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Abstract— Depression is increasingly recognized as one 

of the most widespread mental health disorders 

affecting individuals today. This paper proposes a 

reasoning-based model for the detection of depression 

using Electroencephalography (EEG) signals. EEG 

data were collected using a portable three-electrode 

device, pre-processed to eliminate artifacts, and 

subjected to feature extraction. The processed signals 

were then analysed using a Linear Pattern Recognition 

Network (LPRN), a type of machine learning algorithm. 

Wavelet transform was applied to the EEG signals to 

capture key frequency components relevant to 

depressive patterns. Frequency-specific features served 

as statistical indicators for further analysis. The system 

performs wavelet transformation on all collected EEG 

data and utilizes the output of the LPRN to generate 

statistical scores for classification. System performance 

was evaluated in terms of accuracy, using a confusion 

matrix that compares classified output with the training 

data. Furthermore, based on emotion classification 

derived from EEG patterns, the system also provides 

personalized music recommendations corresponding to 

the detected emotional state. 
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I. INTRODUCTION 

 

The brain-computer interface (BCI) represents a 

novel communication pathway between the human 

brain and digital systems. Its primary objective is to 

aid individuals with physical disabilities by enabling 

movement restoration, communication, and control 

of external environments. An EEG-based BCI system 

has been integrated with a virtual reality (VR) 

environment to facilitate smart home control, acting 

as an alternative to natural communication and motor 

functions. This system serves as an artificial 

mechanism that bypasses traditional neuromuscular 

pathways [1]. Different cognitive states correspond to 

unique neural interaction patterns, which produce 

brain waves varying in amplitude and frequency. 

These interactions are driven by neuronal activity, 

where each neuron emits tiny electrical discharges. 

The proposed method captures these brain signals 

using EEG sensors, segments the data into packets, 

and transmits it via a wireless medium [2]. A wave 

measurement unit collects raw EEG data and 

converts it into usable signals through processing in 

the MATLAB GUI environment. 

 
Fig 1. Brain Computer interfacing system 

 

Fig. 1 depicts the brain-computer interfacing system. 

Accurately measuring brain-generated oscillations is 

fundamental to any BCI system, as these signals 

represent the voluntary neural activities associated 

with the user’s current state. Numerous signal 

acquisition techniques have been investigated, and 

the choice of technique depends largely on the 

intended application and user profile of the BCI. 

Selecting the appropriate method is crucial for 

effectively capturing the relevant neural signals and 

ensuring optimal system performance [3]. 

 

Invasive recording methods involve implanting 

electrodes beneath the scalp to measure neural 

activity either intracortically within the motor cortex 
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or on the cortical surface, known as 

electrocorticography (ECoG). These techniques offer 

high temporal and spatial resolution, resulting in 

superior signal quality and signal-to-noise ratio. 

However, they present several challenges. Aside from 

the invasiveness and associated surgical risks, the 

limited coverage area of the implanted electrodes 

restricts the brain regions that can be monitored. 

Once implanted, electrodes cannot be repositioned to 

capture activity from other areas [4]. Additionally, the 

body's immune response to the implant can cause 

complications, including implant instability and 

infection risks. Due to these limitations, invasive 

methods are typically reserved for medical BCI 

applications involving a small number of disabled 

users [5]. Most invasive BCI research has been 

conducted on animal models like monkeys, though 

some tetraplegic patients have benefited from 

implanted electrodes. The following subsection 

provides further details on these invasive techniques. 

Developing communication interfaces based on brain 

signals presents several challenges, which can be 

broadly classified into technical and usability 

challenges. Technical challenges primarily involve 

difficulties associated with the characteristics and 

processing of EEG signal features, as well as system 

constraints. Usability challenges pertain to factors 

that influence user acceptance and the overall 

practicality of the interface in real-world applications 

[6]. 

 

EEG signal variability reflects changes in mental and 

emotional states across sessions, influenced by 

factors such as fatigue and concentration, which 

contribute to internal non stationarities. Noise further 

complicates BCI systems, originating from electrode 

displacement and environmental interference. 

Additionally, artifacts from muscle activity 

(electromyogram, EMG) and eye movements or 

blinks (electrooculogram, EOG) are often present in 

the recorded signals, making it challenging to 

accurately identify neural patterns. 

 

Another major challenge is the "curse of 

dimensionality." To achieve high spatial resolution, 

BCI systems record signals from multiple channels, 

resulting in high-dimensional data. As dimensionality 

increases, so does the complexity and the volume of 

data needed to represent the signals accurately. 

Feature extraction techniques are therefore essential 

to isolate the most relevant characteristics, enabling 

classifiers to focus on meaningful features and 

improve performance by reducing redundancy. 

• The proposed model is developed using a linear 

pattern recognition algorithm applied to EEG 

data from the AMIGOS dataset. 

• The EEG data undergoes preprocessing and 

cleaning to remove noise and artifacts, followed 

by feature extraction using the discrete wavelet 

transform (DWT). 

• The dataset is partitioned into training (80%) and 

testing (20%) subsets, with the linear pattern 

recognition algorithm trained on the training 

data. 

• Once trained, the model processes the testing 

data to extract features from the alpha, beta, 

gamma, theta, and delta frequency bands. 

• The system’s performance is assessed using 

evaluation metrics including accuracy, precision, 

and recall. 

 

II. BACKGROUND STUDY 

 

Ofner et al. (2017) examined the encoding of upper 

limb movements within the time domain of low-

frequency electroencephalography (EEG) signals. 

The study involved fifteen healthy participants who 

performed six distinct sustained upper limb 

movements. The researchers classified these six 

movements along with a rest state, achieving average 

classification accuracies of 55% for differentiating 

between movements and 87% for distinguishing 

movement from rest during executed actions. For 

imagined (or expected) movements, the classification 

accuracies were 27% for movement differentiation 

and 73% for movement versus rest. 

 

Suwannarat et al. (2018) employed eight-fold cross-

validation on EEG data to assess classification 

accuracy. Both Linear Discriminant Analysis (LDA) 

and Support Vector Machine (SVM) classifiers 

demonstrated comparable performance. Features 

extracted from specific frequency bands (FB) yielded 

significantly higher classification accuracy compared 

to those derived from the whole-band (WB) 

approach. Across all subjects, classification of wrist 

flexion/extension movements achieved higher 

accuracy than hand opening/closing tasks. Forearm 

pronation/supination classification generally 

outperformed hand opening/closing but showed 

lower accuracy than wrist flexion/extension in all 

participants. Furthermore, analysis of single-session 
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data from all motor imagery (MI) tasks revealed 

improved classification accuracy in nine patients. 

 

J. Cheng et al. (2021) introduced a method that 

significantly reduces the dependence on feature 

extraction common in traditional approaches and 

employs a classification model that is insensitive to 

hyperparameter settings, thereby addressing major 

challenges in emotion recognition. The effectiveness 

of the proposed model was validated through 

experiments on two publicly available datasets, 

DEAP and DREAMER. On the DEAP dataset, the 

model achieved average accuracies of 97.69% for 

valence and 97.53% for arousal. On the DREAMER 

dataset, it attained average accuracies of 89.03% for 

valence, 90.41% for arousal, and 89.89% for 

dominance. 

 

S. Liu et al. (2022) introduced a novel deep learning 

model named the three-dimensional convolutional 

attention neural network (3DCANN) for EEG-based 

emotion recognition. The 3DCANN architecture 

comprises a spatio-temporal feature extraction 

module alongside an EEG channel attention weight 

learning module. This design effectively captures 

both the dynamic temporal relationships and the 

internal spatial dependencies among multi-channel 

EEG signals throughout continuous time intervals. 

 

Y. Gao et al. (2022) proposed a multi-view EEG-

based emotion recognition method that effectively 

integrates distinctive features from EEG signals. The 

approach was extensively evaluated on two 

benchmark datasets, SEED and DEAP, 

demonstrating superior performance compared to 

other representative single-view and multi-view 

methods. The EEG-GCN model captures both critical 

sequential segments and spatial location information 

within EEG signals, enhancing its recognition 

capabilities. 

 

III. SYSTEM DESIGN 

 

One of the primary challenges in EEG-based emotion 

analysis is differentiating between passive and active 

emotion elicitation methods. Additionally, there 

remains a significant need for more efficient and 

user-friendly techniques for collecting emotional 

data. To address these issues, this study introduces a 

robust deep learning framework developed in 

MATLAB. The core objective is to design a 

lightweight algorithm that can accurately recognize 

emotional states and enable real-time decision-

making within a minimal time frame. 

 

The proposed approach leverages advanced signal 

processing techniques to preprocess raw EEG data, 

removing artifacts and enhancing signal quality. A 

carefully structured deep neural network is then 

trained on these signals to classify emotional states 

across multiple dimensions, such as valence and 

arousal. The model is optimized for performance on 

low-resource platforms, making it suitable for real-

world applications such as wearable EEG devices or 

mobile health monitoring systems. Evaluation of the 

model is carried out using benchmark EEG datasets, 

and performance is measured in terms of accuracy, 

latency, and computational efficiency. The results 

demonstrate that the proposed method not only 

achieves high classification accuracy but also 

significantly reduces response time, thereby 

facilitating timely emotional assessments. This 

research contributes to the growing field of affective 

computing and opens up possibilities for its 

integration into adaptive human-computer interaction 

systems and personalized mental health care 

solutions. 

 

METHODOLOGY

 
Fig 2.  System architecture of LPRN brain wave 

analysis 

Figure 2 presents the architectural framework of the 

proposed model for brainwave analysis. 

 

B. Brainwave Data 

Electroencephalography (EEG) captures the brain’s 

real-time electrical responses to external stimuli 

during cognitive or physical tasks. EEG signals 

consist of various brainwave types, including Delta, 

Theta, Alpha, Sigma, and Beta waves, each 

characterized by specific frequency ranges: 

• Delta: 0.5–4 Hz 
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• Theta: 4–7 Hz 

• Alpha: 8–12 Hz 

• Sigma: 12–16 Hz 

• Beta: 13–30 Hz 

These brainwaves represent low-amplitude electrical 

signals generated by neural activity and are recorded 

using multiple scalp-mounted electrodes—typically 

up to 256 channels, though 64-channel systems are 

commonly used. While EEG offers valuable insights 

into brain function, it is sensitive to noise and 

artifacts, particularly those caused by motion, which 

can interfere with signal accuracy and interpretation. 

 
Figure 3: Neural structure of the proposed LPRN-

Resi Net architecture. 

 

Figure 3: Depicts the neural architecture of the 

proposed Novel Resi Net model, which integrates a 

back-fetching mechanism wherein residual weights 

are reused as bias updates to the input layers. The 

network utilizes the Sigmoid activation function—

also known as a squashing function—due to its 

property of mapping input values to a finite output 

range, thereby stabilizing the learning process. 

In the Resi Net framework, derivative values with 

excessively large magnitudes are disregarded, as they 

can disrupt the stability of weight updates. This is 

controlled by the back-fetching process, which 

effectively regulates gradient behaviour and 

mitigates the risk of overfitting. 

he behavior of ResiNet is formally expressed in 

Equation (1): 

𝑦1 = 𝑓1(𝑤(𝑥1)𝑋1 + 𝑤(𝑥1)𝑋2),                        (1) 

Here, f₁ represents the functional derivative of the 

input x with respect to neuron X₁.  

The final derivative used in backpropagation is 

derived in Equation (2): 

 

𝑊𝑛 = 𝜇𝛿
𝑑𝑓𝑛(𝑒)

𝑑𝑒
𝑦𝑛                                        (2) 

 

This equation models the network across n layers, 

with a coefficient α that influences the training 

convergence rate. During training, parameter values 

are adaptively reduced, leading to optimal weight 

coefficients that closely align with the underlying 

data distribution. 

 

Implementation Summary 

The processed data from the AMIGOS dataset is 

divided into three main variables after completing 

data cleaning. EEG signals are then formally 

extracted for analysis. To characterize the EEG 

patterns, Discrete Wavelet Transform (DWT) is 

applied to estimate key parameters such as Sigma and 

Lambda. During this process, computational metrics 

including Algorithm Computation Time (ACT) and 

Full System Model Computation Time (FCT) are 

recorded. 

The implementation follows these key steps: 

• Feature Extraction and Model Setup: 

The LPRN model performs statistical analysis 

and extracts feature patterns, which are 

subsequently fed into the Resi Net neural 

network. The configured neural blocks are 

detailed in Figure 5. 

• Correlation Analysis: 

Correlation parameters based on training and 

testing data from LPRN are computed and 

plotted to identify important data relationships. 

• Performance Evaluation: 

System performance is assessed using a 

confusion matrix that quantifies True Positives, 

True Negatives, False Positives, and False 

Negatives. 

• ROC Curve Analysis: 

Receiver Operating Characteristic (ROC) curves 

are plotted to evaluate overall model 

effectiveness. The results of the confusion matrix 

analysis are illustrated in Figure 4. 

 

IV. RESULTS AND DISCUSSIONS 

 

 
Figure 4: Raw EEG data input for the proposed 

model. 
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Figure 4 depicts the raw EEG signals as they are 

introduced into the proposed brainwave analysis 

framework. 

 
Figure 5: EEG spectrum after Discrete Wavelet 

Transform (DWT) processing. 

Figure 5 illustrates the EEG spectrum obtained 

following the application of the DWT method. 

The ResiNet configurations within the training 

toolbox are illustrated, with performance assessed 

using mean squared error (MSE). Training is 

conducted for up to 1000 epochs, though the actual 

number may vary based on data complexity, 

potentially extending the training duration. 

Validation is performed with a maximum of six 

checks to monitor and prevent overfitting. Gradient 

values are used to adjust the scaling factor of the 

analysis window, which ranges from 0 to 0.5, 

exploring various intermediate values throughout the 

training process. 

 
Figure 7: ROC curve illustrating the performance of 

the proposed LPRN model. 

 

 
Table 1 provides a comparative analysis of existing 

emotion recognition systems. The first method 

integrates EEG and PPG signals and utilizes a 

conventional LSTM model, achieving an accuracy of 

82.6%. The second approach uses only EEG data and 

applies a Deep Convolutional Neural Network 

(DCNN), effectively classifying various emotional 

states such as like/dislike, dominance, and 

familiarity, with an accuracy of 92.50%. The 

proposed method, which also relies solely on EEG 

data and employs a Long-term Pattern Recognition 

Network (LPRN), outperforms the existing models 

by achieving an accuracy of 96.60%. 

 

V. CONCLUSION 

 

Depression is a growing mental health concern 

affecting a significant portion of the population. This 

work proposes a case-based reasoning approach for 

detecting depressive states using EEG signals 

acquired through a mobile three-electrode EEG 

device. The collected data undergoes preprocessing 

to remove artifacts and extract relevant features. The 

proposed system utilizes a Linear Pattern 

Recognition Network (LPRN) as the classification 

model. Prior to classification, a wavelet transform is 

applied to the EEG signals to extract frequency-based 

statistical features essential for emotion recognition. 

The model achieves a high classification accuracy of 

96.60%, as validated through confusion matrix 

analysis. In addition to identifying depressive 

patterns, the system interprets emotional states from 

EEG data and generates music recommendations 

tailored to the user's detected mood. 
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