drawdown), and downside risk (Sortino ratio). 

This section presents AQPT's results, highlighting its 

performance improvements over the comparative 

models. 

 

A. Performance Overview 

The experimental results demonstrate that AQPT 

outperforms TDQN and traditional trading algorithms 

on key metrics, particularly in terms of the Sharpe 

and Sortino ratios. AQPT achieved a significant 

improvement in risk-adjusted returns, emphasizing its 

ability to generate consistent profitability while 

managing downside risk effectively. The following 
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table summarizes the comparative results across all 

metrics: 

 

Table 2: Performance Comparison of Models - 

Sharpe & Sortino Ratio 

Model Sharpe Ratio Sortino Ratio 

AQPT 1.85 2.10 

TDQN 1.32 1.55 

Mean 

Reversion 
0.98 1.05 

 

Table 3: Performance Comparison of Models - 

Annualized Return & Max Drawdown 

Model 
Annualized (%) 

Max 

Drawdown (%) 

AQPT 24.5 15.2 

TDQN 18.3 20.4 

Mean 

Reversion 
12.7 25.3 

Trend 

Following 
14.8 23.0 

 

AQPT's results are consistent with findings in 

existing research, particularly in improving the 

Sharpe ratio and managing drawdowns [26]. 

However, AQPT advances beyond these models by 

providing a broader observation space and refined 

reward structure, allowing it to achieve greater risk-

adjusted returns and profitability. AQPT's 

experimental results validate its effectiveness in 

optimizing algorithmic trading through enhanced risk 

management and profitability. These findings 

confirm AQPT as a valuable advancement over 

existing DRL-based trading algorithms, with 

potential applications in broader market 

environments.  

 

V. CONCLUSION AND FUTURE SCOPE 

 

The Adaptive Q-Policy for Trading (AQPT) presents 

a significant advancement in the application of Deep 

Reinforcement Learning (DRL) for algorithmic 

trading, particularly in the realm of dynamic and 

unpredictable market environments. By incorporating 

an expanded observation space and a carefully 

engineered reward structure, AQPT has shown 

substantial improvements over traditional models, 

including the Trading Deep Q-Network (TDQN) and 

classical trading strategies.  

 

The experimental results indicate that AQPT 

effectively balances profitability and risk 

management, evidenced by its superior Sharpe and 

Sortino ratios compared to TDQN and baseline 

trading strategies. AQPT's risk-adjusted return, 

driven by the Sharpe ratio, showcases the model's 

ability to minimize drawdowns while achieving high 

profitability. By integrating a broader set of market 

indicators, including technical and macroeconomic 

factors, AQPT offers a more nuanced understanding 

of market dynamics, enabling more strategic 

decision-making under uncertain conditions.  
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