
© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6175

Comparative study of XML vs Jetpack Compose for UI

Development in Android

Raktinder Singh1, Er. Rohit Kumar Singh2, Anchal Singh3

1Student, B. Tech CSE, SOET, CT University, India
2,3Assistant Professor, B. Tech CSE, SOET, CT University, India

Abstract- There have been noticeable changes in

Android Application development over the years,

particularly in the area of UI design techniques. The

traditional and standard method for building a UI in

an Android app is via XML (Extensible Markup

Language). In a similar fashion as all other sectors of

technologies, Android is ever-evolving and enhancing

their methods of building an intuitive user interface for

their android apps by introducing - Jetpack compose.

Jetpack Compose is a modern UI toolkit created by

Google, and therefore, it is also providing developers

an option that is advertised to be quicker to develop,

more readable and easier to maintain. This research

study presents a comparison of XML based UI and

jetpack compose UI in regards to development time,

code complexity, performance, learning curve, and

ease of maintenance. By implementing the same UI

screen using both coding techniques, and comparing

the two coding techniques, we hope to provide

developers an insight in regards to which development

techniques are most applicable to different

development situations. Through our findings, Jetpack

Compose emerges with a clearer, more developer-

centric coding structure, opening up new possibilities

for developers when developing modern applications,

however there is still room for XML in terms of legacy

systems and established coding conventions.

I. INTRODUCTION

1.1 Background Of Android UI Development

In the early days of Android development, UI design

consisted of basic layouts and components with the

main purpose for the apps to be usable, rather than

how they appeared or if they engaged users.

Developers mainly had basic tools to design these

interfaces. As a result, apps often did not look very

good or function very smoothly.

Another significant challenge in the early days of

Android development was the multitude of Android

devices of varying sizes and resolution screens.

Developers often had to create multiple versions of

the same UI in order to achieve a proper design for

all devices. This process was tedious and many

errors occurred.

In 2014, Google announced the release of Material

Design, which completely transformed how

Android applications were designed. Prior to the

announcement of Material Design, individual apps

all had their own designs, and there were no guiding

design principles. Consequently, user experience

felt disorganized and misaligned across apps.

Material Design was created to solve this problem.

Material Design provides a set of well-defined

design principles, so that every developer could use

and follow prototype guidelines. They introduced

design principles, such as, color contrasts with bold

colors, animation transitions, and using realistic

shadows - using ideas from the real world. Which

left off by considering how light interacts with

different surfaces in the environment. It is more than

aesthetically enhancing app interfaces; Material

Design intended to create a standardized project, so

that every app developed along these guidelines

would feel intuitive and look nice regardless of

publisher.

Several years later, Google detained as much in the

way of improvement and expansion of the Material

Design system as development of Material Design

you see today. Because as of 2025, we have Material

You, the next cycle of Material Design. With more

emphasis on personalization, Material You allows

users to alter the way that the interface is designed

by providing many options based on wallpaper

color, theme style, and preferred preference options.

The updates made to, with Material You advanced

Android Interface more ahead in progress beyond

Material Design to even more provide a more

modern, user-centric experience.

1.2 Traditional Layouts & Rise of Jetpack

Compose

Initially, Android app development involved users

designing user interface (UI) in XML (Extensible

Markup Language). Developers would create XML

files that described where they wanted buttons, text,

images, and other elements placed on the screen.

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6176

The beauty of this is that it kept the layout of the UI

completely separate from the app's logic (the Java or

Kotlin code). Separating these two parts of the app

made it easier to build larger projects, because they

became easy to manage and to understand.

However, managing that XML was not always easy.

When designing more complex screens, the code

could become quite long and complicated. Further,

if the developer was looking for parts of the UI to

always change while the app was being used (for

example, showing/hiding buttons programmatically,

or changing layouts based on user action), it required

lots and lots of extra code to change the app at

runtime following the original XML declaration.

This ultimately led to apps being difficult to

maintain and the potential for extra bugs in the

system.

During this era of Android app development, both

Eclipse (and later Android Studio, which was the

main app development environment as of about

2013), had tooling that supported XML layouts with

visual editors. This meant that developers could use

tools that contained the UI Elements in the XML file

and build screens by dragging and dropping the UI

elements. While this made a developer's life

somewhat easier in the XML world, they were not

perfect. Many times the real time preview didn't

realize the layout had changed, and the magical

transition from visual view to code, often separated

the development process in unfortunate ways as

well.

Nevertheless, XML provided a large part of the

backbone to Android early in its growth phase. It

injected structure and standardization into app

design in the early days of Android. As smart

devices became more advanced, and with high user

expectations, it quickly became evident that the need

for a more modern and flexible approach to

developing UIs would be required.

That's when Google released Jetpack Compose,

which was officially launched in 2020, and by 2022

was being quickly adopted. Jetpack Compose meant

developers could now create UI directly using

Kotlin—no more separate XML files. Jetpack

Compose improved the ease of creating dynamic

app content that is interactive, using less code, and

offering better performance from a developer's time

spent using the app's UI.

Today, there is choice and technology options, and

options for developers to build their UIs in different

technologies. Many developers are unsure of the

practical differences between XML and Jetpack

Compose at the moment—many are focused on

learning curves, how quickly and easy an

implementation is, how easy it is to maintain, and

what would offer the best performance.

To alleviate confusion developers and technology

options it seems to be important to methodically

compare the differences.

● The goal of this project is to carefully

investigate XML and Jetpack Compose as

Android UI technologies, and then compare

both in real-world use cases.

● We are going to do the following:

● Examine the pros and cons of both XML and

Jetpack Compose in the process of building user

interfaces

● Assess the complexity of implementation for

each, as well as the ease of the ongoing

maintenance of the code, and the overall effect

on developer productivity.

● Determine which toolkits have the best

performance, scalability when considering app

size, and flexibility of the toolkit itself.

● Ultimately, we want to provide guidance to

developers and stakeholders by delivering the

consideration necessary to choose a toolkit

based on their needs and their team's

experience.

II. LITERATURE REVIEW

The literature reviewed identifies the transition of

Android UI development from XML to Jetpack

Compose toolkit. Jetpack Compose has benefits

such as declarative syntax, integration into Kotlin,

reusable Composable functions, built-in state

management, and speed to develop UI, leading to

less boilerplate code and maintainable code.

Inductive development tools for developers give

Compose definite advantages to speed of getting

started, start-up speed for low demand apps, and

other modern paradigms. Conversely, XML is

relevant today because it is a mature UI stack with

predictable behavior, runtime stability and

performance on low-end devices, and legacy system

compatibility. XML has finer granularity for layout,

IDE tooling, and normalized behavior across a

spectrum of devices. However, Jetpack Compose

has performance concerns such as CPU and battery

cost of complexity for large compound apps, limited

backwards compatibility with legacy apps, and is

still maturing as an UI technology. XML is verbose

and many contemporary developers will have a

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6177

steep learning curve with. XML also has limitations

for modern UI response or needs with respect to

real-time animations. While the literature contains

many investigations of the performance metrics of

JetPack Compose and XML, it has several research

gaps with respect to long-term scalability,

accessibility, hybrid integration, or developer

productivity in existing applications.

III. COMPARATIVE ANALYSIS

Jetpack Compose - Advantages

S.No Jetpack Compose Advantage Description

1 Faster Startup & Rendering Offers better app launch

performance and smoother

navigation animations.

2 Declarative UI Model Simplifies UI logic by focusing on

what the UI should look like, not

how to update it.

3 Full Kotlin Integration Built entirely in Kotlin,

eliminating XML and reducing

boilerplate.

4 Composable Functions UI elements are modular, reusable

functions for better code structure.

5 Recomposition Automatically updates affected UI

parts on state changes.

6 Memoization Support Uses remember for caching and

avoiding unnecessary

recalculations.

7 Strong Encapsulation Each Composable manages its

own state, improving modularity.

8 Enhanced Tooling Live Preview, Interactive Preview,

and debugging tools in Android

Studio.

9 Lower Coupling UI and logic live in the same

Kotlin file—more maintainable

than XML.

10 Battery & CPU Efficiency Lower CPU strain and optimized

rendering in animations.

11 Single-Activity Architecture Encourages a cleaner, more

scalable architecture.

12 Kotlin-Only Language Avoids context-switching between

XML and Kotlin.

13 Event Handling Simplicity Lambda expressions make event

handling more intuitive.

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6178

S.No Jetpack Compose Advantage Description

14 Code Maintainability Concise and scalable structure

ideal for modern UI demands.

15 UI Flexibility Composables and Modifiers

provide rich customization.

16 Industry Adoption Increasingly adopted by Google

and large developer communities.

17 Improved Debugging Recomposition tracing and UI

Inspector improve diagnostics.

18 Adaptive Layouts Easier to implement fluid UIs

across screen sizes.

19 Better Memory Management (in

low demand apps)

Lower memory consumption in

simple use cases.

20 Easier Learning Curve (for Kotlin

devs)

No need to learn XML separately;

aligns with modern dev stack.

XML - Based UI - Advantages

S.No XML Advantage Description

1 Mature and Stable Used for over a decade; battle-

tested and consistent.

2 Faster Scroll Performance Scrolls more smoothly in

RecyclerViews and long lists.

3 Lower Jank More stable frame rate and

rendering in scrolling scenarios.

4 Better Performance on Low-End

Devices

XML performs better on older

hardware than Compose.

5 Explicit View Hierarchy Provides granular layout control

with View/ViewGroups.

6 Fine-Grained Layout Control Attributes like layout_weight,

padding, gravity enhance control.

7 Separation of Concerns UI in XML, logic in Java/Kotlin—

clear structural boundaries.

8 Rich Tooling Support Layout Editor, ConstraintLayout

Designer, drag-and-drop UI.

9 Predictable Rendering Less variance in layout behavior

and runtime performance.

10 Broad Compatibility Works well with both Java and

Kotlin; good for legacy apps.

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6179

11 Lower Battery Consumption Less energy use in high-demand

apps compared to Compose.

12 Lower CPU Usage Less processor strain in medium to

heavy UI operations.

13 Consistent Memory Use More uniform across runs;

predictable memory usage.

14 Backward Compatibility Fully functional on lower Android

API levels.

15 Visual Layout Preview Easier to visualize and design UI

in IDE without running the app.

16 ViewBinding/DataBinding

Support

Built-in tools for automatic UI-

data synchronization.

17 Fragment Integration Works seamlessly with legacy

Fragment-based architectures.

18 Easier Debugging (for Imperative

Devs)

Familiar for those with a

traditional development mindset.

19 Low Migration Overhead Already standard in most existing

projects; no big refactor needed.

20 Less State Management Overhead Simpler UI apps require fewer

reactive constructs.

IV. RESEARCH GAP

Despite the growing body of literature comparing Jetpack Compose and XML-based UI in Android development,

several key gaps remain:

Gap Area Description

1. Long-Term Maintainability Few empirical studies track how Compose or XML

scale in large apps over time in terms of tech debt,

team productivity, or refactoring needs.

2. Real-World Case Studies Many studies rely on synthetic benchmarks. More

industry use-case-based studies (e.g., banking apps,

gaming UIs) are needed.

3. User Experience Analysis Very limited exploration exists on how UI built with

Compose vs. XML affects user engagement or

satisfaction.

4. Low-End & Legacy Device Performance More data is required to understand Compose’s

performance on API 21–26 devices and less powerful

hardware.

5. Battery Impact Over Time Most Compose studies only benchmark short-term

energy usage; long-term effects under typical user

behavior patterns are underexplored.

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6180

6. Tooling Stability & Productivity Metrics While Jetpack Compose claims faster iteration,

quantifiable data on actual productivity gain in

enterprise teams is minimal.

7. Accessibility Support Limited comparative research on accessibility

implementations and limitations in Compose vs.

XML.

8. Hybrid Integration Scenarios The complexities of integrating Jetpack Compose

into large existing XML-based codebases are not

deeply studied.

9. Cross-Platform Potential No detailed examination of how Compose

Multiplatform fits into UI strategies compared to

traditional XML for Android-only apps.

10. Animation & Motion Performance Although Compose supports advanced animations,

real-world benchmarking under stress is sparse.

V. METHODOLOGY

In order to compare UI development in XML and

Jetpack Compose in Android, a more experimental

and hands-on approach was taken. The methodology

employed design and development of the same user

interface (UI) screens in both XML and Jetpack

Compose to compare and evaluate the important

aspects of development. Android Studio was used as

the integrated development environment (IDE) and

Kotlin was used as the programming language

which is officially supported for development in

Android.

The steps I took were:

1. UI Design Implementation:

We created two versions of the same screen using

the following two methods:

Traditional XML-based layout files.

Jetpack Compose’s declarative UI toolkit.

2. UI Elements:

We used common UI elements that can be

implemented in both methods, including:

Buttons

TextViews / Text Composables

Cards

Lists / LazyColumn

3. Evaluation Criteria:

Both implementation methods were evaluated with

respect to:

Code readability: The degree to which UI code is

easy to read and maintain.

Lines of Code (LOC): The total number of lines of

code used to create the tabs in each method.

Build Time: The time taken by Android Studio to

build and compile the project in each

implementation method.

Ease of use / subjective assessment: This is based on

the developers experience using each method to

design and implement the UI. This includes aspects

of debugging and changing and/or adding to the UI.

This implementation gave us a practical experience

to be able to see a side-by-side comparison that

allows us to see advantages and disadvantages of

each method as they would be seen in real-life

Android UI development examples.

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6181

VI. RESULTS AND DISCUSSION

We present the results based on the creation and evaluation of user interfaces using XML and Jetpack Compose.

We evaluate results based on parameters that include lines of code, time to build the UI, rendering performance,

and developer experience.

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1

6.1 Length of Code

The most important difference we noticed was the

code length. The code length in Jetpack Compose

required far fewer lines to create the same UI. XML

typically has separate layout files and custom

drawable resources for UI elements, and has to be

written in three separate files. For instance, a

custom-styled button in XML would likely require:

A layout XML file

A drawable resource file

Kotlin logic in an Activity/Fragment

Conversely, Jetpack Compose does this in a few

lines of code inside a composable function, and it

does not need any external XML or drawable files.

Feature XML Jetpack Compose

Lines of code (per screen) ~120 lines ~60 lines

Files needed 2-3 per UI element Single Kotlin file

Readability Medium (depends on separating

files)

High (declarative and concise)

6.2 Rendering of UI and Build Time

Although the exact UI rendering times could not be

determined directly, due to constraints of the

systems, Jetpack Compose provided significantly

faster UI preview rendering times within the

interactive preview feature of Android Studio.

Therefore, Jetpack Compose took less time in

updating the emulator or physical device to reflect

any changes made in the UI.

Parameter XML Jetpack Compose

Time to build UI Slow (due to XML parsing) Fast (declarative execution)

Hot reload/preview updates Slower updates Almost instant updates

6.3 Developer Experience

From a developer standpoint, Jetpack Compose

provided a more modern and consistent experience.

Being able to define and preview a UI in the same

file enabled faster iterations on UI. The way state is

handled directly within composable functions made

complex UI logic and interaction easier to work

with.

That being said, XML still provides some

advantages for legacy systems. Developers working

in older projects or using enterprise or traditional

architectures may think XML is better for reasons

such as the following: its maturity and stability;

documentation supporting legacy better than jetpack

compose; numerous online resources and

community examples; etc.

6.4 Pros of Jetpack Compose

● Less boilerplate code

● No separate XML or drawable files for custom

UI elements

● Preview UI faster - build time is faster too

● Allows built-in state management

● Completely written in Kotlin - no switching

between XML and Kotlin files

● Modern toolkit that will align better with

Android development in the future

6.5 Pros of XML

● Mature and stable for over a decade of Android

development

● Good community and plentiful documentation

● Familiar experience for many Android

developers

● Better tooling for legacy APIs and design

patterns

● Easier to integrate into legacy projects or

codebases.

VII. CONCLUSION AND FUTURE WORK

This paper has provided a comparative examination

of the two primary UI development methods for

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6183

Android: XML and Jetpack Compose. Based on our

implementations and assessment of numerous

important criteria, such as code length, build times,

UI render times, and developer experience, we can

conclude that Jetpack Compose is the future of UI

development. It is a modern, concise, and

maintainable way to build UIs in Android.

Jetpack Compose lessens boilerplate code, no need

for separate XML or drawable files, builds and

previews are faster, and state management along

with Kotlin integration is naturally built-in. Jetpack

Compose empowers modern Android developers

with a great way to improve efficiency and

development practices for new projects designed to

support clean architectures and scalable products.

That being said, developers can rely on XML for

existing projects built on good libraries that require

backward compatibility or are developed by teams

of developers from workflows of XML. XML is

mature due to tooling, which means that teams with

more experience use XML alongside its familiar

community support resources in numerous

environments.

In conclusion:

Jetpack Compose is a new, better supported and

more scalable way of developing Android UIs. It is

great for brand-new projects targeting

maintainability and performance. But if you are

continuing work on existing projects that make

heavy use of legacy code and existing UI libraries,

and need to maintain backwards compatibility to a

specific Android version, XML will still fulfill your

needs.

Future Work

To expand this comparative study, the following

possibilities for future work are recommended:

● Large App Development: Examining the

maintainability and performance of both

approaches on challenging multi-screen apps.

● User Testing: Receiving feedback from

developers with varying levels of experience

about their subjective usability or learning

curves.

● Performance Profiling: Measuring and

comparing execution time, memory, and

rendering data on real applications.

Such suggestive future directions would provide

wider perspectives and help development teams

choose design implementations based on project

requirements.

REFERENCES

[1]. Zaed Noori, Caesar Eriksson, “UI

Performance Comparison of Jetpack Compose

and XML in Native Android Applications”

[2]. Leo Wahlandt, Anton Brännholm, “A

Comparative Analysis of Jetpack Compose

and XML Views ”

[3]. Muhammad Suleman Saeed, “Traditional

view system vs. Kotlin-Driven Jetpack

Compose in Native Android Development ”

[4]. Iļja FJODOROVS, “JETPACK COMPOSE

AND XML LAYOUT RENDERING

PERFORMANCE COMPARISON ”

[5]. Android Developers. (n.d.). Layouts in Views.

Retrieved from

https://developer.android.com/develop/ui/vie

ws/layout/declaring-layout

[6]. Android Developers. (n.d.). Jetpack Compose

UI App Development Toolkit. Retrieved from

https://developer.android.com/compose

[7]. Wikipedia contributors. (2025, May). Jetpack

Compose. In Wikipedia. Retrieved from

https://en.wikipedia.org/wiki/Jetpack_Compo

se

[8]. GeeksforGeeks. (2025, March). Android UI

Layouts. Retrieved from

https://www.geeksforgeeks.org/android-ui-

layouts/

[9]. GeeksforGeeks. (2025, August). Basics of

Jetpack Compose in Android. Retrieved from

https://www.geeksforgeeks.org/basics-of-

jetpack-compose-in-android/

[10]. Wikipedia contributors. (2025, May). Material

Design. In Wikipedia. Retrieved from

https://en.wikipedia.org/wiki/Material_Desig

n

[11]. Android Developers. (n.d.). Develop a UI with

Views. Retrieved from

https://developer.android.com/studio/write/la

yout-editor

[12]. Android Developers. (n.d.). Thinking in

Compose. Retrieved from

https://developer.android.com/develop/ui/com

pose/mental-model

[13]. Google. (2023). Jetpack Compose

Documentation. Retrieved from

https://developer.android.com/jetpack/compo

se/documentation

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 180916 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6184

[14]. Google. (2023). Build a UI with Views.

Retrieved from

https://developer.android.com/guide/topics/ui

[15]. Nakamura, T., & Gonzalez, A. (2022).

Declarative vs. Imperative UI Paradigms in

Mobile App Development: A Comparative

Study. International Journal of Software

Engineering and Applications, 13(4), 57–65.

doi:10.5121/ijsea.2022.13405

[16]. Smith, J. (2021). Modern Android

Development with Kotlin and Jetpack

Compose. TechPress.

[17]. Gupta, R., & Sharma, A. (2022). Performance

Analysis of UI Frameworks in Android: XML

vs Jetpack Compose. Proceedings of the 4th

International Conference on Computing and

Communication Technologies.

[18]. Google. (2022). What’s new in Jetpack

Compose. Android Developers Blog.

Retrieved from https://android-

developers.googleblog.com

[19]. Khan, S., & Patel, D. (2023). UI Design

Strategies in Android: A Review of XML

Layouts and Jetpack Compose. Journal of

Mobile Computing and Application

Development, 9(2), 40–48.

[20]. JetBrains. (2023). Kotlin for Android

Developers. Retrieved from

https://kotlinlang.org/docs/android-

overview.html

[21]. Reinders, A. (2022). Jetpack Compose vs

XML: A Developer's Perspective. Medium.

Retrieved from https://medium.com (Use this

if you have taken inspiration from a blog or

quoted similar analysis.)

[22]. Android Weekly. (2023). Compose vs XML:

The State of Android UI Toolkits. Android

Weekly Newsletter, Issue #537.

