© June 2025| JIRT | Volume 12 Issue 1 | ISSN: 2349-6002

c-Distance and common fixed-point theorem in cone

metric spaces

Poonam Sahu !, Arvind Gupta 2, Roshni Sahu?, Anupama Gupta* Praveen Shrivastava 3
'Research Scholar, Govt. M.V.M., Bhopal (M.P.)
? Professor, Govt. M.V.M., Bhopal (M.P.)
Research Scholar, IEHE, Bhopal (M.P.)
* Professor, BU IT, Bhopal (M.P.)
? Professor, NRI VISMT College, Bhopal (M.P.)

Abstract- We introduced the notion of c-distance in a
cone metric space and used it to establish a new common
fixed point theorem by using the distance. This result
generalizes several known fixed point theorems and has
potential applications in functional analysis and
optimization problems

Keyword: cone metric space, common fixed point, c-
distance.

1. INTRODUCTION
Since Huang and Zhang [1] introduced the concept of
a cone metric space, numerous researchers have

established fixed point theorems in both normal and
non-normal cone metric spaces (see [2-17] and related
references). In the study of Shenghua Wanga and
Baohua Guoa [20] they introduce a novel concept
called c-distance in cone metric spaces, which serves
as a cone-based counterpart to the m-distance proposed
by Kada et al. [18]. Utilizing this new distance
function, we prove a common fixed point theorem
within the framework of cone metric spaces.

2. PRELIMINARIES

Definition 2.1: Let E be a real Banach Spaces. A subset P of E is called a cone if and only if

a. Pisclosed ,non empty andp # 0

b. a,b€ER,a,b>0andx,y € Pimply ax + by € P

c. Pn(—P)={0}

Given a cone P C E we define the partial ordering < with respect to P by
x < yifandonlyify — x € P.
We write x < y to denote that x < y but x # y, while x << y will stand fory — x € int.p
Definition 2.2: Let X be a nonempty set. Suppose the mapping d: X X X — E satiafies the following condition:

@). 0<d(x,y)Vx,y€e Xwithx #y andd(x,y) =0 x =y

(ii). d(x,y) =d(y,x), Vx,y €X

(iii). d(x,y) <d(,y) +d(x,y), Vx,yEX

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 2.3: Let (X, d) be a cone metric space. Let {x,,} be a sequence in X and x € X.

@). For all ¢ € E with 0 < c, if there exists a positive integer N such that
d(x,,x) < cforalln > N,
then {x,} is said to be convergent to x and the point x is the limit of {x,,}.

We denote this by x,, = x.

IJIRT 180849 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2993



© June 2025| JIRT | Volume 12 Issue 1 | ISSN: 2349-6002

(ii). Forall c € E with 0 < c,ifthere exists a positive integer N such that
d(xXp, xp} L c..forallm,n > N,
then {x,} is called a Cauchy sequence in X.
(iii). A cone metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Lemma 2.4:[1] Let (X, d) be a cone metric space, P be a normal cone with normal constant K. Let {x,,} be a sequence
in X. If {x,,} converges to x and {x,,} converges to y, then x = y. That is the limit of {x,} is unique.

Definition 2.5:[20] Let (X, d) be a cone metric space. Then the mapping q: X X X — E is called a ¢ — distance on X
if the following are satisfied:

(1) 0<qx,y)Vx,y€X

(@) q(x,2) < q(y,x) +q(y,2), Vx,y,z€ X

(q3). Forallx € X ,ifq(x,y,) < uforsomeu =u, € Pandalln > 1,then q(x,y) S u
whenever {y,,} is a sequence in X converging to a point y € X.

(q4). Forall c € E with 0 < c, there exists e € E with 0 « e such that q(z,x) < e
q(z,y) K e imply d(x,y) < c.

Example 2.6 [20]. Let (X, d) be a cone metric space and P be a normal cone. Put q(x,y) = d(x,y) forallx,y € X.
Then q is a ¢ — distance. In fact, (q,) and (q,) are immediate. Lemma 2.4, shows that (q3) holds. Let ¢ € E with
0 « c be given and pute = % Suppose that g(z,x) < e and q(z,y) < e.Thend(x,y) = q(x,y) < q(x,2) +
q(z,y) < e+ e = c.This shows that q satisfies (q,) and hence q is a ¢ — distance.

Lemma 2.5[20] Let (X,d) be a cone metric space and q be a ¢ — distance on X. Let {x,,} be a sequence in X. Suppose
that {u,,} is a sequence in P converging to 0. If q(x,, , x,,) < u, forallm > n, then {x,} is a Cauchy sequence in
X.
Proof. Let ¢ € E with 0 < c.Thenthereexists § > 0 such thatc —x € intP forany x € P with ||x|| < 6.
Since {u,} converges to 0, there exists a positive integer N such that

[lun]| < 6 foralln = N and
so ¢ —u, € intP, i.e,u, < c foralln = N. By the hypothesis q(x, ,x,,) < u, K cforallm > nwithn =
N.This implies that

q(xy , Xpe1) S U, K cand q(x, , Xpme1) < U, K cforallm > nwithn > N.

From(q,) with e = c it follows that q(x,, 41 ,Xm41) K cforallm > n withn > N. By the definition of Cauchy
sequence, we conclude that {x, } is a Cauchy sequence. This completes the proof.

3. Main Results
Theorem 3.1: Let X a non empty set, (X, d) be a Cone metric space over a Banach Space E with a normal cone P c E,
and F, G: X — X be mappings. Assume that the following conditions satisfying:

@). The cone P is normal with normal constant N.

(ii).  There exist constants @ = 0,8 = 0 such that % € (0,1)

(iii). The mapping F, and G satisfy a generalized Banach- Kannan Type contraction for all x,y € X;

Gx, F
q(F(x),F(y)) < a[q(Gx,Fy) + q(Fx,Gx)] + B {%} ..(3.1)

Suppose that the range of G contains the range of F and G(X) is a complete subspace of X. if F and G satisfy
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inflllqg(Fx, Il + llg(Gx, I + llg(Gx, Fx)ll: x € X} > 0
Forall y € X with y # Fy or y # Gy, then F and G have a common fixed point in X.
Where < is the partial ordering induced by the cone P,
Proof:
Let x, € X be an arbitrary point. Since F(X) < G(X), there exists an x; € X such that

Fx, = Gx;

By induction, a sequence X,, can chosen such that
Xn_q1 = Fx, = Gx,.1, n=0,1,2, ..., By (3.1) for any natural number n, we have
q(Gxn, GXpy1) = q(Fxn_y, Fxp)

< a[q(Gxn—lﬂFxn) + Q(Fxn—l: Gxn—l)] + B{

Q(Gxn—lﬂFxn)
1 + {Q(Fxn—lﬂ Gxn)}z}
< alq(Gxp_q1,Gxpnyq) + q(Gxy, Gxp_)] + ﬁ{ 9(GXn—1, Gns1) }
~ n-1, n+1 q n n-1 1+ {C[(Gxn, Gxn)}z
< alq(Gxy_q, GXp) + q(GXn, GXpiq) + q(Gxy, GXp—y))]
Q(Gxn—li Gxn) + q(Gxn' Gxn+1)
o[

a[zq(Gxn—lr Gxn)] + aQ(Gxn' Gxn+1) + .B{q(Gxn—li Gxn) + q(Gxn' Gxn+1)}

2a + B)Q(Gxn—lr Gxn) + (a + .B)q(Gxn' Gxn+1)
q(Gxn, GXnia) < 2+ B)q(Gxp—y, Gxp) + (@ + B)q(Gxp, GXpyr)
(1 —a—B)q(Gxy, Gxny1) < Ca+ B)q(Gxn_y, Gxp)

Ca+p)
1-a-p)

<
<

q(Gxn' Gxn+1) < q(Gxn—l' Gxn)

So,
q(Gxp, Gxpy1) Sk q(Gxy_q,Gxy) , =123 ..

Where k = ((12_0:_6;) € (0,1) By induction, we get
q(Gxp, GXpy1) < k™ q(Gxy, Gxq) ...(3.2)

Let m,n with m > n be arbitrary integers. From (3.2) and (q) it follows that
q(Gxn' me) < q(Gxn' Gxn+1) + Q(Gxn+1: Gxn+2) + .. +Q(me_1, me)
q(Gxp, Gxp) < k™ q(Gxg, Gxy) + k™1 q(Gxo, Gx1) + ... +k™ 1 q(Gxo, Gxy)
q(Gxn, Gxp) < (k™ + K™ + . +k™ 1} q(Gxy, Gxy)

m-1

4G Gxm) < ) k' q(6x0,67)

i=n

a6, Gxn) < KL q(6%0,Gx,)
i=n

<
<

(G, Gx) < == q(Gx0, G%;) .(33)

By using Lemma 2,5, we conclude that the sequence {Gx,} is a Cauchy sequence in X.
Since G (X) is complete, there exists some point y € G (X)such that Gx,, » y,n — oco. By (3.3) and q3

4G y) < 2 (G0, Gxy), =012, .. (34
Since P is a normal cone with normal constant K, From (3.4) it follows that

KK™
la(Gxn, Y < 7= lg(Gxo, Gx)I, n=10,1.2,... --(3.5)

From (3.3) we have
n

Kk
lla(Gxy, Gl < T 14 (Gxo, Gx)ll, n=0,12,...
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For all m > n. In particular, we have

lg(Gxn, Gxni )l <

Foralln =0,1, ...

1-k

”‘Y(Gxo, le)”: n= 0;1;2)

Suppose that y # Gy or y # Fy. Then by Hypothesis (3.5) and (3.6) we have

0 <inf{llq(Fx, Il + llq(Gx, Ml + lg(Gx, Fx)||: x € X}

< inf{llg(Fxn, I + lg(Gxn, M + 11g(Gxn, Fxp)ll:n = 1}
= inflllq(Gxn1, VI + 11q(Gxn, M + 19(GXp, GXpy ) llim = 1}

n

< {Kk
<inf 1%

la(Gxy, Gxo)ll + 11q(Gxy, Gxo)ll + lg(Gxy, Gxo)l: 12 = 1} =0

This is a contradiction. Hence, y = Gy = Fy. This completes the proof.
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