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Abstract—Road infrastructure deterioration is a great 

problem in safety and transportation efficiency in large 

cities. Reactive maintenance approaches that are based 

on tradition have led to increased costs and inefficient 

resource allocation and ultimately result in more road 

accidents. In this paper, the authors discuss the technical 

implementation of the hybrid predictive maintenance 

framework that uses both Long Short-Term Memory 

(LSTM) Networks and Gradient Boosting Machines 

(GBM) to predict early road wear. The system, which 

uses real-time traffic and weather data, produces 

predictive insights that help city planners and 

maintenance teams to make informed decisions; 

A comprehensive hybrid LSTM-GBM model is the result 

of a fully-tuned hyper-parameter process. In this 

application, the results are verified with the help of 

RMSE and R-Squared (R²) metrics in order to ensure the 

highest precision of prediction. The deployment of the 

model as a web-based application is beneficial as its 

municipality infrastructure system integrates easily. The 

dashboard also includes geospatial mapping, real-time 

alerts, and the trend analysis of periodic work on the 

road when there is wear and tear signs inescapable to the 

drivers. 

The experiment findings unambiguously establish that 

the hybrid model outperforms the conventional 

predictive models produced using LSTM, which still has 

a sequential dependency, and GBM, which is further 

processed into predictions. Such a product will enhance 

road safety and reduce long-term maintenance costs 

while becoming a robust, scalable, and data-driven asset 

stewardship framework. The use of reinforcement 

learning, satellite imaging, and autonomous maintenance 

scheduling are the future prospects for the full 

optimization of predictive capabilities. 

This research says that the groundbreaking implications 

of AI-based infrastructure management and the 

necessity of real-time data analytics in smarter urban 

planning are underlined. This result is major headway 

toward a more intelligent, safer, and ecologically sound 

road network assuring the life and activity of assets in a 

growing metropolitan area. 

 

Index Terms—Predictive Maintenance, Road Wear 

Index, LSTM, Gradient Boosting Machine (GBM), 

Infrastructure Analytics, Real-Time Data Processing, 

Smart Cities, Asset Management, Flask API, Dashboard 

Visualization, Time-Series Forecasting, Traffic Analytics, 

Weather Impact Modeling, Hybrid AI Models, Data-

Driven Decision Making.  

 

I. INTRODUCTION 

 

Urban transportation systems are the lifeblood of the 

city’s functionality, particularly since the road 

infrastructure ensures responsible, smooth, and 

continuous mobility. However, the increase in city size 

and traffic density has led to road surfaces being worn 

out and deterioratinsg faster than before. The 

conventional method of road maintenance, usually 

reactive in nature, is based on visual or citizens' 

observations and regularly causes a situation when the 

necessary services are not done in time. This results in 

greater costs to maintain, and the risk of road accidents 

is also raised. 

These drawbacks at the very same time point to the 

necessity for an innovative, proactive, intelligent, and 

data-driven way of road asset management. 

The development in AI, machine learning, and real-

time data processing has created the possibilities for 

the predictive infrastructure maintenance. 

Municipalities can predict road conditions and plan 

maintenance activities in time by using new 

technologies like AI, ML, and real-time data. In this 

study, a novel approach to predictive maintenance that 

is a mix of LSTM time series modeling with GBM 

decision-making techniques was introduced, which 

was capable of learning the time series trends and 

making robust future predictions, simultaneously.  

The proposed system utilizes high-dimensional, time-

sensitive data that is gathered under weather 

conditions and traffic congestion levels such as vehicle 

count, speed variation, congestion levels, as well as 

rainfall, temperature and humidity to approximate a 

Road Wear Index (RWI). It is a project that is created 

through a well-established pipeline that includes data 



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180580 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2187 

cleanup, feature selection, model training, and real-

time deployment via Flask API. The interactive 

dashboard developed with Dash is a part of the key 

components and it is possible to see the trend of road 

wear, be notified instantly and map the road 

geospatially for decision making all through it. 

Performance metrics such as Root Mean Square Error 

(RMSE) and R-Squared (R²) are some of the indicators 

to test the effecriveness of the model. The results have 

indicated the hybrid LSTM-GBM model being not 

only more accurate but also more efficient and reliable 

than the single models, thus giving a better alternative 

for predictive maintenance. Also, the system 

implemented through a web-based platform has 

ensured that the system remains scalable and is easily 

integrated into the city's existing infrastructure system. 

This article underscores the impact of AI on 

infrastructure management and urban planning. The 

authors have demonstrated that a new intelligent and 

safer creative circle through a more sustainable urban 

road network can be set in motion with the unification 

of predictive analytics and real-time monitoring.  

 

II. LITERATURE REVIEW 

 

The application of Artificial Intelligence (AI) and 

Facts Analytics inside the domain of infrastructure 

apex has seen developing interest in both academics 

and industry. Since the expansion and age of city road 

networks increases, traditional reactive renewal 

technology - where interventions are created only after 

deteriorating or damage - you are incapable, 

expensive, expensive and regularly high to save 

injuries or disintegration. To deal with this, researchers 

are actively searching for future protecting fashion that 

can rely on road fall using ancient and real -time 

information input. In the future maintenance, the 

initial study depended primarily on the statistical and 

linear regression models, which was expected to 

decline the road depending on elements such as the age 

of the pavement, the volume of site visitors, and the 

facts of the weather. While being beneficial in the 

managed environment, these models were banned in 

their ability to generalize various avenue types, 

climate, and uses in conditions.  

For example, GBMS has been shown to advance linear 

regression in prediction of maintenance requirements, 

considering the accumulated effects such as recurrent 

heavy truck traffic or sudden environmental changes. 

Parallel to the rise of traditional ML techniques, Deep 

Teaching Methods-It is designed for sequential or 

time-and-rear data-became very relevant in 

infrastructure monitoring. Long short-term memory 

(LSTM) networks, a type of recurrent neural network 

(RNN) have shown great promise in modelling the 

time-based pattern. They can learn from traffic flows, 

temperature variations and history of rainstorm to 

predict future deterioration trends. 

 Some studies have applied LSTM for traffic forecasts, 

weather forecasts and pavement performances 

modelling, which have promising results. However, 

single LSTM or GBM models come with each limit. 

LSTM is very effective for temporal data but can 

underperform when dealing with a material type or 

maintenance history and dealing with tabular features. 

On the contrary, GBMS is best with non-numeric 

inputs but effectively fails to consider the temporal 

mobility.  

As a result, the models of the hybrids connecting both 

techniques emerged as a strong solution. These models 

generally feed the time-and-rear data to the LSTM and 

merge their output with the stable or engineered 

features processed by GBM, resulting in a more 

holistic understanding of the position of the wear. 

While some academic works have invented the Hybrid 

Models Dello, very few people have implemented 

them in real-time, deployable systems. Most study 

models stop on evaluation and do not transition to real-

world applications. 

This highlights at important research interval-while 

the future algorithm is mature, the operation of these 

insight into actionable devices such as real-time 

dashboard, alert and maintenance recommendations 

remain underdeveloped. In addition, many literatures 

focus on national highways or major urban centers, 

which neglects secondary or local roads that are 

equally important but are often under-monitors. There 

is also limited emphasis on route-level granularity, 

which is required for targeted maintenance scheduling 

and resource allocation. Additionally, very little 

studies address the effects of delay in maintenance of 

the integration of phenomena data or the acceleration 

of future road wear. Given these limitations, the 

purpose of our study is to bridge the difference 

between the future modelling and the implementation 

of the real world. We construct a full-stack solution 

and construct on the foundation laid by previous 

research, which not only forecasts the road wearing 
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using the hybrid LSTM + GBM model, but also 

integrates the prediction engine in a real-time 

dashboard. It facilitates the dashboard route-tier 

monitoring, threshold-based alert and active 

maintenance recommendations-thus offering a full 

ecosystem for the future-staging asset stewardship. 

 

III. PROBLEM STATEMENT 

 

The integrity and longevity of the urban road 

infrastructure are central for the functioning of the 

transport network of any city. Roads become the 

backbone of economic activity, emergency services, 

public mobility and logistics. However, these 

important assets are conveyed to constant dynamic 

stresses such as traffic loads, diverse vehicle types, 

rigid environmental conditions, and dynamic stresses 

such as inconsistent maintenance practices. Over time, 

these factors contribute to gradual but compounding 

road fall. If not constantly addressed, this decline leads 

to an accident rate, congestion, low fuel efficiency and 

excessive repair costs. Despite the importance of 

timely road maintenance, many urban administrations 

continue to follow reactive maintenance protocols, 

where the repair work is started only after visual fall - 

such as pit or cracks - form. This reactive model is 

fundamentally flawed as it enhances the possibility of 

infrastructure failure, increases long -term 

maintenance costs, and leaves authorities over the 

minimum lead time to function. In addition, it does not 

provide any forecast capacity for maintenance scheme 

or resource optimization. From a technical point of 

view, several research studies and pilot 

implementation have detected the use of machine 

learning algorithms to predict infrastructure wear. 

However, most of these models are limited to the 

range. They are either trained on static dataset, ignore 

time-series dependence, or fail to include real-time 

updates. While focusing on some completely 

regression accuracy, without considering how the 

model will be deployed, will be interpreted, or used by 

the decision -makers. 

Additionally, user interfaces or alert system deficiency 

provides these solutions non-carvable in real-world 

maintenance scheme workflows. Another significant 

limit in the current body of the work is silent treatment 

of data sources. Road fall is not powered by the same 

factor, but by complex interaction between many 

variables - such as vehicle density, average vehicle 

speed, type of road surface, physical aging, rainfall 

and final maintenance since time. Most future -stating 

framework either does not effectively combine these 

features or fails to model the temporary aspects of road 

use patterns. In addition, real -time data ingestion, 

analysis and visuals remain unspecified or absent in 

existing systems. Consequently, there is a significant 

difference in the deployment of intelligent, scalable 

and fully integrated platforms that provide both 

accurate future compliant analysis and operating 

dashboard for infrastructure plan teams. The purpose 

of this research is to address these important intervals 

and implement a comprehensive future maintenance 

structure which includes the following: Hybrid 

Predictive Modeling: LSTM (long-term short-term 

memory) to handle a novel combination time-series 

data and GBM (gradient boosting machine) to handle, 

to handle, categorized and static variables. This hybrid 

model is designed to capture both short-term 

fluctuations and long-term decline trends. Real-time 

data processing: Integration of streaming or hourly 

data input (traffic load, weather, maintenance log, 

event, etc.) to ensure that predictions reflect the current 

conditions rather than the static historical pattern.  

Interactive dashboard systems: A front-end interface 

for stakeholders, designed to display the root-wise 

wear index, highlight the priority zone, set the 

threshold alert, and imagine performance over time-

capable of taking pre-dated, pre-dated. Scalable and 

deployable architecture: A modular architecture that 

can be scaled in cities and can be compatible with 

various road types, materials, and environment, which 

makes it suitable for both local and regional 

authorities. In summary, the problem is not only the 

absence of a prediction model, but a deficiency of 

practically deployable, real-time, multi-factor and 

explanatory solution that empowers civic bodies to 

transfer active maintenance from reactive repair. This 

task creates such a solution, evaluate its performance 

hardly, and shows real -time integration and its 

protectiveness through visualization tools. 

 

1. System Architecture 

The architecture of the proposed future asset 

stewardship system is designed to enable the ingestion 

of multi-source data, using AI using hybrid predictive 

modeling, and provides actionable insight through an 

interactive dashboard. Architecture consists of six 

integrated layers: data acquisition layer, data 
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processing layer, modeling layer, payment layer, 

alerting and visualization layer and feedback layer. 

Each layer plays an important role in ensuring road 

maintenance and public safety to ensure real -time 

decision making.  

1.1 Data acquisition layer  

This layer serves as the foundation of collecting both 

historical and real -time data. This collects data from 

the following major sources:  

Traffic data: vehicle count, vehicle type (car, truck), 

and 11 important COEP flyover routes include average 

speed on the routes. 

Weather data: Rainfall (mm) covers parameters such 

as temperature (° C), and humidity (%). 

Road maintenance records: Final maintenance dates, 

content types, road age and road types provide 

information.  

Report of the incident: Previous incidents and 

accidents on specific routes include calculations. The 

data is collected at an hour, daily and monthly intervals 

to catch both short-term fluctuations and long-term 

wear patterns. 

1.2 data processing layer  

This layer ensures the quality and readiness of data for 

analysis. It performs: 

Data cleaning: removing discrepancies, handling 

missing values.  

Feature Engineering: The construction of derivative 

features such as final maintenance time, seasonal 

tagging (eg, summer, rain), and root risk score. 

Dataset partitions: Simulation data is used to generate 

different training (one year) and test dataset, ensuring 

realistic future prediction without data leakage. 

1.3 Modeling layer  

The system includes a hybrid model:  

LSTM (long short -term memory): Capture temporary 

dependence and pattern in sequential traffic and 

weather data. 

GBM (gradient boosting machine): Static or less 

gradual features such as material types, road age and 

route characteristics. These models are trained 

independently and then their output is fused in a post-

modeling phase to generate a broad road wear index.  

1.4 Prediction layer  

This layer produces a predictive output:  

The road wear index for each route produces daily and 

monthly. 

 Predictions are updated as new data flows to ensure 

real -time accuracy.  

The system identifies the routes at risk of fall or 

potential accidents. 

 Feature Scaling: standardization using Z-score 

generalization to align input for both LSTM and GBM 

models.  

 
Figure1. System Architecture 

 

1.5 Alerting and visualization layer  

This layer through interfaces with end-use (city 

planners, maintenance teams):  

Dashboard (developed using power BI and/or dash) 

that perform: Status of hour, daily and monthly route.  

Predicted the index of wearing across the routes. 

Priority, the route-wise priority using the severity 

score. Circumstances of risky areas, trends and maps. 

Threshold-based alerts: automated alerts produce 

when the wear indexes cross pre-defined safety 

boundaries, which enable pre-refractions. 

 

2. Data Collection 

The foundation of our Predictive Road Wear 

Monitoring System is a strong and diverse dataset that 

simulates the situation of real -world traffic, weather 

and road maintenance. The data collection was 

planned to carefully cover several variables that 
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greatly affect the road wearing with time. Dataset 

includes both real -time and historical data, which are 

classified into different dimensions.  

2.1 Traffic Data:  

This includes the number of vehicles per hour, which 

is classified by vehicle types such as cars, trucks and 

heavy vehicles. The dataset also records the speed of 

the average vehicle on each route. These parameters 

are important because vehicle load and speed patterns 

directly affect road surface erosion.  

2.2Weather data: 

 Environmental factors such as rain (in mm), 

temperature (° C), and humidity (in %) were included 

to simulate the impact of climatic conditions on road 

longevity. Rainfall, especially, pairs with heavy 

vehicle movement increases the road wearing. 

Maintenance records: The dataset covers the last 

maintenance date for each route and the type of 

materials used for road construction. Additionally, 

road age (over years) is involved to assess the decline 

over time and assess its effect on the need for 

maintenance. incident report: The counting of the 

incident, including a minor and major road incidents, 

was tracked. 

 These serve as an indicator of the deteriorating road 

conditions, indirectly supporting the future model by 

correlating the situation of the bad road with high 

phenomenon rates. Route and time metadata: The data 

has been tagged with date and time values, and tagged 

with specific routes to enable time-series analysis and 

passage-wise predictable insights. A total of 11 

different routes were considered, following both urban 

and semi-urban traffic patterns. 

The dataset was mainly designed and managed using 

Excel, ensuring manual control over each simulation 

variable. For machine learning model training and 

evaluation, data was separated in training and testing 

sets. While the training dataset covered seasonal 

extreme (rainy and sunny months) in a year, the test 

dataset had a separate simulation in a different year for 

fair performance evaluation in the dataset.  

This diverse and polymorphic dataset enables us to 

effectively train a hybrid LSTM + GBM model to 

predict the road wearing patterns and trigger proactive 

maintenance alerts, aimed at reducing the possibility 

of road accidents and adaptation of asset management. 

 

 

 

3. Data Preprocessing 

Effective machine learning model is an important step 

in preparing raw data collected for training. For this 

project, we followed a structured approach to clean, 

replace and format the dataset, ensuring that both 

LSTM and GBM models received the optimal input to 

learn. 

3.1 Handling missing values: 

The dataset was manually cured, but the simulated 

gaps were introduced to mimic the real -world 

landscapes where the sensor data could be unavailable. 

Further-fill and projected techniques were 

implemented to apply missing weather or traffic values 

where necessary. 

3.2 Feature Engineering: 

The derivative features were created to enrich the 

dataset and highlight complex relations. For example: 

Vehicle load index = weighted score of vehicle count 

(gives overweight to trucks and buses). 

Road stress score = combination of road age, recent 

maintenance and vehicle count. 

Climate Effect Index = Humidity, rainfall and rapid 

score of ups and downs in temperature. 

3.3 Encoding classified variables: 

The route and material type columns were encoded in 

numerical formats. Label encoding was used for root 

ID (as they are gradual in terms of monitoring) and a-

hot encoding was used to preserve the category of 

relationships for material types. 

3.4 Time-series format for LSTM: 

Since the LSTM model requires sequential data, the 

dataset was converted into a 3D format with 

dimensions [samples, timesteps, features]. The data of 

each route was converted into time windows per 

hour/daily variations to enable temporary pattern 

recognition by the LSTM model. 

3.5 Feature Scaling: 

To bring all the facilities into a uniform range and to 

speed up convergence during model training: 

Z-score standardization (mean = 0, STD = 1) was 

applied to all continuous features (eg, speed, 

temperature, temperature). 

This preprocessing pipeline enabled the manufacture 

of high quality, structured inputs for both models-

LSTM and engineer to learn from engineer facilities 

and stable variables to capture the traffic-visitor 

pattern. Clean and converted data ensured high 

reliability and accuracy during model estimate and 

dashboard integration. 
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4. Feature Engineering 

Facility Engineering plays a key role in increasing the 

influence of prediction models by creating new input 

variables that acquire important patterns in raw data. 

In this project, we have formed a hybrid facility set that 

combines the Domain J Knowledge, environmental 

conditions, traffic behavior and infrastructure to 

improve the forecasts of road wear on various routes. 

4.1 Derived Traffic Features 

To better understand the stress on the roads, we 

calculated the matrix that captures the effect of 

different vehicles:  

Vehicle Load Index (VLI): 

VLI = (Cars/Bikes ×1) + (Buses/Trucks ×3) 

These indexes weigh more significantly to heavy 

vehicles, as they contribute more to the degeneration 

of the road.  

Average vehicle density:  

The number of vehicles per normal hour by the length 

of the road (if available or assumed uniforms) is useful 

for comparing the intensity of high vs traffic.  

4.2 Weather -based stress features 

 Weather conditions can accelerate road damage, 

especially in areas with tropical or monsoon -filled 

areas like Pune. We Engineered:  

Climate effect score: Combined score obtained from 

temperature variations, rainfall intensity and humidity 

levels.  

Rain deviation: Steps to how daily rainfall is different 

from the long -term average of the route to flag the 

unusual climatic events that can affect the integrity of 

the road. 

4.3 Maintenance -driven Predictors 

Historical Maintenance Records was transformed into 

quantifiable inputs:  

Time after last maintenance (days): Originated from 

the current date and the last maintenance date of 

recorded. 

 Road Age Factor: Helps to find deteriorating roads 

that have not been serviced recently. 

Road Age Factor= Age of Road (Years)/ Time Since 

Last Maintenance 

4.4 Route-level and specific features  

Encoded Route ID: 

 Each route is assigned a unique ID that is label-

encoded to track the route-specific pattern. Material 

flexibility rating (MR):  

The material was assigned the durability score (eg, 

concrete = 0.9, asphalt = 0.7) to estimate the resistance 

of wear over time. 

4.5 Incident correlation features 

Event frequency rate: 

 Incidents of 1000 vehicles per 1000 - are used to 

connect road conditions with the possibility of 

accident.  

Event wearing score:  

Counting of the event and the age of the road to 

prioritize risky areas. 

 

5. Model Selection and Justification 

The main objective of this project was to develop a 

highly accurate, time-comprehensive future system to 

assess the road wear index in many routes. Given the 

complexity of the data, a mixture of instant (time-

series) and classified/stable features-a hybrid model 

approach was adopted to take the best advantage of 

many algorithms’ strength. 

5.1 Hybrid Model Architecture: LSTM + Gradient 

Boosting Machine (GBM) 

To address the specific nature of a dataset, we designed 

a hybrid model that adds: 

Long short-term memory (LSTM) to capture 

temporary dependence in traffic and weather 

conditions over time. 

Gradient Boosting Machine (GBM) for modeling such 

as road types, materials, phenomena calculations and 

maintenance history. 

5.2 Justification for model options 

LSTM (Long short -term memory) 

LSTM is a type of recurrent neural network (RNN) 

known for learning long-term dependence in time-

series data. 

Over time, vehicle flow, rainfall and ideal for 

capturing trends in road fall. 

Able to manage the missing shield problem, it is well 

suited to sequences such as per hour or daily comments 

in months. 

 

GBM (Gradient Boosting Machine) 

GBM is a powerful attire method that produces models 

in a stage-wise fashion by reducing predicted errors. 

Effective in handling asymmetrical tabular data (eg, 

road type, maintenance history, materials). 

In cases, Excel where feature interactions and non-

lectured relations play an important role-which is a 
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matter of deteriorating road due to complex interaction 

between traffic, weather and infrastructure. 

5.3 Integration strategy 

LSTM processes Temporal features to the first (eg, 

historical traffic and weather conditions) and produces 

a learned representation. 

This output is included with static or relevant features 

(eg, material type, final maintenance date) and passed 

to the GBM model. 

This hybrid stacking architecture ensures that both 

time-elastic patterns and non-time-free indicators are 

effectively captured. 

5.4 Benefits of hybrid model 

Better accuracy: Each model compensates for other 

boundaries. 

Normally: Better performance in different routes with 

different conditions. 

Lecturer: GBM feature allows for importance 

extraction, while the LSTM model traffic-weather 

mobility. 

5.5 Alternative model considered 

Arima and Prophet were considered, but there was a 

lack of ability to include complex multi-commercial 

features. 

Standalone LSTM or GBM model was tested, but 

inferior results were produced compared to hybrid 

design. 

 

6.  Model Development 

The development of the predictive model was a multi-

phase process involving the implementation, training, 

and fine-tuning of a hybrid LSTM + GBM model. The 

model was designed to utilize both temporal sequences 

and non-temporal contextual features to predict the 

Road Wear Index across 11 different routes, using 

historical data from traffic, weather, and maintenance 

records. 

6.1 Input Design and Data Structuring 

The input dataset consisted of 29 engineered features, 

including: 

Time-series features: vehicle count, cars, trucks, 

average speed, rainfall (mm), temperature (°C), 

humidity (%) 

Static/contextual features: route ID, road type, 

material type, incident count, last maintenance date, 

age of road 

Data was reshaped for LSTM input as 3D arrays with 

shape (samples, time steps, features). 

6.2 LSTM Model Construction 

Purpose: To capture trends and temporal dependencies 

in traffic and weather patterns. 

Configuration: 

Input Layer: Time-series features 

Hidden Layers: 2 LSTM layers with dropout 

Output Layer: Dense layer producing intermediate 

features 

Hyperparameters: 

Epochs: 50 

Batch Size: 64 

Optimizer: Adam 

Loss: MSE (Mean Squared Error) 

The LSTM model generated sequence-based 

embeddings, which were used as inputs for the second-

stage GBM model. 

6.3 GBM Model Construction 

Purpose: To learn relationships between static features 

and the target (Road Wear Index). 

Algorithm: XGBoost implementation of Gradient 

Boosting. 

Features used: Output from LSTM + contextual 

features like road type, incident count, material type, 

etc. 

Hyperparameters: 

Learning rate: 0.1 

Max depth: 3 

Estimators: 100 

Output: Final predicted Road Wear Index for each 

route and time period. 

6.4 Training Strategy 

The model was trained on 12 months of simulated 

data, including rainy (August) and sunny (May) 

seasons to ensure diverse conditions. 

Separate files were used for training and testing data 

to avoid leakage and maintain real-time forecasting 

accuracy. 

Model performance was monitored using metrics like: 

Mean Absolute Error (MAE) 

Root Mean Squared Error (RMSE) 

R² Score (for variance explanation) 

6.5 Model Checkpoints and Logging 

Checkpoints were used during LSTM training to save 

best weights. 

Logs were maintained for: 

Training vs Validation loss 

Performance comparisons of different hyperparameter 

configurations 

Predictions vs Actuals for testing dataset 
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This development phase concluded with a fully trained 

hybrid model 

 

7. Model Training and Hyperparameter Tuning 

To ensure the strong and accurate prediction of the 

road wear, we developed two models and performed 

fine tune: Gradient Boosting Machine (GBM) and a 

long short-term memory (LSTM) neural network. 

Each model was trained individually, followed by a 

hybrid approach that combined their strength. 

7.1 Data Preparation for Model Training 

Prior to training, data passes through pre -processing 

stages to ensure stability and model compatibility. This 

includes: 

Cleaning column names and forming data types 

Encoding the classified features using label encoding. 

Scale using min-max generalization. 

Model Evaluation and Performance Metrics 

Feature-target separation was then performed by 

isolating the Wear_Index column as the target variable, 

while the remaining columns were used as input 

features. 

from sklearn.model_selection import train_test_split 

X = train_data.drop('Wear_Index', axis=1) 

y = train_data['Wear_Index'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

7.2 Gradient Boosting Machine (GBM) Model 

The GBM model decision is a powerful dress method 

based on trees. This is conducted by the training model 

sequentially to fix the errors of the previous ones. It is 

particularly effective for structured data and is capable 

of capturing non-lectured patterns without the need of 

large versions of data. 

Key hyperparameters that were tuned include: 

n_estimators: Number of boosting stages (trees). 

learning_rate: Controls the contribution of each tree. 

max_depth: Maximum depth of individual trees. 

Model training: 

from sklearn.ensemble import 

GradientBoostingRegressor 

gbm_model = GradientBoostingRegressor( 

    n_estimators=100, 

    learning_rate=0.1, 

    max_depth=3, 

    random_state=42 

) 

gbm_model.fit(X_train, y_train) 

Hyperparameter tuning was carried out manually and 

iteratively to avoid overfitting and achieve a balance 

between bias and variance. 

7.3 LSTM Neural Network 

LSTM is a type of recurrent nervous network (RNN) 

that is favorable for sequence predicting problems. In 

our case, LSTM was used to modeling temporary 

dependence between traffic flows, weather conditions 

and road material lifespan, which develop over time. 

Before feeding data into the LSTM, it was reshaped 

into a 3D structure as required: [samples, time_steps, 

features]. 

import numpy as np 

X_lstm = 

X.values.astype(np.float32).reshape(X.shape[0], 1, 

X.shape[1]) 

The architecture of the LSTM model included: 

One LSTM layer with 100 units to capture sequential 

patterns. 

A Dropout layer to prevent overfitting. 

A Dense layer to produce the final prediction. 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM, Dense, 

Dropout 

stm_model = Sequential([ 

    LSTM(100, input_shape=(X_lstm.shape[1], 

X_lstm.shape[2])), 

    Dropout(0.2), 

    Dense(1) 

]) 

lstm_model.compile(optimizer='adam', 

loss='mean_squared_error') 

lstm_model.fit(X_lstm, y, epochs=50, batch_size=64) 

Epochs and batch size were chosen through trial runs 

to ensure convergence without significant overfitting 

or underfitting. 

7.4 Hybrid Model: Combining GBM and LSTM 

To take advantage of the strength of both models, we 

created a hybrid dress by combining predictions from 

GBM and LSTM. The purpose of this approach is to 

balance: 

Explain and accuracy of GBM with LSTM sequence 

modeling capabilities. Two strategies were considered: 

Average: Simple average of predictions from both 

models. 

Weighted fusion: Giving different weight to each 

model depending on their credibility. 
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The ensemble method improves prediction robustness 

and can help mitigate the limitations of individual 

models. 

# Example: Weighted Ensemble 

final_prediction = 0.6 * lstm_preds + 0.4 * gbm_preds 

Weight values were empirically adjusted based on 

validation performance. 

7.5 Saving Models for Deployment 

To support deployment in a real-time dashboard, all 

trained models and preprocessing tools (label encoder, 

scaler) were serialized and saved: 

import joblib 

lstm_model.save('road_wear_lstm_model.h5') 

joblib.dump(gbm_model, 

'road_wear_gbm_model.pkl') 

joblib.dump(scaler, 'scaler.pkl') 

joblib.dump(le, 'label_encoder.pkl') 

This ensured smooth integration with frontend systems 

for live road wear prediction and alert generation. 

 

8. Model Evaluation and Performance Metrics 

To evaluate the effectiveness of our future stating 

structure for forecasting the road wear index, we 

adopted a hybrid modeling approach by mixing long 

short -term memory (LSTM) network and gradient 

boosting machines (GBM). This section data is 

detailed on preprocessing, model training, individual 

model performance and joint hybrid model 

assessment. 

8.1 Data Loading and Preprocessing 

The merged dataset was first cleaned to address 

column formatting issues. In column names, additional 

spaces (eg, 'Incident_Count') and Missed header (eg, 

'average_temperature ((° c) _x') were corrected. 

All relevant numerical columns-traffic counts, vehicle 

weight, environmental factors, and infrastructure 

characteristics, including-were competent with 

forcibly enabled to handle-nutritious values with 

Pd.to_numeric, enabled to handle non-numeric values. 

8.2 Feature Normalization 

We applied MinMaxScaler to normalize all continuous 

features in range [0, 1]. This ensured optimal training 

convergence, especially for LSTM models, which is 

sensitive to the magnitude of input. The same scaling 

was continuously implemented in training and test 

dataset. 

8.3 Train-Test splitting 

The target variable Wear_index was separated from 

input features. Using 80–20 train-test split 

(randam_state = 42), we ensured reproducibility in all 

model assessments. This partition strategy was equally 

used for LSTM, GBM and hybrid models. 

8.4 Individual Model Architectures 

LSTM Model 

The LSTM model was designed using the Keras API 

with the following structure: 

Input Shape: Reshaped to (samples, 1, features) 

LSTM Layer: 100 units 

Dropout Layer: 20% dropout 

Dense Layer: 1 neuron for regression output 

It was compiled using the Adam optimizer and trained 

on mean_squared_error for 50 epochs with a batch size 

of 64. The trained model was saved to 

road_wear_lstm_model.h5. 

GBM Model 

We used GradientBoostingRegressor with: 

n_estimators = 100 

learning_rate = 0.1 

max_depth = 3 

This model was trained on the same training set and 

evaluated using the identical test set. 

8.5 Hybrid Model Strategy 

The hybrid model was designed to leverage the 

strengths of both LSTM and GBM. The final 

prediction was computed by averaging the outputs of 

both models using simple arithmetic mean: 

Hybrid Prediction=1/2(LSTM Prediction+ GBM 

Prediction) 

8.6 Evaluation Metrics 

Mean Absolute Error (MAE) was selected as the 

primary metric, given its interpretability in regression 

contexts. 

Model Mean Absolute Error (MAE) 

LSTM 545.79 

GBM 8.17 

Hybrid 7.94 

LSTM showed high error due to its complexity and the 

tabular nature of the data. 

GBM demonstrated strong performance with a low 

MAE of 8.17. 

Hybrid Model slightly outperformed GBM, achieving 

the lowest MAE of 7.94, indicating a more robust 

prediction by combining deep learning and ensemble 

methods. 

8.7 Visualization 

A comparative visualization was plotted using 

matplotlib to compare actual vs. predicted road wear 

indices across models. The hybrid predictions 
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followed the actual values more closely than either 

individual model, with fewer large deviations. 

The results of the assessment strongly suggests that 

while GBM is highly effective on structured tabular 

data, its forecast can be further enhanced when 

combined with deep learning models such as LSTM. 

The hybrid model's lowest MAE indicates its potential 

for real-world deployment in predictive road 

maintenance systems, offering accurate and reliable 

forecasts. 

 
 

9. Model Deployment  

Successful training and evaluation of hybrid models 

required a efficient deployment mechanism to serve 

predictive in real time and integrated with downstream 

systems such as dashboard, alert mechanisms or city 

maintenance platforms. For this purpose, we employed 

an API for the service of model predictions on HTTP, 

employed a mild python web framework, flask. 

9.1 Deployment Objectives 

The deployment strategy was designed with the 

following goals: 

Real time prediction: Enable the prediction of wearing 

roads on real -time data. 

System integration: Allow integration with web-based 

dashboards, alerting systems and other applications, 

which through restful API &Points. 

Modular Design: Provide flexibility to update the 

model without re -design API. 

Scalability and Maintainability: Design a production-

friendly and easily expandable codebase for future 

model versions.  

9.2 API Architecture and Workflow 

The flask API was designed to load both LSTM and 

GBM models, prepares upcoming input data, predict 

hybrid, and return the output in a structured JSON 

format. Architectural Workflow is mentioned below: 

9.2.1 Model Loading: 

The GBM model was loaded using jblib.load 

('GBM_MODEL.PKL'). 

The LSTM model was loaded using 

keras.Models.load_Model 

('Road_Wear_LSTM_MODEL.H5'). 

Minmaxscaler used during training was also loaded to 

ensure frequent convenience scaling. 

9.2.2 Request handling: 

The prediction route accepts post requests with new 

route-specific input data in JSON format. 

Example input: traffic count, weather details, road age, 

date of maintenance, etc. 

9.2.3 Data Preprocessing: 

Input JSON converts to a dataframe. 

Numeric typecasting is applied. 

Feature normalization is done using a pre -fitted 

MinMaxScaler. 

The LSTM input is reshaped to 3D as required 

((samples, timesteps, features)). 

9.2.4 Prediction generation: 

Predictions are obtained from both models: 

lstm_pred = lstm_Model.predict (Reshaped_Data) 
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GBM_PRED = GBM_MODEL.Predict (scled_data) 

Hybrid_pred = (lstm_pred.flatten () + gbm_pred) / 2 

The final hybrid prediction is returned as an API 

response. 

9.2.5 API Response: 

The result is back in JSON format: 

9.3 Integration with dashboard and alerting system 

Flask API & endPoint was integrated with a dashboard 

interface (eg, power BI, streamlight, or dash) that 

imagines: 

Real-time wear index per route 

Historical vs. forecast comparison 

Alert for road classes near Maintenance Threshold 

The API was also configured to trigger trigger 

notifications (email or SMS) when predicted road 

wear index exceeded a significant range, ensuring 

proactive infrastructure management. 

9.4 Deployment environment 

Server: Localhost for development; Deployment for 

cloud hosting-Taiyar (eg, AWS EC2 or Heroku) 

Port: API serves Port 5000 

Security: CORS capable of dashboard 

communication; Production certification includes 

certification and HTTPS. 

The flask-based deployment pipeline successfully 

eliminated the gap between model growth and 

operating utility. By highlighting models' predictions 

through a restful API, the system enables real -time, 

scalable and spontaneous integration with 

visualization platforms and maintenance decision 

systems. This deployment strategy gives an example 

of the practical utility of the machine learning model 

in the smart city infrastructure monitoring and the 

prepaid asset management. 

 

10. Dashboard Development and Visualization 

The dashboard hybrid is an important component of 

the predictive maintenance system, serving as a visual 

and analytical layer that bridges the difference 

between the future -fashioned model output and real -

world decision making. This has been developed not 

only to display the Road Wear Index (RWI) values, but 

also to provide a broad, real -time interface for road 

maintenance officers to monitor and react to road 

conditions in various routes in the city. This dashboard 

brings several data currents together - including 

weather, traffic, and road wear predictions - in a single 

consistent platform that aids active maintenance plan 

and resource allocation. The development of the 

dashboard was directed by two main objectives: first, 

to provide a spontaneous and accessible interface to 

technical and non-technical stakeholders; And 

secondly, to ensure that models from LSTM and GBM 

models turn out to output actionable insights that can 

support timely maintenance tasks. Using HTML, CSS 

(with tailwind framework), and using a JavaScript for 

frontend rendering, the dashboard interfaces with a 

flask-based backend that handles API communication 

and serves the real-time output of the prediction 

model. The dynamic capabilities of the JavaScript 

were used to bring new predictions from the backend 

and update various visual components on the interface. 

The core Road Wear Index (RWI) of the dashboard has 

a real -time performance. This index, which is 

predicted by the hybrid model, is dynamically updated 

and is shown prominently on the dashboard. 

 

RWI severity is color-coded based on threshold: for 

example, the green indicates normal conditions, 

yellow suggestions to wear medium, and the red 

indicates the level of important wear to which 

demands immediate attention. This allows color-coded 

visual cue users to immediately interpret the road 

status without the need for depth technical knowledge. 

 In addition to the RWI display, the dashboard covers 

root-specific analytics. Users can select a special 

passage from the dropdown menu, on which the 

dashboard updates all relevant charts and matrix for 

the specific passage. This functionality is essential for 

road network management, where each route may 

have separate traffic intensity, construction materials 

or environmental risk, and thus may have a unique 

wear pattern. 

 To provide a temporary reference to predictions, the 

dashboard contains time-series charts that conspire 

various time limitations, such as per hour, daily or 

weekly intervals such as RWI values. These charts 

help identify the trends of wearing and detect a sudden 

decline period, allowing engineers to estimate issues 

instead of reacting to them after the damage. 

Additionally, another chart current day wear level 

versus presents a side-by-side comparison of the 

previous day's wear, offering a direct view of whether 

the road conditions are improving or deteriorating.  

Complementing road wear data, the dashboard 

integrates live weather and traffic information, 

including temperature, humidity, rainfall levels, 

vehicles count and types of vehicles (car, trucks, etc.). 
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These matrics are displayed in the summary card and 

updated in real time. Their presence is not only 

informative; They are involved to show the 

relationship between external conditions and the rate 

of road deterioration. For example, the increase in 

truck volume or rainfall may be reflected in an uptick 

in the immediate wear index. 

 

 Another major element of dashboard is maintenance 

suggestion module. The feature analyzes an estimated 

RWI against predetermined security and 

demonstration threshold. When the wear index crosses 

a certain range-for example, the system above 7 on the 

10-point scale automatically produces a maintenance 

alert. In alerts are shown visually on the dashboard and 

designed to draw attention through color changes or 

blinking animations. In addition, the routes with 

significant wear conditions are highlighted 

automatically, making it easier for road engineers to 

prefer maintenance scheduling. 

 The visualization capabilities of the dashboard are 

mainly operated by Chart.JS, a powerful and flexible 

JavaScript charting library. It enables highly 

interactive and responsible graphs, which can easily 

handle the data updates continuously without the 

requirement of page reload. Behind the curtain, the 

dashboard requests the prediction data updated from 

the flask API from time to time, which provides results 

from the hybrid LSTM + GBM model. This setup 

ensures a spontaneous and low-lonely flow of 

information from data input to actionable insight.  

 

The set of this dashboard is not only its visual design, 

but also its functional depth. This does not only display 

static predictions; Instead, it continuously interacts 

with live input, adopts visualization based on the path 

and time, and automates the alert system to reduce 

human dependence. It has been structured to ensure 

that real -time model outputs can directly support the 

decision -making workflows of city planners, 

engineers and road maintenance teams. 

Finally, the dashboard plays an important role in 

translating a complex output of machine learning 

models into an operating tool for maintenance of 

infrastructure. The integration of real -time season and 

traffic data with future stating analytics enables it to 

act as a wise monitoring system. This system does not 

only show the current situation of road wear - it 

empowers users to predict the probable failures, plan 

intervention and eventually reduce the risk of 

accidents to facilitate timely repair. This is a good 

example of how AI and data visualization, when 

effectively brought together, can be smart, safe and 

more cost-skilled urban structure management. 

 

11.  Challenges Faced and Mitigation Strategies 

Throughout the development of the forecasting wear 

monitoring system and its visualization dashboard, 

many technical and operational challenges faced. One 

of the primary issues of the weather API's real-time 

data and the primary issues of integrating into the 

dashboard without delaying simulated traffic feeds. 

Real-time systems demand a high level of response, 

and can mislead any leg users in bringing or updating 

data or disrupt the forecast flow. To reduce this, 

asynchronous programming techniques were applied 

using Javascript's async/await mechanism, allowing 

background data when the user responded. Loading 

indicators and placeholder values were presented to 

handle any temporary data recovery delay. 

 Another major challenge was to synchronize the 

forecast output from the hybrid LSTM + GBM model, 

with continuous updating real-time input data. The 

displayed Road VIAR Index (RWI) reflected the latest 

traffic, weather and maintenance inputs. All of these 

incoming data were accomplished by ensuring 

compatible timestamp configuration in streams and 

model input pipelines. Flask API was always modified 

to return predictions corresponding to recent data 

records, thus ensuring consistent and real-time 

visualization updates. 

 

The design of a dashboard with user -friendly yet 

information created another problem. The goal was to 

display various parameters such as temperature, 

humidity, traffic volume, RWI forecast and warning 

level, within a single interface without the user. To 

address this, a modular and grid-based layout was 

adopted using Tailwind CSS. Components such as 

compressed cards, live-updating graphs and dropdown 

menus were still applied to separate information from 

the hierarchy to maintain accession. The design 

approach also created a dashboard scalable, which 

allowed the adding new features to the full interface 

without redesigning.  

The definition of accurate threshold for warning was 

also a challenge. There is no standard scale for the 

intensity of RWI, so carefully analyzing how to raise 
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alerts or indicate maintenance intervention is 

necessary. This issue was reduced by studying 

Historical RWI distributions and applying a percentile-

based threshold-20% of the values of the top as 

complex wear. These thresholds were validated using 

past maintenance records to ensure that they 

correspond to the views of real-world road waste. 

 In addition, testing the dashboard under different 

combinations of environmental and traffic conditions 

caused a combined explosion of the test cases. It was 

not possible to imitate each view directly from real-

time feeds. Therefore, synthetic data generation 

techniques were working to make test cases to 

represent extreme and edge views such as high 

rainfall, or high humidity and old road temperatures. 

The cases of these tests were then executed by the 

dashboard to test the strength and flexibility of both 

model and visualization levels. 

 

The team also had to deal with the missing or corrupt 

data of live API, especially during network 

fluctuations or when some dimensions of the weather 

were temporarily unavailable. This poses risks for the 

predictions and forecasts of both models. To handle 

this, strong data validation methods were made in both 

the backend flask API and the front dashboard. When 

detecting incomplete data .In the system warning the 

user through error messages, the default transfers to 

the default lt values or temporarily disabled 

components, preventing a crash or misleading display.  

Finally, the issues of deployment-related consistency 

came up when integrating various components in 

machines and atmosphere. Different differences in the 

Python environments for the model, Node.js versions 

and the issues of communication between the flask 

API and the priority of Javascript created many 

obstacles. These dockers were resolved by 

containerization, where each ingredient was included 

with its dependence. This ensures consistency and 

fertility in the development, testing and phase of 

production. 

 

IV. RESULTS AND DISCUSSION 

 

The developed hybrid predictive maintenance system 

was evaluated through an interactive dashboard that 

imagines real -time and historical data, which enables 

the road wearing and detailed analysis of related 

parameters. This section key discusses the insight 

obtained from dashboard components and visual 

analytics. Road wear status component provides a 

quick visual signal of the current wearing index on 

various road segment. It is dynamically updated 

depending on traffic and weather input, and it acts as 

an important real -time metric for decision 

manufacturers. As a combination with it, the weather 

conditions collect the section temperature, humidity 

and freeze level data, which are the main features 

affecting the pavement decline. These indicators help 

to predict potential risks in the near future.  

 
Figure 1. Road Wear Prediction over Time of Day. 

 

The traffic volume panel imagines the load of vehicles 

in real time, a major contributor for structural road 

wearing. For this, the complement, traffic composition 

breaks the type of chart vehicles (eg, car, truck, buses), 

which enables the analysis of the vehicle categories, 

contributes to the most deteriorating.  



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180580 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2199 

 
Figure 2. Real-Time Traffic Volume and Composition. 

 

 A speed distribution bar chart further enhances 

situational awareness, which shows the number of 

vehicles working within various speed brackets. The 

flow of high -speed vehicles combined with load 

concentration is often correlated with increased wear, 

and this chart validate such conversations. 

  

 
Figure 3. Impact of speed of vehicles on Road wear Index 

 

A particularly valuable analysis is shown through the 

effect of weather on the graph of road wear, which 

presents the effect of separate environmental 

conditions (temperature, humidity, freeze events) on 

the wearing index. This confirms the hypothesis that 

environmental factors increase road damage beyond 

traffic-inspired stress.  

 
Figure 4. Impact of Temperature, Humidity, and Freeze on Road Wear. 
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The forecast area chart of one per hour predicts 

changes in the index of wear in the next 24 hours. This 

allows preemptive maintenance scheduling to avoid 

proper forecast growth. The system also involves 

active alerts with sound notification, when it is more 

than the significant threshold to wear, it is 

automatically triggered. These alerts appear on the 

dashboard and serve as a real -time warning for 

operators and field staff.  

 
Figure 5. Hourly Forecast of Road Wear Index. 

 

The decision of maintenance is further supported by a 

maintenance history line chart, which imagines the 

progression of the index of wear in months. Users can 

examine previous interventions and correlated them 

with post-delivery results. Additionally, the root 

timeline chart presents a longitudinal view of the 

wearing index in several routes (eg, root a, b, and c), 

which enables comparison of the route-by-way. 

 
Figure 6. Maintenance History of the road 

 

A historical RWI repository allows users to analyze the 

historic road wear index by both date and route. This 

time-series insight model contributes to the detection 

of retrenching and seasonal patterns.  

An important feature landscape is a Scenario 

Forecasting Module, where users can simulate future 

conditions (eg, traffic surge, rain duration) to wear an 

estimated road under imaginary landscapes. This adds 

flexibility to the future flexibility in the dashboard. 

Finally, data filter users strengthen users to select 

specific conditions (eg, route, date, vehicle type), 

ensuring that the analysis is targeted and the decision 

is evidence-operated. 

 

V. CONCLUSION AND FUTURE SCOPE 

 

This research presented a hybrid -predictive 

maintenance structure for the purpose of monitoring 

road infrastructure using advanced AI techniques. By 

combining long short -term memory (LSTM) network 
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for temporary pattern recognition with gradient 

boosting machines (GBM) for feature importance and 

strong predictions, the system effectively predicts the 

road wear index (RWI) in several urban routes. The 

integration of traffic patterns, weather conditions, road 

content and maintenance history enable a 

comprehensive model that goes beyond traditional 

reactive approaches. The developed dashboard not 

only imagines real -time predictions, but also 

facilitates actionable insights through dynamic alerts 

and comparative wear.  

Results suggest that the proposed hybrid model may 

make accurate prediction of road wear trends and 

identify high -risk routes that require immediate or 

scheduled maintenance. Through real -time visual 

representation and alert mechanisms, the dashboard 

enhances decision making for urban planners and 

maintenance teams. This change in reactive -to -future 

asset stewardship ensures timely intervention, better 

allocation of resources, reduction in cost of 

maintenance and eventually, safe road conditions for 

passengers. The project also shows how AI and data 

analytics can practically be applied in civil 

infrastructure projects, which paves the route to 

intelligent cities.  

 

Looking forward, the framework has a significant 

potential for growth. The direction of an immediate 

future is the integration of real -time sensor data, such 

as vibration, load pressure, or imagination from traffic 

cameras to further improve the prediction accuracy. 

Scalability of the system for the entire city's road 

networks can enable wide deployment and large -scale 

benefits. Introduction to adaptive threshold through 

learning reinforcement can dynamically optimize 

when and where the alerts are triggers, make the 

system more intelligent over time. Additionally, 

incorporating cost-based priority in the maintenance 

scheme will allow authorities to align the road repair 

with lack of budget and strategic goals. 

 There is also scope to develop a mobile version of the 

dashboard to support field teams with real-time data 

and task allocation. Including seasonal factors, 

construction activities and long -term urban planning 

elements can increase the depth and foresight of 

predictions. Overall, this research lays a foundation for 

a smart, AI-powered infrastructure management 

solution that not only predicts the deteriorating road, 

but also guides continuous intervention, which is 

maintained by the city roads safe, more durable and 

more wisely. 
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