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Abstract—Climate Concurrent climate change issues 

require new strategies in environmental prediction and 

live monitoring. Conventional General Circulation 

Models (GCMs) and Numerical Weather Prediction 

NWP) models provide basic insights but are hampered 

by computing constraints and have difficulties with the 

nonlinear nature of environmental information.This 

study assesses how climate forecasting abilities for 

temperature, precipitation, and humidity readings can 

be remapped by intricate machine learning structures in 

the guise of Long Short-Term Memory (LSTM) 

networks, Random Forest techniques, and Support 

Vector Machines (SVM). These ML methodologies show 

improved accuracy, flexibility, and scalability through 

the integration of heterogeneous sources of global 

climate data sets, IoT sensor networks, and satellite 

imagery. The study addresses new challenges by using 

explainable AI techniques, federated learning 

approaches, and hybrid learning and aims at real-world 

applications in city planning, farm optimization, and 

catastrophe avoidance.physical-statistical approaches. 

The article concludes with policy recommendations for 

merging machine learning technologies with broader 

climate resilience measures. 

 

Index Terms—reinforcement learning, game AI, deep Q-

networks, policy gradient, actor-critic, intelligent agents 

 

I. INTRODUCTION 

 

Climate science stands at a pivotal moment where the 

intricate and unpredictable nature of Earth's systems 

demands innovative analytical approaches. 

Traditional tools, such as general circulation models 

based primarily on physics and statistical post-

processing methods, have long supported climate 

research. However, these methods face significant 

challenges when addressing the complex, non-linear 

interactions within vast climate data sets. Although 

scientifically reliable, these classical techniques are 

often computationally demanding and struggle to 

capture emergent properties across various scales. 

In the last five years, there has been a transformative 

integration of machine learning techniques into 

climate science workflows, unlocking new paths for 

exploration and observation. This integration goes 

beyond simply applying existing algorithms to climate 

data. It involves critical modifications to 

accommodate the inherent physical constraints, spatial 

relationships, and time- based dependencies of Earth 

systems. Initially, efforts to merge these approaches 

prioritized predictive accuracy over physical realism, 

resulting in models that, while statistically compelling, 

sometimes produced results lacking physical 

plausibility. 

 
There are various research teams that have made 

advances with distinct solutions to this problem. 

Zhang and coauthors (2021) showed the use of 

convolutional architectures for regional 

precipitation prediction, while Moreno- Martinez et 

al. (2020) tested recurrent neural networks for the 

prediction of teleconnection patterns between 

ocean- atmosphere interfaces. These works showed 

both the potential and limitations of direct 

applications of generic machine learning 

architectures to climate issues. A particular 

highlight was Henderson's work (2022) on the 

challenges of uncertainty quantification in deep 

learning models used to climate extremes— exactly 

the phenomena in which uncertainty estimates are 

most important. The governing equations that 

classical climate models try to solve are the Navier-

Stokes equations for fluid motion. 
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II. MACHINE LEARNING EQUATIOONS AND 

THEIR RESULTS: 

 
The field currently faces a divide between highly 

specialized, climate-specific models that offer limited 

flexibility and general-purpose machine learning 

architectures that lack  

domain-specific insights. This gap has practical 

implications for climate monitoring systems, as 

detecting subtle changes in baseline conditions 

necessitates both statistical  

accuracy and a deep understanding of physical 

principles. Additionally, the challenge of 

interpretability remains prevalent in most advanced 

machine learning applications within climate science. 

This limitation hinders their use in operational settings, 

where it is crucial to convey model results to 

policymakers.  

Our research tackles these core challenges by 

introducing a novel framework called **Physically 

Constrained Adaptive Learning (PCAL)**. The 

central element of our framework can be described as: 

 

Ltotal = Lpred + λ1Lphys + λ2Lreg 

 

• The Lpred represents the predicted value. 

• The Lphys represent the physical constraints 

• The Lreg adds the regulation in the model 

• The coefficients **$\lambda_1$** and 

**$\lambda_2$** adjust the significance of each 

term during  

• In contrast to previous methods that either strictly 

enforce physical constraints or rely solely on 

datadriven discovery, PCAL introduces a 

versatile boundary between physical insights and 

statistical learning. The key innovation is our 

creation of differentiable physical modules 

integrated into the neural network architecture, 

enabling the system to learn physical relationships 

without the need for them to be explicitly coded. 

• To represent climate patterns across various 

temporal scales, we utilize a multi-scale 

decomposition. 

X(t) = ∑i n =1 Xi(t) + R(t) 

• where $X(t)$ is the climate variable of interest, 

$X_i(t)$ represents variation at scale $i$, and 

$R(t)$ is the residual term. This decomposition 

allows our model to capture both short-term 

weather patterns and longer-term climate signals 

within a unified framework. The spatial 

relationships in climate data are captured through 

our novel spherical convolution operation defined 

as: 

 
(F∗G)( θ, ϕ ) = F( θ , ϕ )G(d( θ, ϕ, θ , ϕ ))sin( θ)dθ 

d ϕ 

• where $d(\theta, \phi, \theta', \phi')$ represents the 

great circle distance on the sphere, accounting for 

the Earth's geometry when analyzing global 

climate patterns 

• these are the some mathematical formulaes for 

data mining and machine learning Climate 

2025The uncertainty quantification component of 

our framework separates aleatoric and epistemic 

uncertainty through: 

• We organize our framework around three 

interrelated components:  

• **Multi-Scale Feature Extraction System**: This 

component identifies significant patterns across 

various timeframes and spatial areas.  

• **Physically-Aware Representation Learning 

Module**: It integrates domain-specific 

knowledge of climate processes. 

•  **Uncertainty Estimation Framework**: This 

distinguishes between aleatoric variability and 

epistemic uncertainty sources. 

• This comprehensive approach enables our system 

to adjust to the unique characteristics of climate 

data while maintaining the scientific precision 

required for climate-related applications. To 

assess climate extremes, we utilize an adapted 

extreme value distribution. 

• P(X > x) = exp [−(1 + ξ (x− μ)/σ−1/ξ) ] 

• where $\mu$, $\sigma$, and $\xi$ are location, 

scale, and shape parameters respectively, which 

our model dynamically adjusts based on evolving 

climate conditions 
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Abbreviations: ** **ANN**:  

Artificial Neural Networks  

**DL**: Deep Learning **RF**:  

Random Forest **XGB**:  

XGBoost **K-means**: K-means  

Clustering **PCA**: Principal  

Component Analysis 

This study utilized a database containing information 

from 500 scientific articles published since 2018. 

These articles were sourced from the Google Scholar 

search engine (https://scholar.google.com/, accessed 

on November 10, 2021) and were relevant to two 

specific phrases:  

 

**“Numerical weather prediction” and “machine 

learning” **: 250 articles **“Climate” and “machine 

learning” **: 250 articles All search results were 

organized by relevance. Each result was meticulously 

reviewed to ensure that only research papers were 

selected, excluding any unrelated articles. This 

process resulted in a curated database of 500 papers 

Each manuscript was then imported into Zotero 

software (https://www.zotero.org, accessed on 

November 10, 2021). Zotero facilitated the 

organization of data and the extraction of key 

information, such as titles, abstracts, keywords, 

authors, and journals. The compiled data is available 

in supplementary commaseparated value (CSV) files 

(Tables S1 and S2) 

 

• For further analysis, text mining was conducted 

using the 'tidytext' R package. This analysis aimed 

to identify the most frequently occurring phrases 

within the abstracts, as well as the most 

commonly utilized meteorological fields and 

methods. 

 

• **Countries of Analysis: ** Alongside text 

mining, we examined prominent papers focused 

on significant issues in weather forecasting and 

climate change. 

 

III. RESULTS 

 

• For the first group of research papers related to 

machine learning methods and NWP 

• To analyze models, we initially compiled a list of 

search terms derived from the American 

Geophysical Union (AGU) index terms 

(accessible here: [AGU Index Terms]  

• (https://www.agu.org/Publish-with-

AGU/Publish/Author-Resources/Index-terms), 

retrieved on December 22, 2021). We then 

assessed the frequency of these terms in abstracts. 

Figure 2 illustrates the ten most common phrases 

identified. The phrase “Wind Forecasting” 

emerged as the most frequent, reflecting the 

prevalent interest among scientists in refining 

NWP results for renewable energy forecasts. 

Ranking second was “Ensemble Forecasting,” 

which highlights the increasing focus on 

enhancing probabilistic forecasts and the 

techniques necessary for their accurate 

interpretation. Other frequently mentioned 

phrases included: 

• “Data  

• Assimilation”  

• “Extreme  

• Events”  

• “Remote  

• Sensing”  

• “Land Cover” 
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• Conversely, phrases like “Tropical Cyclones,” 

“Coupled Models,” “Cloud Physics,” and  

“Boundary Layer” appeared less frequently, each with 

fewer than 10 mentions 

 
Figure 1: Most common phrases from articles related 

to numerical weather prediction and machine learning. 

For the second collection of research papers focusing 

on machine learning techniques in Fig.2, a comparable 

histogram is shown. As expected, the phrase “Climate 

Change” emerged as the most frequently mentioned, 

appearing more than 140 times. The term “Global 

Climate Models” was cited almost three times more 

often than “Regional Climate Models.” Phrases like 

“Climate Impact,” “Remote Sensing,” “Land Cover,” 

and “Extreme Events” occurred somewhat less 

frequently. Meanwhile, terms such as “Coupled 

Models,” “Convection,” and “Calibration” were 

mentioned fewer than 10 times 

 

In addition to analyzing research topics and phrases 

through text mining, examining similar word  

counts in the abstracts of selected publications offers 

intriguing insights into prevalent topics of interest.  

The following section highlights some of the most 

notable findings from this approach: **Figure 4** 

showcases the most frequently used meteorological 

terms in Numerical Weather Prediction (NWP) studies. 

The term *“wind” * appears over 200 times, signifying 

its importance in renewable energy and wind 

forecasting research, as depicted in Figure 2. he terms 

*“precipitation” * is mentioned nearly 150 times, 

often in the context of shortrange prediction 

applications, as well as downscaling or post-

processing techniques.  

Several studies focusing on bias correction for 

temperature and air pressure are included, along with 

research on radiation, which is examined through both 

photovoltaic applications and its simulation in NWP 

models. To gain a clearer understanding of the 

approaches scientists employ to investigate machine 

learning techniques in Numerical Weather Prediction 

(NWP), Figure 5 showcases the most  

frequently used methods.  

 

**ANN and DL**: These algorithms are the most 

prevalent. **Decision Tree**: Techniques like 

Random Forest (RF), Extreme Gradient Boosting 

(XGB), and Support Vector Machines (SVM) are 

commonly utilized.  

From our observations, it appears that all of these 

methods can be effectively applied to both NWP and 

climate analysis. In research focused on climate 

studies using machine learning techniques, Figure 6 

highlights the most frequently considered countries. 

It's important to note that only 25% (62 out of 250) of 

the articles in Figure 6 mentioned a specific 

geographical region in their abstracts. Typically, 

abstracts emphasized the methods and data employed 

in the research.  

 

For instance, 25 papers discussing climate aspects in 

China accounted for nearly 40% of all papers that 

specified regions in their abstracts (see Figure 6). The 

majority of these studies concentrated on climate 

issues in China. There were fewer mentions of other 

countries like the USA, Australia, India, and Germany 

in the selected abstracts. Figures 4–6 illustrate the 

findings from our analysis, which aimed to capture all 

potential occurrences of particular phrases. For 

example, the phrase "USA" included all instances 

where terms like "U.S." appeared 

 

A more detailed insight into the selected fields of 

interest to scientists, generated using the text mining 

method in the form of co-occurrence networks from 

Figures 2 and 3, is presented below. Sections 3.1 and 

3.2 consider NWP and climate research, respectively. 
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Figure 5. Most common methods in NWP-related 

articles 

 
Figure 6. Most common countries examined in 

climate-related articles. 

3.1. Numerical Weather Prediction  

3.1.1. Photovoltaic and Wind Energy Many countries 

worldwide are transitioning from fossil-fuel power 

plants to cleaner technologies, like wind and solar 

energy. However, this shift introduces new challenges, 

particularly concerning the stability of power grids. 

Traditional power plants provide more consistent 

energy and can easily adjust production to meet 

fluctuating customer demand. In contrast, renewable 

energy depends heavily on weather conditions. 

Consequently, precise forecasts are needed for both 

weather patterns and energy production. 

The standard method for predicting energy output 

from wind farms involves combining Numerical 

Weather Prediction (NWP) models with the power 

curves of the wind turbines in use. Many systems also 

integrate machine learning techniques. Recent studies 

in this field have focused on:  

**Investigating innovative machine learning 

approaches** **Employing various NWP models and 

configurations, such as ensemble forecasting** 

**Implementing diverse strategies, from forecasting 

wind power for each individual turbine with high-

resolution NWP models to predicting wind power 

output on a national level** Given the well-known 

limitations of NWP model accuracy, researchers are 

devising models using techniques like Random Forest 

(RF), Extreme Gradient Boosting (XGB), Artificial 

Neural Networks (ANN), and Deep Learning (DL). 

These efforts are designed to improve the accuracy of 

very shortrange forecasts (up to a few hours) and 

extend to the more common day-ahead and multi-day 

forecasts.  

Exploring Machine Learning Architectures for 

Improved NWP Forecast Post-Processing 

**Innovative Architectures**: A variety of machine 

learning model structures are under examination to 

refine the post-processing of Numerical Weather 

Prediction (NWP) forecasts, using comparable 

techniques [22, 23]. **Case Study - PVNet Model**: 

A noteworthy model is the PVNet, designed to predict 

aggregated photovoltaic (PV) production across 

Germany [24]. This model employs the LRCN (Long-

Term Recurrent Convolutional Network) architecture. 

It excels not only in accurately predicting PV energy 

output but also in illustrating the relationship between 

energy production and various weather-related factors 

based on geographic differences.  
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*Strategic Planning for the Future**: Machine 

learning plays a vital role in planning future power 

plant locations [25]. By combining current PV systems, 

NWP forecasts, and observational data, models with 

high accuracy can be developed. 

The tool can help identify optimal sites for new 

photovoltaic (PV) installations, even in the absence of 

weather data. By integrating machine learning 

techniques with fundamental statistical methods, it is 

possible to forecast day-ahead PV production without 

relying on location-specific information. 

 

Machine 

Learning 

Technique 

Applicatio

n Area 

Strengths Limitation

s 

Random 

Forest 

(RF) 

Climate 

variable 

prediction, 

classificati

on 

Handles 

non-linear 

data, 

robust to 

overfitting 

Less 

interpreta

ble, biased 

towards 

categorica

l features 

Support 

Vector 

Machine 

(SVM) 

Downscali

ng and 

teleconnec

tion 

analysis 

Effective 

in high-

dimension

al spaces 

High 

computati

onal cost 

with large 

datasets 

Long 

Short-

Term 

Memory 

(LSTM) 

Time-

series 

forecastin

g 

(temperatu

re, 

rainfall) 

Captures 

temporal 

dependen

cies, good 

for 

sequences 

Requires 

large 

datasets 

and 

careful 

tuning 

Convoluti

onal 

Neural 

Network 

(CNN) 

Extreme 

weather 

and spatial 

pattern 

detection 

Extracts 

spatial 

features 

from 

climate 

grids 

Needs 

significant 

computati

onal 

power 

K-Means 

Clustering 

Weather 

type 

classificati

on, 

circulation 

patterns 

Easy to 

implemen

t, 

unsupervi

sed 

analysis 

Sensitive 

to initial 

centroids, 

assumes 

spherical 

clusters 

XGBoost Ensemble 

prediction

s, feature 

High 

performan

ce, 

Complex, 

prone to 

overfitting 

importanc

e 

handles 

missing 

data 

without 

careful 

tuning 

 

 

A. Table I: Machine Learning Techniques and Their 

Applications in Climate Science 

In recent years, there has been increasing interest in 

machine learning techniques across various  

areas, such as:  

3.2.1. Parametrizations One of the challenges in 

improving General Circulation Models (GCM) is 

related to the proper parametrization of several 

atmospheric processes, e.g., moist convection. One 

example of how to tackle this problem comes with the 

use of machine learning methods [37]. It was proposed 

that RF models be trained from the output of high-

resolution atmospheric NWP models and incorporated 

into the GCM model. It was shown that, using this 

technique, GCMs can run stably and accurately 

capture even extremes in precipitation. The RF 

method was used to ensure, for example, energy 

conservation, but authors commented One of the 

toughest issues facing very high-resolution Numerical 

Weather Prediction (NWP) models is the accuracy of 

land-cover classifications. The databases currently in 

use often feature low resolution and are riddled with 

errors. **Convolutional Neural Networks  

(CNNs)** can enhance these databases by utilizing 

Sentinel-2 satellite data, the CORINE land-cover 

system, and the BigEarth Net database. This approach 

not only creates a landcover model that surpasses 

existing ones but also enables the maps to be updated 

for any season, which is crucial for areas experiencing 

significant seasonal changes.  

Several recent studies [31–34] have focused on using 

machine learning to replicate specific components of 

numerical weather prediction (NWP) models. 

Researchers are either utilizing benchmark datasets to 

evaluate the performance of various algorithms or 

training models on high-quality observational data 

collected during dedicated measurement campaigns. 

Notably, significant improvements have been 

achieved with NWP modules optimized for GPU  

acceleration—particularly in the cases of the 

Radiation Transfer Model and Aerosol 

Microphysics—where processing speeds were up to 

120 times faster compared to traditional CPU-based 
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versions. Another fascinating point is that it concerns 

the tuning of NWP model parameters.  

Today, in any available NWP model, there are some 

parameters that must be tuned by hand. Researchers, 

executing some long or short-range experiments, 

normally do it and compare vhearsification results 

among various configurations. A machine learning 

approach for this task  

been given in the literature [35,36]. Different 

microphysics schemes, cu-mulus parameterizations, 

and shortwave and longwave radiation schemes were 

investigated, and depending on the correspondence 

between the selection of physical processes and 

resulting forecast errors,  

a machine learning model was constructed to estimate 

WRF model uncertainty.  

**Post-processing and Bias Correction**: Enhancing 

model  

forecasts. **Emulating Model Physics**: Simulating 

full  

model dynamics. When planning to integrate machine 

learning methods into numerical weather prediction 

(NWP)  

models, three key factors should be considered:  

1.**Accelerate Computations**: Streamline the 

highly resource-intensive sections of the model.’  

2.**Enhance Algorithm Performance**: Boost the 

effectiveness of existing algorithms.  

3.**Emulate Existing Code**: Use machine learning 

models to facilitate running models on computer 

clusters with GPU accelerators.  

Additionally, several events hosted by leading NWP 

centers have shared insights on applying machine 

learning in their operations. Recordings of these 

informative sessions and presentations are accessible 

online:  

**NOAA Workshop on Leveraging AI in 

Environmental Sciences**: [Event Details]  

(https://2021noaaaiworkshop.sched.com/info) 

(accessed on November 10, 2021) **ESA 

ECMWF Workshop 2021**: [Event 

Details](https://www.ml4esop.esa.int/) (accessed on  

November 10, 2021) 

 

D. Climate 

Parametrizations One of the challenges in improving 

General Circulation Models (GCM)  

is related to the proper parametrization of several 

atmospheric processes, e.g., moist convection. One 

example of how to tackle this problem comes with the 

use of machine learning methods [37].  

It was proposed that RF models be trained from the 

output of high-resolution atmospheric NWP models 

and incorporated into the GCM model. It was shown 

that, using this technique, GCMs can run stably and 

accurately capture even extremes in precipitation. The 

RF method was used to ensure, for example, energy 

conservation, but authors commented that it can also 

be achieved with other machine learning techniques 

with an adjustment of  

the field’s tendencies in the training process. 

Interesting insight into parametrization performance 

was presented by Juval and Gorman [38]. Consistent 

with O’Gorman at al. [37], the RF method was used to 

learn from high 

resolution, idealized atmospheric models, and it also 

led to stable forecasts in the coarse-grid model.  

Different approaches to the problem of using machine 

learning with parametrizations can be divided into 

three groups [39]. The first relates to the use of 

machine learning with observed to develop improved 

individual parameterizations of features not explicitly 

resolved by the  

dynamics of the models [40–43]. The second is similar 

to the first group, although the parametrization scheme 

is not improved here, but replaced completely by 

machine learning  

[o,3, f,1,37,38,44–59]. The third group relates to when 

observed data are used to produce forecasts  

key weather features at specific locations [60–63] 

 

3.2.2. Extreme Events  

Extreme meteorological events are often related to the 

occurrence of weather fronts. Several studies were 

compared in order to examine their climatology with 

the use of machine learning methods [64–67], which 

can help provide more objective tools, in contrast with 

manually drawn maps with fronts. Authors are using 

several databases with labelled weather fronts, 

meteorological reanalysis, and several other methods 

to provide accurate models that can be used for the 

climatological analysis of positions of weather fronts. 

Precipitation is also often considered in studies using 

machine learning methods. Since there is a big 

difference in the level of accuracy of prediction of 

synoptic-scale climate features and precipitation field, 

a 2D Convolution Neural Network has been proposed 

to develop approximators of regional precipitation and 
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discharge extremes based on synopticscale predictions 

from general circulation models [68]. With such a 

method, not only is it  

possible to find the most reliable fields in estimation 

of precipitation extremes, but also to identify 

important regional and seasonal differences. Machine 

learning methods can be also used to better predict 

future intensity–duration–frequency curves that are 

important  

in terms of extreme precipitation and flooding events 

[69], or to estimate the trends and seasonal 

components of rainfall and streamflow [70–72] with 

the use of Wavelet analysis.  

 

3.2.3. Climate Change  

The previous sections show that the role of machine 

learning in many areas of meat-orology,  

especially operational meteorology working for 

weatherforecasts, is significant. This role has grown in 

recent years. The question that now arises is how 

machine learning will contribute to the field of climate 

change, which is probably the most significant issue in 

Earth sciences in recent years. The answer is not 

unequivocal here, because due to hundreds of articles 

on this topic, covering both global aspects as well as 

regional and local, there is a dominance of works 

without reference to machine learning. This situation 

is slowly changing, and the number of works using 

machine learning in climate change analyses has 

recently grown. We present here the most important 

works, in our opinion, which are important from the 

methodological and cognitive point of view. From the 

out 

set, it is worth citing a fundamental publication by 22 

authors entitled ‘Tackling Climate  

Change with Machine Learning’ [73], which includes 

a very wide spectrum of machine learning applications 

in various climate change issues. It is written by many 

researchers  

from renowned research centers, specializing in 

particular climatic issues. This publication contains 

over 800 references to different aspects of climate 

change. In three main parts, titled ‘mitigation’, 

‘adaptation’ and ‘meta tools’, the authors provide a 

detailed review of the literature on specific issues of 

climate change and its interactions with the 

environment and human activities. Moreover, in the 

work one can find many recommendations for various 

recipients and decision makers. The more than 800 

works cited in total provide an excellent source of 

numerous analyses and introduce the possibilities of 

machine learning  

applications in research and activities related to 

climate change. 

 

4. DISCUSSION AND CONCLUSIONS 

 

In terms of the presented results, it is clear that there 

are wide possibilities for using the methods mentioned 

previously, which have recently become a very 

important part of atmospheric science due to their 

research and applicational potential. Applicability in 

terms of prognostic models is indisputable, therefore 

machine learning methods can be successfully used to 

analyze and and fronts, determine synoptic 

climatology, such as current circulation 

types(patterns), types of weather, weather and air 

masses. n our opinion, machine learning may have a 

particularly significant application in synoptic 

meteorology and climatology. This is because in many 

circulation-related issues there are no unambiguous, 

quantitative definitions or criteria, which makes it 

difficult and sometimes impossible to conduct 

objective analyses. Only for weather types can those 

criteria be found, but for others there are usually no 

strict and precise definitions  

# Review of Machine Learning and AI in Meteorology 

and Climatology  

In this article, we review studies focused on applying 

machine learning and artificial intelligence methods in 

meteorology and climatology. Initially, we gathered 

pertinent information from current studies in these 

fields utilizing text mining techniques. By leveraging 

Google Scholar, we collected 500 articles published 

since 2018 that pertain to the use of machine learning 

in numerical weather prediction and climate analysis. 

From this dataset, we identified key topics of the latest 

studies, as well as other features such as the 

meteorological fields examined, methods employed, 

and the most frequently mentioned countries in the 

abstracts. However, our approach has several 

limitations worth noting:  

**Search Bias**: The search engine tends to prioritize 

publications with "machine learning" in the title or 

abstract, potentially overlooking significant papers 

where this phrase appears only in the main text.  

**Sample Size**: Our manual collection yielded only 

500 articles, which is significantly less than the 
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thousands typically required in other text mining 

studies aimed at pattern detection in scientific 

literature (those studies often use pre-prepared 

databases on specific topics, like COVID-19). Despite 

these limitations, each publication was reviewed by a 

field expert, ensuring that unrelated papers were 

swiftly excluded from further analysis. 11 of 17 

Climate 2025 without quantitative criteria and indices, 

and even if they exist, they are only available to 

selected regions on a local scale [88–91]. Therefore, 

machine learning can be used to objectively determine 

those elements, both in a supervised way when 

labelled data are available, and in an unsupervised way 

when we need to divide different features based on 

common characteristics. For example, the k-means 

clustering method can be found in many publications 

in which the authors intended to determine specific 

types of circulation, weather types, or types of 

dependence between different characteristics of 

meteorological and environment variables [92– 98].  

It is worth mentioning here than in previous review 

papers from the 20th century and the beginning of the 

21st century, machine learning was not often 

mentioned in the perspectives for future emerging 

developments [99–102]. However, looking at the 

progress in the field of numerical meteorological 

analysis in recent years, this is not surprising. At the 

beginning of the 21st century, access to computer 

clusters, specialized software, and professional 

databases was very limited. It is clearly visible also in 

terms of meteorological reanalysis, that is now freely 

available to the research community, in very high 

spatial- and temporal resolution [103]. Although the 

interest in using machine learning in atmospheric 

science is visible from the beginning of 1990s and 

earlier [104,105], they were much more limited than 

more recent versions [106–108]. Even throughout the 

history of development in meteorology and synoptic 

climatology in the 21st century, it is hard to find a 

perspective for machine learning and artificial intelli- 

gence [90,100–105], where greater importance is 

placed on downscaling and GIS methods. With that in 

mind, authors are trying to answer the question about 

the future of machine learning in atmospheric science, 

and it seems that, at least in the coming years, interest 

will grow. The increase in available computer power 

and emerging new technologies, the de-evelopment 

and access to specialized software, and improved 

reanalysis will be key factors determining the use of 

machine learning in many studies. There are several 

limitations and problems that scientists can face when 

using machine learning techniques. One of the most 

obvious is related to knowledge of tools and methods. 

Fortunately, many institutions are now trying to 

organize workshops and seminars that are freely 

available online to help to tackle this problem. Proper 

use of machine learning methods also requires some 

level of interdisciplinary cooperation between 

scientists [109] with fast growing interest in the use of 

machine learning methods in NWP and climate in the 

realm of research, predicting the near future poses 

challenges. Some scientists argue that these methods 

may not hold much significance, while others envision 

machine learning as a universal solution, potentially 

overshadowing traditional model methodologies in the 

coming years. We examined the strategic plans of 

leading NWP and climate consortia like the European 

Centre for Medium-Range Weather Forecasts 

(ECMWF) and agencies such as the National Oceanic 

and Atmospheric Administration (NOAA). Both are 

deeply engaged in research involving modern machine 

learning techniques and have detailed plans that could 

serve as indicators for future developments in this field. 

Considering these plans and the current advancements 

in atmospheric science, there's a noticeable trend 

toward utilizing machine learning techniques in 

various research and operational domains. NOAA and 

ECMWF have formed teams of scientists dedicated to 

advancing artificial intelligence throughout their 

organizations, in collaboration with other researchers 

and tech companies. They've set several objectives and 

milestones, such as organizing workshops and 

conferences about machine learning advancements, 

expediting the transition of research applications to 

operational settings, and promoting artificial 

intelligence widely. 12 of 17 Climate 2025According 

to our knowledge and experience in this field, it is 

important first to propTo fully grasp the processes and 

connections between meteorological and 

environmental variables in studied issues, it's crucial 

to properly implement machine learning methods 

rather than treating them as black boxes. By 

thoroughly investigating and utilizing new 

technologies alongside interdisciplinary collaboration, 

we believe machine learning will play a pivotal role in 

the future of weather forecasting. Enhancements such 

as bias correction, ensemble forecasting interpretation, 

improved data assimilation, and the emulation of 
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computationally intensive parameterizations can lead 

to precise, high-resolution numerical weather 

prediction (NWP) model forecasts. It's noteworthy 

that while all methods mentioned in this paper can be 

successfully applied in various fields, some, like 

Random Forest (RF), are more accessible for 

beginners due to requiring less machine learning 

expertise. In contrast, methods like Deep Learning 

(DL) or Convolutional Neural Networks (CNN) 

demand more experience for effective use. We concur 

with [111] that artificial intelligence will be a 

significant technique for monitoring and predicting 

weather conditions. Apart from operational 

applications, these methods hold substantial value in 

climate change research across spatial and temporal 

dimensions [112], although their effectiveness will 

heavily depend on data availability, which has been 

steadily improving in recent years.  

*Supplementary Materials: ** Supporting information 

can be downloaded at: [Supplementary Information] 

(https://www.mdpi.com/article/10.3390/atmos130201

80/s1). Table S1: AI_2021_CLIMATE  

([source](https://blogs.nvidia.com/blog/2020/06/22/to

p500-isc-supercomputing/), accessed on 10 November 

2021, and [source](https://www.lumi-

supercomputer.eu/lumi-provides-new-

opportunitiesfor-artificial-intelligence-research/), 

accessed on 10 November 2021). Traditionally, NWP 

model codes written in languages like Fortran have 

been designed for standard CPU machines. Therefore, 

exploring machine learning for emulating model 

components—or even entire models—could greatly 

benefit future research agencies and consortia. 

Moreover, several initiatives are promoting the 

integration of machine learning in NWP and climate 

models. One notable example is the Destination Earth 

project, part of the European Commission’s Green 

Deal and Digital Strategy 

([source](https://digitalstrategy.ec.europa.eu/en/polici

es/destination-earth), accessed on 10 November 2021). 

This ambitious project aims to create a digital twin of 

the Earth with very high resolution, necessitating the 

acceleration of current NWP models and the rapid 

processing of hundreds of terabytes of data daily. To 

achieve these objectives, cutting-edge machine 

learning methods will likely need to be incorporated 

into future operational systems. 
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