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Abstract—The rapid evolution of integrated photonics 

is revolutionizing the landscape of high-speed, energy-

efficient computing. One of the most promising 

frontiers in this domain is Photonic Reservoir 

Computing (PRC), a neuromorphic paradigm that 

leverages the inherent dynamics and parallelism of 

photonic systems. This paper provides an in-depth 

exploration of reservoir computing implemented 

through nonlinear effects in silicon microring 

resonators (MRRs)—a scalable and CMOS-compatible 

platform for optical information processing.  

 

We examine the fundamental physical processes, such 

as two-photon absorption, free carrier dispersion, and 

thermal-optic phenomena, that facilitate nonlinear 

transformation and short-term memory essential for 

RC operations. Recent advances in photonic integration 

are surveyed, highlighting how MRR-based 

architectures support time-multiplexed virtual node 

generation and can be effectively deployed for complex 

signal processing tasks. A simulation framework in 

MATLAB is presented to model the nonlinear carrier 

dynamics and evaluate the RC system on a distorted 

QPSK signal with chromatic dispersion and Kerr 

nonlinearity. Results demonstrate accurate symbol 

recovery through a simple linear readout, validating the 

feasibility of silicon microrings for high-performance 

PRC. We further discuss emerging applications in AI-

on-Chip inference engines, fiber-optic communications, 

and neuromorphic sensor fusion, and outline challenges 

and opportunities in scaling and enhancing photonic 

reservoir systems. This work positions silicon 

microring-based PRC as a compelling solution for next-

generation integrated photonic computing. 

 

Keywords: Photonic Reservoir Computing, Silicon 

Microring, Nonlinear Optics, Time-Multiplexing, 

Neuromorphic Computing, Integrated Photonics, 

QPSK Equalization 

 

I. INTRODUCTION 

 

The swift increase of global data traffic, driven by AI 

applications, cloud computing, and billions of 

interconnected devices, is intensifying the demand 

for computing systems that can deliver ultra-low 

latency, high throughput, and energy-efficient 

performance. Traditional CMOS-based electronic 

processors, though continually improved, are 

approaching fundamental physical and architectural 

limits, especially in areas such as real-time 

processing, edge inference, and large-scale data 

analytics. As workloads evolve to support 

technologies like edge AI, autonomous vehicles, 6G 

wireless systems, and the Internet of Things (IoT), 

there is a pressing need for alternative computational 

frameworks that can scale with these requirements 

without compromising power efficiency or speed. 

 

Photonic computing has emerged as a transformative 

paradigm in this space, leveraging the advantages of 

light-based signal propagation for computing tasks. 

Unlike their electronic counterparts, photonic 

systems inherently support extremely fast data 

transmission, broad bandwidth, and reduced heat 

dissipation, making them particularly suited for high-

performance and real-time applications. Within this 

growing field, Reservoir Computing has gained 

attention due to its simplified training structure and 

ability to handle time-dependent data effectively. 

Inspired by recurrent neural networks, RC employs a 

fixed nonlinear dynamical system, known as the 

reservoir, to map inputs into a higher-dimensional 

space. Only the final output layer is trained, 

significantly reducing computational complexity and 

training time.  

 

A particularly promising implementation of RC lies 

in Photonic Reservoir Computing, especially when 

realized on silicon photonic platforms. Silicon 

microring resonators (MRRs) play a key role in this 

context due to their small footprint, high optical 

confinement, CMOS compatibility, and ability to 

exhibit nonlinear effects such as Two-Photon 



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180627   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      1601 

Absorption, Free Carrier Dispersion, and the 

Thermo-Optic Effect. These mechanisms introduce 

both nonlinearity and short-term memory—critical 

components of any effective reservoir. Moreover, the 

adoption of time-multiplexed architectures allows a 

single microring to emulate hundreds of virtual 

nodes, reducing hardware requirements while 

maintaining computational richness. 

 

This paper presents a comprehensive exploration of 

microring-based photonic reservoir computing. It 

covers the physical foundations of microring 

nonlinearity, recent integration strategies, and a 

MATLAB-based simulation of signal classification 

performance using QPSK waveforms distorted by 

realistic fiber-optic effects. The results demonstrate 

the capability of PRC systems to meet the processing 

needs of next-generation applications, marking a 

significant step toward scalable, real-time, and low-

power optical computing architectures. 

II. PHOTONIC INTEGRATION 

 

Photonic integration is revolutionizing optics and 

computing by enabling the integration of multiple 

optical components—like lasers, modulators, 

waveguides, multiplexers, and detectors—onto one 

photonic chip. While it operates at the speed of light, 

this integration provides considerable advantages 

concerning bandwidth, energy efficiency, and signal 

integrity. It is conceptually akin to electrical 

integrated circuits (ICs).  

Silicon photonics has emerged as the most favored 

material platform compared to others because of its 

compatibility with traditional CMOS manufacturing 

methods. This enables the utilization of current 

semiconductor facilities for scalable, cost-effective 

manufacturing. As a result, silicon photonics are 

especially attractive for applications in sensing, 

telecommunications, and data centers. 

  
Fig.1 (a)Micro-Ring Resonator, [ref.12] (b) Illustration of microring resonators coupled to bus waveguides. Light 

at resonant wavelengths circulates in the ring, enabling high field intensities and nonlinear optical interactions. [ 

Image created by the author.] 

 

A critical building block in silicon photonics is the 

microring resonator (MRR). These structures are 

essentially waveguides curved into a ring that couple 

optically with adjacent straight waveguides. When 

light of a resonant wavelength enters the ring, it 

constructively interferes and builds up inside the ring, 

enhancing light-matter interactions. This leads to a 

range of applications including: 

1. Filtering: Microring resonators act as highly 

selective optical filters by allowing only specific 

resonant wavelengths to circulate within the ring 

while all others are rejected. This makes them 

ideal for creating narrowband wavelength filters 

in dense wavelength-division multiplexing 

(DWDM) systems and optical signal processors. 

2. Modulation: Microrings can modulate light by 

dynamically shifting their resonant wavelength 

through thermal, electro-optic, or carrier 

injection mechanisms. By modulating the input 

signal near the resonance condition, high-speed 

amplitude or phase modulation of the output 

light can be achieved using very compact 

devices. 

3. Wavelength multiplexing: By designing arrays 

of microrings with slightly different resonant 

wavelengths, they can function as multiplexers 

and demultiplexers for multiple optical channels. 

This enables the integration of many data 

streams on a single fiber or waveguide, 

significantly increasing the bandwidth capacity 

of photonic circuits. 

4. Nonlinear signal processing: Due to strong 

optical confinement, microrings enhance 

nonlinear effects such as two-photon absorption 

(TPA) and free carrier dispersion (FCD), 

enabling functions like optical logic, signal 

regeneration, and reservoir computing. These 

nonlinear interactions are exploited to perform 
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complex, real-time analog computations directly 

in the optical domain. 

 

Fig.2 Key Applications of Microring Resonators in 

Photonic Integrated Circuits [ Image created by the 

author.] 

 

MRRs are especially powerful in reservoir 

computing where they act as nonlinear dynamic 

nodes with memory, enabling time-dependent 

processing tasks on-chip. 

Table.1: Key Benefits of Microring Resonators (MRRs) 

Benefit Description 

Compact Footprint Rings can be as small as a few micrometers in diameter. 

High Q-Factor Enables sharp filtering and resonance sensitivity. 

Scalability Arrays of MRRs can be densely packed for complex processing. 

Nonlinear Capability Strong field confinement boosts nonlinear effects such as TPA, FCA and 

FCD 

Temporal memory for 

Computing 

MRRs act as nonlinear dynamic nodes memory, enabling time dependent 

processing tasks on-chip 

 

III. RESERVOIR COMPUTING 

 

Reservoir Computing (RC) is a computational 

framework inspired by recurrent neural networks 

(RNNs), designed to efficiently process time-

dependent and sequential data. It relies on a fixed, 

high-dimensional dynamical system known as the 

reservoir, which transforms the input signal into a 

complex and nonlinear state space. Unlike 

conventional deep learning networks where multiple 

layers are trained, in RC only the output (readout) 

layer is trained, significantly reducing the 

computational cost and avoiding the 

vanishing/exploding gradient problems typical in 

deep RNNs. 

 
Fig.3: Quantum Reservoir Computing [ref.13, fig.1] 

3.1. Core Principles of RC: 

1. Nonlinear Transformation: Through nonlinear 

interactions, the reservoir converts input data into a 

high-dimensional feature space. This stage makes 

patterns more separable and is essential for resolving 

challenging problems like control, prediction, and 

classification.  

2. Short-Term Memory: Because the reservoir is 

dynamic, its internal state remembers details about 

recent inputs. The system can learn temporal 

correlations thanks to this feature, which makes it 

perfect for applications like signal demodulation and 

time-series forecasting. 

3. Linear Readout: The reservoir states are mapped to 

the intended output using a straightforward linear 

regression or classifier. Because of its simplicity, RC 

is very scalable and efficient. 

 
Fig.4: Time-Multiplexed Reservoir Computing 

Framework that features one Nonlinear Node. [ 

Image created by the author.] 
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3.1. Time-Multiplexed Reservoir Computing 

Time-multiplexed reservoir computing (TM-RC) is 

an efficient method that is especially appropriate for 

photonic systems, where it can be difficult to 

implement numerous physical nonlinear nodes. 

Instead, TM-RC reuses a single nonlinear element—

such as a silicon microring resonator—by feeding it 

a time-varying, masked input signal that emulates 

multiple virtual nodes over sequential time intervals. 

Each masked input segment is processed by the 

nonlinear system, and its output is sampled at fixed 

intervals, capturing the system's dynamic state. This 

setup significantly reduces hardware complexity 

while maintaining the nonlinear transformation and 

memory essential for reservoir computing. 

Utilizing microring phenomena such as two-photon 

absorption and free carrier dispersion , TM-RC 

is ideal for rapid functions like signal classification, 

equalization, and time-series forecasting 

 
Fig.5: (a) Spatial Reservoir, (b)Time-Multiplexed 

Reservoir Computing Architectures [ Image created 

by the author.] 

 

3.2. How It Works: 

1. Input Masking: Each input sample is multiplied 

by a pseudo-random mask (a sequence of 

values), producing a time-expanded input. 

2. Nonlinear Dynamics: The masked input is sent 

through a nonlinear system (e.g., a silicon 

microring resonator), whose internal state is 

influenced by both the current and previous 

inputs due to its intrinsic memory. 

3. Virtual Node Sampling: 

The system generates output at regular intervals 

to gather a collection of virtual node 

values that reflect the high-

dimensional condition of the reservoir 

4. Training the Readout: These node outputs are 

used as features to train a linear regression or 

classification model. 

 

3.3. Algorithm of Reservoir Computing: 

Step.1: Input Expansion via Masking 

Each input sample 𝑢(𝑛)  is multiplies by a time-

dependent mast 𝑀(𝑡) to create time series:  

𝑠(𝑡) = 𝑀(𝑡) . 𝑢(𝑛)   …..(1) 

Where, 𝑢(𝑛) ∈ 𝑅𝑘:  input vector at time step n, 

𝑀(𝑡) ∈ 𝑅𝑁 : input mask with N virtual nodes, 𝑡 =

1,2, … , 𝑁 indexes the virtual nodes for eacg real time 

step n.  

Step.2: Nonlinear Mapping in the Reservoir  

The masked input is injected into a single nonlinear 

dynamical system (e.g. mirroring), and its internal 

state is samples at regular intervals: 

𝑥(𝑛) = 𝑓(𝑠𝑖(𝑛), 𝑥𝑖−1(𝑛),        𝑖 = 1,2, … … , 𝑁        

….(2) 

where, 𝑥𝑖(𝑛): state of the i-th virtual node at time n. 

𝑓(. ): Nonlinear transformation (e.g. MRR 

dynamics) 

• 𝑓 includes microring nonlinearity governed 

by effects like TPA, FCD, etc. 

• The memory is introduced via the dynamic 

response (e.g., free carrier lifetime). 

Step.3: Reservoir Sate Vector  

Collect the virtual node responses to form the state 

vector for each time step: 

𝑋(𝑛) = [𝑥1(𝑛), 𝑥2(𝑛), … , 𝑥𝑁(𝑛)]𝑇   ………(3) 

Step.4: Linear Readout Training 

Train the output weights 𝑊𝑜𝑢𝑡  using ridge 

regression: 

𝑊𝑜𝑢𝑡 = 𝑎𝑟𝑔
𝑚𝑖𝑛

𝑤
||𝑌 − 𝑋𝑊||2 + 𝛾 ||𝑊||2    

………(4) 

where, 𝑋𝜖𝑅𝑇×𝑁: Matrix of collected reservoir states 

over T time steps, 𝑌 ∈ 𝑅𝑡: Target outputs, 𝛾 : 

Regularization Parameter 

Step.5: Inference 

After training, output for new input 𝑢(𝑛)is 

computed as: 

𝑦(𝑛) =  𝑊𝑜𝑢𝑡
𝑇  𝑥(𝑛)       ……..(5) 

where, 𝑊𝑜𝑢𝑡 ∈  𝑅𝑁 : readout weights  

 

IV. SILICON MICRORING RESONATORS AS 

NONLINEAR NODES 

 

Silicon microring resonators (MRRs) are pivotal 

components in photonic reservoir computing due to 

their ability to exhibit and amplify a variety of 

nonlinear optical effects within a compact footprint. 

These nonlinearities enable both nonlinear 

transformation of input signals and short-term 

memory, which are the two core requirements of a 

functional reservoir in RC systems. 

 

4.1. Two Photon Absorption (TPA): 

Two-Photon Absorption (TPA) refers to a nonlinear 

phenomenon in which two photons are 
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simultaneously absorbed, causing an electron to 

transition from the valence band to the conduction 

band. In silicon, TPA plays a significant role due to 

its indirect bandgap and is strongly dependent on the 

square of the optical intensity, making it particularly 

relevant at high power levels or in confined setups 

like microrings.In reservoir computing, TPA 

provides crucial nonlinearity by producing free 

carriers that influence the dynamics of the system. As 

input intensity grows, carrier density increases, 

facilitating the nonlinear conversion of signals into 

high-dimensional reservoir states.  

Additionally, the produced carriers trigger free 

carrier dispersion and absorption, establishing the 

foundation for signal modulation and short-term 

memory inside the microring.  

 

 
Fig.6: Two Photon Absorption [ref.11, fig.1] 

 

4.2. Free Carrier Dispersion (FCD): 

The shift in refractive index brought on by the 

presence of photo-generated carriers (holes and 

electrons) is termed as the Free Carrier Dispersion 

(FCD).In silicon, the index changes ∆𝑛 due to FCD 

is negative, meaning it causes a blue shift (i.e., toward 

shorter wavelengths) in the microring’s resonance. 

Mathematically, the shift in refractive index can be 

approximated using the Drude model: 

∆𝑛 ∝ −(
∆𝑁

𝑛2)  ……(6) 

where ΔN is the change in carrier concentration. 

Since the carriers persist for a finite lifetime (τ), the 

refractive index change is time-dependent, 

introducing a fading memory effect crucial for 

processing sequential inputs in reservoir computing. 

 
Fig.7:  Free Carrier Dispersion [ref.14, fig.3] 

This memory, encoded in the dynamic refractive 

response of the microring, allows the system to 

"remember" previous inputs over short timescales, 

enabling temporal tasks such as speech recognition, 

classification of waveform sequences, or chaotic 

time-series prediction. 

 

4.3. Thermo-Optic Effect (TOE): 

The Thermo-Optic Effect (TOE) in silicon arises due 

to the material's strong temperature dependence of 

refractive index. As light is absorbed—via both linear 

absorption and TPA—thermal energy is generated 

within the microring, leading to a gradual red shift in 

its resonant wavelength. 

This effect can be described as: 

∆𝑛 =
𝑑𝑛

𝑑𝑇
 . ∆𝑇   ……..(7) 

where 
𝑑𝑛

𝑑𝑇
 ≈ 1.86 × 10−4𝐾−1  for silicon. TOE 

generally acts over longer timescales (microseconds) 

compared to FCD (nanoseconds), introducing slow 

dynamics and enabling delayed feedback and 

hysteresis in the system’s optical response. 

 

The interaction between FCD (fast, negative index 

change) and TOE (slow, positive index change) can 

lead to complex behaviours such as: 

• Biostability: Two stable output states for the 

same input 

• Self-pulsing: Spontaneous oscillations in 

output 

• Memory windowing: Temperature-

controlled duration of memory 

These phenomena are particularly useful in 

neuromorphic computing, where such dynamics can 

emulate spiking behavior or temporal integration—

much like biological neurons. 

 
Fig.8: Thermo-Optic Effect [ref.11] 

 

4.4. Memory through Carrier Dynamics: 

The behaviour of free carrier recombination in silicon 

is influenced by Shockley-Read-Hall (SRH) 

recombination, which determines the duration that 

generated carriers remain before they recombine. The 
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usual carrier lifetime in microrings varies from 

several to numerous nanoseconds, providing an 

inherent short-term fading memory effect. This time-

based memory enables the system to store and 

manage time-related aspects of the input signal, 

which is crucial for functions such as speech 

recognition, sequence forecasting, and dynamic 

signal categorization. 

 

4.5. Reservoir Role: 

In a reservoir computing setup, the microring acts as 

a nonlinear dynamical element, transforming the 

masked optical input into a sequence of nonlinear 

states. These states change over time due to carrier 

accumulation and decay, thus reflecting the temporal 

dynamics of the input. When sampled correctly (for 

instance, with a probe signal), these changing states 

can be understood as a collection of virtual neurons 

creating the reservoir layer. 

 

V. APPLICATIONS OF MICRORING-BASED 

PHOTONIC RESERVOIR COMPUTING 

 

The integration of photonic reservoir computing 

(PRC) with silicon microring resonators opens the 

door to real-time, high-speed, and energy-efficient 

processing across multiple domains. Microrings offer 

compact, scalable, and nonlinear platforms that 

naturally support the temporal dynamics and high-

dimensional mapping required for neuromorphic 

tasks. Below are the key applications: 

 

5.1. AI-on-Chip 

Microring-based photonic reservoir computing 

(PRC) presents a promising approach for creating 

ultra-fast and energy-efficient inference engines for 

artificial intelligence (AI) at the edge. These systems 

are especially well-suited for applications like image 

classification, speech and keyword recognition, and 

real-time sensor data processing in compact or 

portable edge devices. In this context, input 

features—such as pixel intensities from images or 

Mel-frequency cepstral coefficients (MFCCs) from 

audio—are initially modulated onto an optical carrier 

and injected into a silicon microring resonator. The 

intrinsic nonlinear dynamics of the microring 

transform the input into a complex, extremely 

dimensional state space, which is influenced by the 

thermos-optic effect, free carrier dispersion, and two-

photon absorption. This change eliminates the need 

to train the internal dynamics and enables accurate 

real-time classification with a simple linear readout 

layer. 

 Thanks to the rapid optical response and low energy 

requirements of photonic systems, AI-on-chip 

implementations utilizing microrings achieve 

nanosecond-scale latency and high throughput. 

Furthermore, a single microring is capable of 

emulating numerous virtual neurons through time-

multiplexing, significantly minimizing hardware 

complexity. Practical applications encompass voice 

assistants, smart camera modules, and portable 

diagnostic devices where low power consumption 

and real-time functionality are essential. 

 

5.2. Telecommunications 

In optical communication systems, particularly those 

using coherent modulation formats, microring-based 

PRC serves as an efficient and adaptive platform for 

signal recovery and equalization. These systems can 

effectively handle complex signal distortions arising 

from fiber nonlinearities such as chromatic 

dispersion, Kerr effect, and amplified spontaneous 

emission (ASE) noise. Photonic RC systems, when 

integrated with microring resonators, function as 

adaptive equalizers and demodulators for modulated 

signals like QPSK or 16-QAM. 

 

Distorted optical waveforms are fed directly into the 

microring, whose nonlinear response dynamically 

alters according to the incoming signal intensity and 

past energy history. This response inherently captures 

and compensates for complex temporal features in 

the signal. The sampled outputs from the microring 

are passed to a linear readout layer, which 

reconstructs the transmitted data with high fidelity. 

This approach eliminates the need for high-speed 

digital signal processors (DSPs), enabling real-time, 

all-optical compensation at multi-GHz symbol rates. 

Applications span long-haul fibre optic transmission 

systems, front-haul receivers in 5G/6G networks, and 

high-speed interconnects in data centres. 

 

5.3. Bio-inspired Sensing 

Microring-based photonic reservoirs are also ideal 

candidates for neuromorphic and bio-inspired 

sensing applications that require simultaneous 

processing of multiple sensory inputs. These 

platforms are designed to emulate the behaviour of 

biological neural circuits by integrating and 

interpreting inputs such as pressure, temperature, 

chemical concentrations, and auditory or visual 

signals. Such sensory fusion is essential for wearable 
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health monitors, autonomous robotics, and 

environmental monitoring. 

In this application, each sensory modality is 

converted into an optical signal and fed into the 

microring. The device's nonlinear dynamics and 

intrinsic memory allow it to temporally integrate and 

correlate across modalities, even when the signals are 

noisy or weak. This enables complex pattern 

recognition and decision-making, mimicking the 

adaptive, context-aware processing of biological 

systems. Due to their small size and compatibility 

with CMOS fabrication, microring-based reservoirs 

can be embedded into miniaturized systems, 

supporting wearable or implantable designs. They 

also support parallel input processing through time or 

wavelength-division multiplexing. Use cases include 

prosthetic limbs with feedback sensing, smart skins 

for robotics, and drones or autonomous vehicles 

equipped with multimodal perception systems. 

 

VI. SIMULATION FRAMEWORK 

 

To validate the functional potential of microring-

based photonic reservoir computing, we 

implemented a MATLAB-based simulation that 

models the nonlinear behavior of a silicon microring 

resonator acting as a reservoir node. The objective 

was to process a distorted optical communication 

signal and evaluate the reservoir's ability to classify 

it correctly using a lightweight linear readout. 

 
Fig. 9: Flowchart of Simulation [ Image created by 

the author.] 

 

6.1. Signal Generation and Channel Distortion 

To simulate a realistic communication scenario, a 

Quadrature Phase-Shift Keying (QPSK) signal was 

generated and used as the input for the reservoir 

computing framework. This digital signal was then 

upsampled and shaped using a Root Raised Cosine 

(RRC) filter to replicate the pulse shaping methods 

typically employed in modern telecommunication 

systems. 

To simulate signal degradation encountered in fiber 

optic transmission, several physical impairments 

were introduced. First, chromatic dispersion was 

applied using a frequency-domain transfer function 

derived from the fiber’s dispersion coefficient, 

resulting in phase distortion across the signal 

bandwidth. Second, Kerr nonlinearity was modeled 

by applying an intensity-dependent phase shift, 

which mimics nonlinear phase distortion occurring in 

high-power optical links. Finally, Additive White 

Gaussian Noise (AWGN) was inserted into the signal 

to replicate typical noise conditions in a real-world 

channel. The signal-to-noise ratio (SNR) was 

established at 20 dB, creating a significantly 

challenging setting for reservoir-based equalization. 

The outcome was a warped optical waveform that 

closely resembled what would be obtained following 

extensive fiber transmission 

 

6.2. Modeling the Microring Nonlinear Dynamics 

The distorted waveform was then used as the optical 

pump input to a simulated silicon microring 

resonator, representing the nonlinear core of the 

photonic reservoir. The model incorporated the 

essential nonlinear mechanisms observed in 

microring physics. Two-Photon Absorption (TPA) 

was used to simulate power-dependent carrier 

generation as a quadratic function of the input 

intensity. The resulting free carrier dynamics were 

governed by a first-order differential equation 

describing carrier accumulation and recombination, 

with a characteristic carrier lifetime of 45 

nanoseconds. 

These carriers induced Free Carrier Dispersion 

(FCD), modulating the microring’s refractive index 

and shifting its resonance, while the resulting carrier 

density also led to nonlinear attenuation of the probe 

signal, modeled using an exponential decay function. 

This dynamic response resulted in a time-varying 

probe readout, exhibiting both nonlinearity and 

memory—key features of an effective reservoir. The 

simulation visualized three intermediate outputs: 

TPA power over time, carrier density over time, and 

the final optical transmission profile. 

 

6.3. Virtual Node Extraction and Feature Engineering 

To emulate a time-multiplexed reservoir, the probe 

output from the microring was sliced into temporal 

windows, each corresponding to one symbol's 
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duration. These slices acted as virtual nodes, and the 

average values within each slice were assembled to 

form a reservoir state matrix. This matrix served as 

the input feature space for machine learning 

classification. 

Prior to training, the features were standardized by 

normalizing them to zero mean and unit variance. To 

further enhance the expressiveness of the linear 

readout layer, a nonlinear expansion was performed 

by appending the squared terms of each feature, 

thereby increasing the dimensionality and improving 

class separability. 

 

6.4. Readout Layer and Classification 

A one-vs-all ridge regression classifier was used to 

map the virtual node states to one of the four QPSK 

symbol classes (0 to 3). The model was trained on 

80% of the dataset, with the remaining 20% held out 

for testing. The classification scores were computed 

for each class, and the final predictions were 

determined based on the maximum score. 

The system achieved an accuracy of approximately 

80%, demonstrating the efficacy of the microring’s 

nonlinear and memory dynamics in processing and 

classifying distorted optical signals. A confusion 

matrix was generated to evaluate the classification 

performance for each symbol class, revealing strong 

predictive accuracy and balanced generalization 

across all classes. 

 

This simulation framework confirms the feasibility of 

using silicon microrings for photonic reservoir 

computing and highlights their effectiveness in 

handling realistic communication challenges such as 

dispersion, Kerr nonlinearity, and noise. The system 

successfully recovers distorted QPSK symbols, 

demonstrating strong adaptability for high-speed, 

real-time signal processing. 

By incorporating nonlinear effects like TPA and 

FCD, the microring provides both nonlinearity and 

short-term memory—key attributes of an effective 

reservoir. These dynamics enrich the feature space 

and enable accurate classification with a simple 

readout layer. Additionally, time-multiplexed virtual 

nodes emulate a high-dimensional reservoir without 

increasing hardware complexity, making the system 

compact, scalable, and suitable for photonic 

integration. 

Table.2: Simulation Parameters  

Sr.No Parameters  Value  

1 Number of Symbols 500 

2 Modulation Format  QPSK (M=4) 

3 Oversampling Factor  8 

4 Sampling Factor (fs) 10 GHz 

5 Carrier Wavelength 1550 nm 

6 Fiber Length (L) 50 km 

7 Dispersion Coefficient -21.27 𝑝𝑠2/𝑘𝑚 

8 Nonlinear Coefficient  1.3 (1/W/km) 

9 Carrier lifetime 45 ns 

10 Two-Photon Absorption Coefficient  0.8 × 10−12 𝑚/𝑊 

11 Signal-to- Noise ratio (SNR)  20 dB 

12 Virtual Nodes per Symbol  24 

13 Readout Method  Ridge Regression (One-vs-All) 

 

VII. RESULTS AND ANALYSIS 

 

The simulation effectively illustrates how a silicon 

microring-based photonic reservoir can accurately 

categorise distorted QPSK signals. To simulate the 

behaviour of a time-multiplexed reservoir computing 

system, the model includes nonlinear effects, namely 

Two-Photon Absorption and Free Carrier Dispersion, 

together with carrier recombination dynamics. 

 

7.1 Temporal Dynamics: 
 

Fig.10: Result of TPA, FCD of Simulation [ Image 

created by the author.] 
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Figure.10 captures the temporal evolution of key 

internal variables: 

• TPA Power: Increases with the square of the 

input intensity, peaking during high-power segments 

of the optical signal. 

• Free Carrier Density (FCD): Accumulates 

over time and decays exponentially, reflecting the 

reservoir’s memory effect. 

• Optical Transmission: Shows attenuation 

modulated by the evolving carrier density, capturing 

the nonlinear transformation of the input. 

These curves collectively demonstrate how the 

microring translates a distorted signal into a rich, 

nonlinear response suitable for reservoir computing. 

The interaction between TPA and FCD imparts both 

nonlinear projection and fading memory, key for 

accurate classification of sequential data. 

 

7.2 Classification Performance: 

Figure.11 presents the confusion matrix for the 

QPSK symbol classification task. The system 

achieved an overall classification accuracy of 

approximately 80% at 20 dB SNR. The classifier 

successfully distinguishes between all four QPSK 

symbols with balanced performance across classes. 

 
Fig.11: Result of Confusion Matrix [ Image created 

by the author.] 

 

The matrix confirms that the microring reservoir, 

despite being modeled with a single nonlinear node 

and using time-multiplexed virtual neurons, is 

capable of accurately recovering the original 

transmitted symbols even after propagation through a 

distorted channel. This result reinforces the viability 

of photonic reservoir computing for real-time, low-

power signal processing applications. 

 

VIII. FUTURE WORK 

 

Microring-based photonic reservoir computing 

(PRC) offers a compact, high-speed, and energy-

efficient approach to neuromorphic processing. By 

combining strong nonlinearities, short-term memory, 

and time-multiplexing, a single microring can 

perform complex temporal tasks with minimal 

hardware. 

However, performance is currently limited by long 

carrier lifetimes and signal-to-noise constraints. 

Future efforts should focus on accelerating carrier 

recombination and improving optical SNR through 

better design and thermal control. Advancements 

such as microring arrays, wavelength-division 

multiplexing, and hybrid material integration (e.g., 

III-V on silicon) could greatly enhance scalability, 

speed, and functionality—paving the way for 

practical, chip-scale photonic computing platforms. 

 

IX. CONCLUSION 

 

Silicon microring-based photonic reservoir 

computing is on the frontier of optical and 

neuromorphic signal processing technologies. 

Through leveraging the inherent nonlinear dynamics 

and memory features of microrings, PRC systems are 

optimally suited for use cases where high-speed, 

parallel, and adaptive computation is required. Proof 

of demonstration of implementation of a time-

multiplexed architecture in a single microring, as 

given here, proves the feasibility of achieving high 

classification accuracy in a compact and CMOS-

compatible platform. 

 

Our MATLAB implementation of QPSK signal 

processing confirms the system's resilience to real-

world distortion, so confirming performance and 

robustness. With the ability to simulate high-

dimensional neural dynamics using very little 

photonic hardware, microring-based reservoirs 

present a universal building block for next-generation 

optical computing platforms, AI accelerators, and 

edge inference engines. With emerging fabrication 

technology and scaling, such systems promise a 

revolutionary future influence on next-generation 

computing architecture. 
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