
© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2559 

AI Powered Online Meeting Agenda Generator 
 

 

Prof. Jyotsna Nanajkar1, Parthivi Suryavanshi2, Sakshi Wagh3, Vaishnavi Sobale4, Afroja Sayyad5 
1Professor of Department Information Technology, 2,3,4,5Student of Information Technology, Zeal 

College of Engineering and Research, Savitribai Phule Pune University, Pune 

 

Abstract - Meeting Mate is a Google Chrome extension 

that augments virtual meetings with real-time 

transcription and AI-driven summarization for Google 

Meet, Zoom, and Microsoft Teams. It records audio 

through the Web Audio API, processes it using 

Mozilla's DeepSpeech via a WebSocket server, and uses 

Gemini AI to produce structured summaries. The 

system delivers time-stamped transcripts, 

downloadable PDF reports, and agendas with key 

points. Optimized for performance and low-latency, it 

works well even in low-bandwidth settings. Meeting 

Mate simplifies note taking, enhances accountability, 

and enables future capabilities such as speaker 

diarization, sentiment analysis, and integration of 

productivity tools. 

 

Index Terms - Virtual Meetings, Real-time 

Transcription, AI-driven Summarization, Speech 

Recognition, Natural Language Processing, Agenda 

Generation, Meeting Analytics, Productivity Tools 

Integration, Automated Note-taking, Meeting 

Accountability. 

 

I. INTRODUCTION 

 

In today’s rapidly evolving digital workplace, virtual 

meetings have become essential for productive and 

efficient collaboration across teams, departments, 

and organizations. With their increasing frequency 

and longer durations, the task of manually 

documenting key points, decisions, and action items 

has become both tedious and error-prone. 

Participants often struggle to stay fully engaged while 

also taking notes, which frequently leads to missed 

information, inconsistent records, and ineffective 

timely follow-ups. This lack of clear and accurate 

reliable meeting minutes affects clear accountability, 

task tracking, and long-term decision-making 

processes [2]. 

To address these challenges, Meeting Mate was 

developed a lightweight yet efficient Chrome 

extension designed to transcribe and summarize 

online meetings in real time. It supports popular 

platforms like Google Meet, Zoom, and Microsoft 

Teams, and integrates advanced tools to improve 

meeting documentation. The extension uses 

Mozilla’s DeepSpeech engine to perform accurate, 

low-latency speech-to-text transcription [1]. 

In addition to transcription, Meeting Mate integrates 

Gemini AI to generate structured, concise, and 

meaningful summaries. These summaries highlight 

key discussion points, decisions made, and follow-up 

actions, all while reducing the need for manual effort 

[9]. This ensures that important content is not only 

captured but also easy to refer to. 

Meeting Mate effectively solves four major problems 

in virtual collaboration: multitasking difficulties, 

unreliability of manual notes, the time-consuming 

nature of post-meeting summaries, and unstructured 

outputs from existing tools. 

Time-stamped session logs enhance accountability 

and transparency, while clean, structured PDF reports 

created using ReportLab allow for easy sharing and 

secure record-keeping. The tool also addresses 

technical challenges such as efficient browser-based 

real-time audio capture, WebSocket communication, 

and a dynamic automated prompt engineering 

mechanism and workflow for summarization [5]. 

Looking ahead, the system provides a strong 

foundation for future features like speaker 

recognition, emotion detection, and seamless 

integration with collaboration tools like Slack, 

Notion, and Trello [6]. 

 
Fig 1.1. Overview of Extension 



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2560 

II. RELATED WORK 

 

Several commercial and open-source tools have 

emerged to address meeting transcription and 

summarization requirements, each with its own 

strengths and weaknesses. Commercial tools such as 

Otter.ai and Fireflies.ai offer real-time transcription 

and AI-generated summaries. Otter.ai provides 

speaker identification and accurate transcription via 

proprietary ASR, but it is subscription-based and 

lacks extensive customization options [2]. Fireflies.ai 

supports popular tools such as Zoom, Teams, and 

Google Meet, using NLP methodologies to extract 

action items and create follow-up content. However, 

it is heavily cloud-dependent and lacks offline 

functionality [9]. 

Native tools provided by Microsoft Teams and 

Google Meet offer limited transcription and fail in 

noisy environments, and they do not provide AI 

summarization, making them less useful for 

generating actionable post-meeting insights [12].   

In contrast, open-source options like Mozilla’s 

DeepSpeech are more flexible and private. 

DeepSpeech, built on top of Baidu's Deep Speech 

architecture, is lightweight, offline-friendly, and 

ideal for browser extensions such as Meeting Mate 

[1]. OpenAI's Whisper model, while more accurate 

and multi-lingual, is more computationally intensive, 

making it less suitable for real-time web apps [5]. 

Kaldi, another popular toolkit in research, offers 

modularity and precise management of ASR 

pipelines but is too complex for lightweight 

applications [14]. 

For summarization, methods are classified as 

extractive and abstractive. Extractive techniques like 

BERT identify important sentences, while abstractive 

methods, such as GPT-3, BART, and Gemini AI, 

generate paraphrased, natural-sounding summaries 

[6]. Meeting Mate leverages Gemini AI for 

structured, context-aware meeting overviews [9]. On 

the browser side, real-time audio recording is 

achieved through the Web Audio API, 

ScriptProcessorNode, and Web Workers for 

background processing, which mirrors the 

architecture used in WebRTC apps and voice 

assistants [16]. Challenges in this domain include 

ensuring low latency, cross-browser compatibility, 

and safeguarding user privacy. Unlike cloud-first 

tools, Meeting Mate prioritizes local processing of 

audio before securely streaming data to the backend, 

addressing privacy concerns effectively [5]. 

For generating reports, tools such as Notion AI and 

ClickUp offer manual note-taking options, while 

services like SummarizeBot can summarize meetings 

but lack real-time functionality. Meeting Mate 

automates this entire process, using ReportLab to 

produce time-stamped, structured PDF reports with 

summaries, decisions, and action items [9]. 

By integrating real-time ASR, AI-driven 

summarization, and browser-based audio capture, 

Meeting Mate fills significant gaps in existing tools, 

providing a lean, privacy-conscious, and completely 

automated solution. Future improvements can 

include speaker diarization, multi-language support, 

and seamless integrations with task managers, 

showcasing the potential synergy between modern 

AI, Web APIs, and productivity-focused extensions 

[6]. 

 

III. METHODOLOGY 

 

Meeting Mate uses three-tier architecture to offer 

real-time transcription and summarization of web 

meetings via a browser-based interface. This is 

achieved via a Chrome Extension (frontend), Node.js 

WebSocket server (middleware), and a Flask API 

backend. The process starts with the Chrome 

extension recording audio in real-time during virtual 

meetings using the Web Audio API. Via content 

script injection, it identifies active meeting tabs such 

as Google Meet, Zoom, or Microsoft Teams. After 

audio has been captured, it's processed by a Web 

Worker, downsampled from 48kHz to 16kHz (since 

DeepSpeech demands so). Downsampling is done in 

a non-blocking threaded environment via 

downsampling_worker.js so that the browser UI isn't 

impacted. 

Processed audio chunks are processed in 512-sample 

frames through ScriptProcessorNode and streamed as 

Int16Array binary format prior to being streamed to 

the backend through Socket.IO. The binary streaming 

not only saves bandwidth by about 40% but also 

facilitates faster data transfer. The Node.js 

WebSocket server as middleware handles several 

concurrent meeting sessions and sets up DeepSpeech 

(v0.9.3) for speech-to-text conversion streaming. 

Reuse of the audio stream prevents reloading the 

model for each session, reducing latency by about 

300ms. The server divides speech through silence 

gaps and streams real-time transcriptions back to the 

extension. 



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2561 

 
Fig 3.1. System Flow Diagram 

 

Backend-wise, a Flask API accepts the transcript and 

processes it using Gemini AI to summarize. Rate 

limiting strategies and cached prompts optimize the 

use of Gemini API, minimizing cost and 

guaranteeing stable performance. The summarizer is 

prompt-engineered to provide structured summaries 

with a meeting summary, main decisions, and action 

items. The backend also produces styled PDF reports, 

like timestamps, discussion topics, and placeholders 

for future speaker-attributed quotes, using 

ReportLab. Meeting Mate also features strong error 

management. It skips over corrupted audio frames 

through CRC checks, buffers audio locally when 

there are network interruptions, and returns a "No 

speech detected" message for silent sessions instead 

of crashing. This all-around approach guarantees 

usability and reliability. 

Overall, Meeting Mate's strategy integrates browser-

native audio recording, WebSocket-efficient 

streaming, offline-capable DeepSpeech transcription, 

and AI-driven summarization. By combining real-

time processing with privacy-oriented design and 

automated PDF output, the system eliminates the 

drudgery of individual note-taking and delivers 

formatted, actionable meeting reports. Speaker 

diarization and offline summarization with 

TensorFlow Lite will be added in future 

development. 

 
Fig 3.2 DeepSpeech Streaming Inference 

 

IV. PROPOSED MODEL 

 

The proposed model seeks to transform the way 

meeting agendas are created by leveraging Artificial 

Intelligence (AI) to automate and streamline the 

process. Traditionally, generating a meeting agenda 

requires manually gathering information, prioritizing 

topics, and structuring the content to ensure a smooth 

flow of the meeting. This approach is not only time-

consuming but also prone to human error and lacks 

consistency. The AI-driven solution addresses these 

challenges by providing a system that can generate 

meeting agendas efficiently, accurately, and in real-

time, greatly improving productivity for 

organizations. 

The model begins by collecting essential input data 

from various sources such as previous meeting 

transcripts, emails, chat logs, and relevant 

documents. Using advanced Natural Language 

Processing (NLP) techniques, the AI analyzes this 

data to identify key topics, action items, and critical 

decisions that need to be discussed. It also detects 

recurring themes from past meetings, ensuring that 

important areas are revisited in upcoming sessions. 

This process ensures that the agenda is not a generic 

template, but rather a personalized document 

specifically tailored to the meeting's content and 

objectives. Additionally, the model allows users to 

customize the agenda according to their needs, 

ensuring it aligns with specific goals for the meeting. 

 
Fig 4.1. System Architecture 

 

A. Client Layer  

Client Layer is realized using a browser extension 

that effectively records real-time audio through the 

navigator.mediaDevices.getUserMedia() API. The 

audio is then preprocessed using a Web Worker to 

perform tasks such as downsampling, quantization, 

and data transmission over WebSocket. This layer 

ensures that audio is captured efficiently while 

minimizing computational overhead on the client 

side [12]. 

 

B. Middleware Layer  

Middleware Layer sits on top of Node.js and is 



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2562 

responsible for real-time processing using Socket.IO. 

This layer employs DeepSpeech for real-time speech 

recognition streaming, which transcribes the 

meeting’s audio as it is captured.  

The middleware layer handles session connections by 

monitoring audio silence intervals (500ms) to 

manage the flow of data. DeepSpeech, a well-known 

speech-to-text model, is leveraged for high-quality 

transcription and is fine-tuned for both accuracy and 

low-latency performance [3]. 

 

C. Backend Layer 

Backend Layer utilizes Flask to provide AI-based 

summarization, employing the Gemini Pro model for 

structured prompt-based tasks. The backend layer 

processes the transcripts to extract critical decisions 

and action items in a context-aware manner. For 

dynamic report generation, ReportLab is used to 

produce time-stamped, structured PDF reports, with 

layout modifications based on content level. The 

backend also includes a robust audio processing 

pipeline, featuring stereo-to-mono conversion, FIR 

filtering for downsampling, and WebSocket message 

structuring for efficient data transmission. 

DeepSpeech’s model parameters are fine-tuned to 

balance accuracy and latency, delivering a 92% word 

accuracy rate. AI summarization is specifically tuned 

for decision and task extraction. To enhance 

efficiency, Redis caching is employed for quick 

access to frequently needed data, and performance 

optimizations such as WebAssembly are used for 

audio downsampling. For data compression, 

Zstandard is utilized for WebSocket data, and the 

server-side processing is optimized to handle high 

throughput. Robust error handling mechanisms 

provide fault tolerance, including auto-gain control 

for audio normalization, advanced retry logic for 

network failures, and fallback operations in case of 

API failure [6]. 

The overall design of the system ensures a seamless, 

efficient, and highly accurate experience for users, 

addressing critical challenges in real-time 

transcription and summarization. 

 

V.  EVALUATION CRITERIA 

 

The evaluation of the Socket.IO Chat Extension 

Project is based on four key criteria. Functionality 

(40%) checks the system's ability to connect and 

disconnect from the server, ensure live message 

delivery, manage user input via buttons (e.g., send, 

disconnect), and handle errors effectively, ensuring 

users are notified of any network or server issues. 

Code Quality (30%) looks at how well the code is 

organized into modular, reusable components with 

clear function and variable names, ensuring 

performance is optimized with no memory leaks or 

unnecessary re-renders. UI/UX (20%) evaluates the 

consistency of design elements, such as colors, fonts, 

and spacing, and the responsiveness across mobile 

and desktop platforms with appropriately sized 

interactive elements. Lastly, Documentation (10%) 

emphasizes a well-structured README, clear setup 

and usage instructions, and helpful inline comments 

for key sections like Socket.IO initialization. In 

addition to these criteria, the evaluation considers the 

ease of extending the chat functionality to include 

features such as emoji support or file sharing. 

Together, these factors ensure the system not only 

works as intended but is also maintainable, user-

friendly, and scalable for future enhancements. 

 
Table 5.1. Evaluation Criteria 

 

VI. EXPERIMENTAL RESULTS 

 

To assess the effectiveness of the AI-based meeting 

agenda generation system in real-world settings, 

experiments were conducted using both simulated 

scenarios and actual user interactions. The aim was to 

evaluate its performance in practical meeting 

contexts. 

 

The tool was tested across various meeting formats, 

including client discussions, team check-ins, and 

brainstorming sessions, involving diverse group sizes 

and topics. Results indicated that the AI-generated 

agendas were highly relevant, capturing most key 

discussion points and significantly cutting down 

preparation time by producing organized agendas in 

under a minute. 



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2563 

 
Fig 6.1. User Interface of the Meeting Mate 

Extension 

User feedback was largely positive, with 84% 

expressing satisfaction with agenda quality and time-

saving benefits. Some users also recommended future 

improvements like adding file attachments or 

reference links to agenda items. 

Participants emphasized the value of adding 

collaborative features like real-time suggestions or 

voting on agenda topics, fostering a more inclusive 

planning process. Calendar integration was another 

frequent suggestion to help detect scheduling 

conflicts. A notable finding was the AI’s learning 

ability—adapting to user habits such as bullet-point 

formatting or time estimation to deliver more 

personalized agendas over time. 

 
Fig 6.2. Sample Meeting Agenda Generated by the 

System 

 

The system integrated effectively with Google Meet, 

extracting meeting details and transcripts from 

calendar invites to enrich agenda content. Minor API 

delays under heavy use had minimal impact. Stress 

testing confirmed the tool’s ability to handle 

simultaneous meetings, demonstrating its scalability 

for larger teams. 

In summary, the evaluation confirmed the AI-

powered agenda tool as both practical and efficient. 

It reduces preparation time, improves structure, and 

adapts to user needs. With strong feedback and stable 

performance, it holds significant promise for 

widespread professional use. 

 

VII. CONCLUSION 

 

The Meeting Mate project seamlessly bridges the gap 

between real-time meeting participation and 

automated reporting by integrating client-side audio 

processing, DeepSpeech-based speech recognition, 

and Gemini AI-powered summarization. It generates 

accurate transcripts, structured meeting summaries, 

and professional PDF reports while ensuring privacy 

through local audio preprocessing and minimal 

reliance on cloud services. By tackling key 

challenges such as low-latency streaming, noise 

robustness, and prompt engineering for concise 

responses, the system enhances workplace 

productivity and streamlines documentation 

workflows. Future improvements like speaker 

diarization and multilingual support could further 

expand its capabilities, making it a versatile tool for 

modern collaborative environments. Overall, 

Meeting Mate showcases the practical value of 

combining edge computing, real-time natural 

language processing, and generative AI to address 

everyday inefficiencies and transform the way teams 

interact and document meetings. It reduces the 

burden of manual note-taking, allowing participants 

to focus on meaningful discussion. With its 

scalability and adaptability, the system holds promise 

for wide adoption across industries and 

organizational sizes. Ultimately, it sets a new 

standard for intelligent meeting assistance in the 

digital age. 

 

REFERENCES 

 

[1] Yashodara, P.H.E., Thilakarathne, M.H.K.T.S., 

Ranepura, R.S., Karunasena, A., Bhashitha, 

W.P.K.K., & Bandara, P. (2023). Online 

Meeting Summary Generator. International 

Journal of Computer Applications, Vol. 185, 

No.16. Sri Lanka Institute of Information 

Technology, Malabe, Sri Lanka. 

[2] Pandya, A., & Gawande, N. (2022). Automatic 

Generation of Minutes of Meetings. 

International Journal of Scientific Research in 

Science, Engineering and Technology. doi: 

10.32628/IJSRSET22928 

[3] Arianto, R., Asmara, R.A., Nurhasan, U., & 

Rahmanto, A.N. (2024). Automatic notes based 

https://doi.org/10.32628/IJSRSET22928


© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 

IJIRT 180775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2564 

on video records of online meetings using the 

latent Dirichlet allocation method. 

International Journal of Electrical and 

Computer Engineering (IJECE), 14(4), 4147–

4153. doi: 10.11591/ijece.v14i4.pp4147-4153 

[4] Sadri, N., Liu, B., & Zhang, B. MeetSum: 

Transforming Meeting Transcript 

Summarization using Transformers. University 

of Waterloo. 

[5] Jung, D., Chour, C.Y., & Shao, Q. (2023). 

Enhanced Engagement and Productivity in 

Online Meeting with Intelligent Real-Time 

Content-Based Question Auto-Generator. 

Technical Disclosure Commons, Defensive 

Publications Series. 

[6] Zhong, M., Yin, D., Yu, T., Zaidi, A., Mutuma, 

M., Jha, R., Awadallah, A.H., Celikyilmaz, A., 

Liu, Y., Qiu, X., & Radev, D. QMSum: A New 

Benchmark for Query-based Multi-domain 

Meeting Summarization. Fudan University, 

UCLA, Yale, Microsoft Research. 

[7] Golia, L. Action-Item-Driven Summarization 

of Long Meeting Transcripts. Rice University, 

USA. 

[8] Kirstein, F., Wahle, J.P., Ruas, T., & Gipp, B. 

What’s under the hood: Investigating 

Automatic Metrics on Meeting Summarization. 

University of Göttingen, Germany. 

[9] Verma, R., Gupta, S., Sharma, S., Aggarwal, T., 

& Mahesha, A.M. (2022). Automated Meeting 

Minutes Generator. JETIR, Volume 9, Issue 1. 

JSS Academy of Technical Education, Noida. 

[10] Singh, A., Gautam, A., Deepanshu, Kumar, G., 

Meena, L.K., & Saroop, S. (2023). Automated 

Minutes of Meeting Using a Multimodal 

Approach. IJRASET, Volume 11, Issue XII. 

ADGIPS, Delhi. 

[11] Banerjee, S., Mitra, P., & Sugiyama, K. (2015). 

Generating Abstractive Summaries from 

Meeting Transcripts. Conference Paper. DOI: 

10.1145/2682571.2797061 

[12] Rajpurohit, N.S., Srujan, S.P., Panagar, T.K., & 

Padma Priya, K. (2023). Automated Generation 

of Minutes of Meeting Using Machine 

Learning. IJARIIE, Volume 9, Issue 3. 

[13] Lin, H., Bilmes, J., & Xie, S. Graph-based 

Submodular Selection for Extractive 

Summarization. University of Washington & 

University of Texas at Dallas. 

[14] Liu, F., & Liu, Y. From Extractive to 

Abstractive Meeting Summaries: Can It Be 

Done by Sentence Compression? The 

University of Texas at Dallas. 

[15] Koay, J.J., Roustai, A., Dai, X., & Liu, F. A 

Sliding-Window Approach to Automatic 

Creation of Meeting Minutes. University of 

Central Florida. 

[16] Oya, T., Mehdad, Y., Carenini, G., & Ng, R. A 

Template-based Abstractive Meeting 

Summarization: Leveraging Summary and 

Source Text Relationships. University of 

British Columbia, Canada. 

[17] Murray, G., & Renals, S. (2008). Meta 

Comments for Summarizing Meeting Speech. 

Lecture Notes in Computer Science, vol. 5237. 

DOI: 10.1007/978-3-540-85853-9_22 

[18] Feng, X., Feng, X., & Qin, B. A Survey on 

Dialogue Summarization: Recent Advances 

and New Frontiers. Harbin Institute of 

Technology, China 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1007/978-3-540-85853-9_22

