
© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4837

AI Voice Assistant using Raspberry Pi 4

Abja VS1, Akhil Santhosh2, Niyas Mohammed3, Mohammed Anaz4, Ms.Divya VB5

1-2-3-4-5Rajadhani Institute of Engineering & Technology

Abstract—This project presents a voice-activated AI

chatbot system designed using a Raspberry Pi and

LLaMA 3 language model integration. The assistant

takes spoken input, processes it using speech recognition,

sends it to a LLaMA 3 backend for intelligent response

generation, and provides voice-based output. This voice

assistant mimics a conversational human-machine

interaction and supports real-time communication. The

system employs components such as USB microphone,

speakers, OLED eyes powered by ESP32, and Wi-Fi

connectivity to create an expressive, interactive robot

head that can be used for educational or assistive

purposes.

Index Terms—Raspberry Pi, AI chatbot, LLaMA 3,

ESP32, speech recognition, voice assistant, IoT.

I INTRODUCTION

The evolution of artificial intelligence (AI) and natural

language processing (NLP) has significantly

transformed human-computer interaction, paving the

way for intelligent voice-based systems. Voice

assistants, once considered futuristic, are now

becoming increasingly accessible and practical, thanks

to advancements in embedded systems and open-

source AI models. These assistants enable hands-free

interaction, offering immense potential in domains

such as smart homes, personal productivity,

accessibility for the elderly or differently-abled, and

educational environments.

This project presents the design and implementation of

an AI-powered voice assistant chatbot built using a

Raspberry Pi and the LLaMA 3 language model. The

system is designed to recognize spoken queries,

generate intelligent responses using a locally or

remotely hosted LLaMA 3 backend, and deliver real-

time audio replies, thereby simulating a conversational

assistant. It integrates a USB microphone for input, a

speaker for voice output, and expressive OLED eyes

controlled by ESP32 microcontrollers to enhance user

interaction through visual feedback.

Unlike traditional commercial voice assistants that

rely heavily on cloud services and proprietary

platforms, this project demonstrates a customizable,

cost-effective alternative that leverages open-source

tools. The modularity of the design also allows for the

incorporation of additional features such as facial

recognition, emotion detection, or local processing for

enhanced privacy.

This paper details the system's architecture, hardware

and software components, communication flow,

implementation process, and performance evaluation.

The goal is to contribute

a functional and expressive AI chatbot framework that

can be adapted for various real-world applications in

the growing field of human-AI interaction.

II LITERATURE SURVEY

The literature survey explores various

implementations and research efforts related to AI-

based voice assistants, particularly focusing on speech

recognition, speech synthesis, and the feasibility of

deploying these systems on low-powered hardware

like the Raspberry Pi.

[1] AI-Based Voice Assistant by S. Subhash.

This project introduces a basic voice assistant that

captures user voice through a microphone, converts it

to text using speech recognition, and replies using the

Google Text-to-Speech (gTTS) engine. It is capable of

performing simple tasks like opening applications via

voice commands.

[2] JARVIS – AI Voice Assistant by Priya Dalal.

Inspired by commercial assistants like Google

Assistant and Siri, JARVIS is designed to handle

conversational tasks, retrieve weather and news

updates, translate text, and send emails through voice

input. It integrates multiple speech and NLP

technologies using Python

[3] Edge-Based Voice Assistants on Raspberry Pi by

E. Lattanzi and V. Freschi

This study emphasizes the benefits and challenges of

running voice assistants on edge devices like

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4838

Raspberry Pi. Key advantages include enhanced

privacy, lower latency, and reduced reliance on cloud

infrastructure.

III SYSTEM ARCHITECTURE

The architecture of the AI-powered voice assistant

chatbot is designed to be modular, scalable, and

responsive to real-time voice inputs. It integrates

multiple hardware and software components across

four primary layers: sensing, processing,

communication, and output/display. Each layer plays

a critical role in transforming user speech into

intelligent responses with expressive visual feedback.

1. Sensing Layer

The sensing layer is responsible for capturing voice

input from the user. A USB Plug-and-Play

microphone is used due to its high sensitivity and

compatibility with Raspberry Pi. The microphone

continuously listens for user input and transmits raw

audio data to the processing unit for further analysis.

2. Processing Layer

The processing unit is centered around the Raspberry

Pi 4, which acts as the core controller of the system.

This layer executes three key functions:

• Speech Recognition: Utilizes Python libraries like

speech_recognition and sounddevice to convert

the captured audio into text.

• Backend Communication: Sends the transcribed

text via HTTP requests to a remote system hosting

the LLaMA 3 language model. This backend

processes the query and returns a contextually

accurate response.

• Text-to-Speech Conversion: Converts the AI-

generated text back into speech using the pyttsx3

or gTTS libraries, depending on configuration.

The Raspberry Pi also handles interaction with the

ESP32 modules to control the visual feedback

mechanisms based on the assistant’s state (e.g., idle,

listening, speaking).

3. Communication Layer

Communication in this system primarily occurs over a

Wi-Fi network, enabling:

• Reliable data exchange between Raspberry Pi and

the AI backend server running LLaMA 3.

• Control commands to the ESP32 units for eye

animation synchronization.

• Optional integration with cloud services or mobile

devices for extended functionalities in future

upgrades.

This client-server approach ensures that the Raspberry

Pi performs only lightweight tasks, while the

computationally intensive language model is hosted

on a GPU-capable laptop or server.

4. Output and Display Layer

This layer enhances the interaction experience through

both auditory and visual feedback:

• Audio Output: A compact speaker connected to

the Raspberry Pi delivers the assistant’s spoken

response to the user.

• Visual Output (OLED Eyes): Two OLED

displays, driven by ESP32 microcontrollers, form

the “eyes” of the assistant. These eyes change

expressions based on real-time commands

received from the Raspberry Pi.

• For example:

Listening Mode: Eyes animate or blink rapidly.

Thinking/Processing: Eyes show a loading pattern.

Speaking: Eyes expand or pulse to simulate

engagement.

• Screen: A 7-inch monitor or tablet can be

connected to visualize logs, conversation text, or

animations during demonstrations or educational

use.

System Workflow Summary

• User speaks a query into the microphone.

• Raspberry Pi captures and transcribes the speech

to text.

• The text is sent to the LLaMA 3 backend over

HTTP.

• The backend returns a generated response.

• Raspberry Pi converts the response to speech and

plays it via the speaker.

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4839

2.1 System Work Flow

Concurrently, OLED eye animations reflect the

assistant’s behaviour for improved user feedback.

This architecture supports real-time, expressive, and

low-latency interaction. It is designed to be energy-

efficient and flexible, making it suitable for desktop

assistants, interactive kiosks, or educational robots.

IV HARDWARE OVERVIEW

The AI Voice Assistant project utilizes a compact,

modular hardware setup to achieve efficient speech

interaction and processing on an embedded platform.

The selection of components ensures a balance

between functionality, performance, and cost, making

the system suitable for low-power edge deployment

such as Raspberry Pi-based applications.

1. Raspberry Pi 4 Model B

The Raspberry Pi 4 serves as the central processing

unit for the entire system. It is a credit-card-sized

computer equipped with a quad-core Cortex-A72

processor and 2–4GB RAM. Its role includes:

• Capturing audio from the microphone

• Processing and converting voice input to text

• Interfacing with speech recognition APIs (e.g.,

speech_recognition)

• Executing text-to-speech conversion using gTTS

or pyttsx3

• Controlling outputs via audio and potential

display units

3.1 Raspberry Pi-4 Model B

This makes the Pi an ideal choice for hosting

lightweight AI applications and handling concurrent

audio and communication tasks with moderate

latency.

2. USB Microphone

The voice assistant system uses a USB Plug-and-Play

(PnP) microphone as its input device. This

microphone captures the user's voice in real-time and

forwards it to the Raspberry Pi for processing. It is

selected for:

• Driver-free, immediate integration with

Raspberry Pi OS

• Moderate noise handling suitable for indoor

environments

• Compatibility with Python-based audio libraries

3.2 USB microphone

3. MicroSD Card – SanDisk Extreme PRO (32 GB)

The microSD card acts as the main storage for the

Raspberry Pi. It holds the operating system and all the

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4840

software and files used in the AI chatbot. For this

project, we use a 32GB SanDisk Extreme PRO

microSD card because it is fast and reliable. A card

with Class 10 or UHS-I rating ensures quick loading

and smooth performance, especially when working

with AI tasks like speech recognition or natural

language processing. For larger applications, 64GB or

128GB cards can also be used. Choosing a high-

quality and durable card helps avoid data loss and

keeps the assistant running smoothly.

3.3 Sandisk Extreme PRO (32 GB)

4. Power Supply

The Raspberry Pi 4 requires a strong and stable power

supply to run properly, especially when multiple

devices are connected. We use a 5V USB-C power

adapter that provides at least 3A of current, but for

safety and stability, a 3.5A or 4A power supply is

preferred. This ensures the Pi has enough power to run

the microphone, speaker, display, and other

components without shutting down or showing low-

voltage warnings. A reliable power source helps the

AI chatbot run smoothly without interruptions.

5. Display – 7-Inch HDMI Touchscreen

A 7-inch touchscreen display adds a visual interface to

the AI chatbot. It has a 1024×600 resolution, connects

using HDMI for video, and USB for touch control. It

is easy to set up with Raspberry Pi and provides a

smooth touch experience. This screen can show

chatbot responses, logs, or system controls, making

the assistant more user-friendly and interactive. It is

compact, efficient, and ideal for portable or desktop

projects.

3.4 7 inch HDMI Screen

6. Amplifier – XH-M120 PAM8610

To make the assistant’s voice louder and clearer, we

use the XH-M120 amplifier board. It is a small,

energy-efficient audio amplifier that works with

speakers to boost sound. It runs on a 7V–15V power

supply and delivers up to 10W of power per channel.

It includes a volume control knob, a 3.5mm audio

input, and connectors for external speakers. Its low

heat output and high efficiency make it suitable for

Raspberry Pi-based audio projects.

3.5 XH-M120 PAM8610 amplifier board

7. Speaker – 3W Speaker

We use a small 3W speaker to output the assistant’s

voice. It’s lightweight and power-efficient, making it

perfect for a voice assistant project. When connected

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4841

to the amplifier, it produces clear and audible

responses. The speaker can be connected using the

audio jack or GPIO pins, depending on the design. A

well-chosen speaker ensures the assistant can speak

clearly and be heard in normal room settings. Placing

the speaker in a proper enclosure also helps improve

sound quality.

3.6 3W Speaker

V SOFTWARE OVERVIEW

For an AI chatbot project on the Raspberry Pi 4, the

choice of operating system (OS) and AI framework

plays a crucial role in system performance and

functionality. The most widely used OS for this

platform is Raspberry Pi OS (formerly Raspbian), a

Debian-based Linux distribution optimized for

Raspberry Pi hardware.

Raspberry Pi OS:

• Lightweight and Efficient: Designed to work

smoothly on limited hardware, ensuring good

performance for AI and voice-based tasks.

• Pre-installed Tools: Comes with Python, Git, and

GPIO tools, reducing setup time for development.

• Easy Software Management: Uses APT for

installing AI tools like Rasa, ChatterBot, or

speech recognition libraries via simple terminal

commands.

• Robust Connectivity: Offers support for Wi-Fi

and Ethernet, allowing access to online APIs or

cloud-based AI services essential for chatbot

functionalities.

• Python Friendly: Strong support for Python, the

dominant language for AI projects, while also

allowing other programming languages.

• Versatile Interface: Supports both GUI and

command-line (headless) modes—ideal for

embedded or remote chatbot systems.

4.1.2.1 Raspberry Pi OS

AI Framework: ChatterBot

The project utilizes ChatterBot, a Python library

designed for creating simple conversational agents.

It’s suitable for developers with minimal experience in

natural language processing and works efficiently on

low-power devices like the Raspberry Pi.

Key Features of ChatterBot:

• Ease of Use: Quick to implement and perfect for

small-scale or educational chatbot projects.

• Automatic Training: Learns from previous

conversations, improving response accuracy over

time.

• Low Resource Requirements: Runs efficiently on

Raspberry Pi without needing cloud support or

heavy processing.

While ChatterBot may not support advanced dialogue

or complex NLP tasks, its simplicity and resource

efficiency make it a practical and accessible choice for

building lightweight AI chatbots directly on the

Raspberry Pi.

1. Tkinter – GUI Development

Tkinter is Python’s built-in library for creating

graphical user interfaces. It is lightweight, pre-

installed, and ideal for developing desktop

applications like chatbots, especially on resource-

limited devices like the Raspberry Pi. Tkinter enables

developers to build an interactive chatbot window with

components like text boxes, buttons (e.g., “Send” or

“Listen”), and labels. It is event-driven, responding to

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4842

user actions in real time, making it perfect for

capturing inputs and displaying bot responses. Its ease

of customization and minimal resource usage make it

a great fit for embedded chatbot projects.

2. PyAudio / Sounddevice – Capturing Microphone

Input

PyAudio is a Python wrapper for PortAudio that

enables recording audio from a microphone, which is

essential for voice-based interactions. It streams real-

time audio input for processing by speech recognition

systems. Sounddevice, an alternative to PyAudio, is

better suited for integration with NumPy and advanced

signal processing. Both libraries are used to capture

user speech, allowing chatbot applications to function

as voice assistants, providing hands-free interaction

and natural user engagement.

3. SpeechRecognition – Voice to Text Conversion

SpeechRecognition is a powerful Python library that

converts spoken words into text. It supports various

speech-to-text engines like Google, IBM Watson, and

CMU Sphinx. When combined with PyAudio or

Sounddevice, it listens to user voice input, processes

it, and transcribes it into text, which is then handled by

the chatbot’s AI engine. The library is robust, handling

background noise and live audio streams effectively,

making voice communication more natural and

accessible. This forms the core of any voice-enabled

AI chatbot system.

4. Text-to-Speech (TTS) Engines – gTTS and pyttsx3

To give the chatbot a human-like voice, two text-to-

speech libraries are used:

• gTTS (Google Text-to-Speech): An online tool

that provides natural-sounding speech using

Google's cloud services. It supports multiple

languages and offers high voice quality but

requires an internet connection.

• pyttsx3: An offline alternative that uses built-in

OS speech engines (e.g., espeak on Linux).

Though its voice is more robotic, it works without

internet, making it ideal for offline Raspberry Pi

setups.

Both tools enable the AI assistant to “speak”

responses, improving accessibility and

interaction.

5. HTTP Requests – Requests Library

The Requests library allows the Raspberry Pi to

communicate with a backend AI model (like LLaMA

3) over HTTP. User input (text or speech-converted

text) is sent to the server, which processes it and

returns a response. This is useful in systems using a

REST API architecture.

6. Real-Time Communication – WebSockets

WebSockets enable real-time, two-way

communication between the Raspberry Pi frontend

and the AI backend. Unlike HTTP, which follows a

request-response model, WebSockets maintain a

persistent connection. This allows instant transmission

of queries and responses—critical for fluid voice

interactions. It significantly reduces latency, making

voice assistants feel more natural and responsive.

7. Face Detection – OpenCV, dlib, and face-

recognition

• OpenCV: Handles real-time video and image

processing to detect faces.

• dlib: Provides deep learning-based facial

recognition and tracking.

• face-recognition: Simplifies identifying or

verifying users based on stored facial profiles.

Using these, the chatbot can detect the presence of

users and personalize responses, adding a layer of

interactivity and security. For instance, it can

greet users by name or only activate when a face

is detected.

8. Audio Handling – PyAudio and SpeechRecognition

• PyAudio: Captures microphone input and streams

raw audio for processing. It’s crucial for feeding

real-time voice input into speech recognition

systems.

• SpeechRecognition or Vosk: These libraries

convert the audio from PyAudio into text that the

AI chatbot can process.

Combined with pyttsx3, these tools allow full

voice-based interaction—capturing speech and

responding audibly, even in offline environments.

VI IMPLEMENTATION

This project centers on developing an intelligent,

voice-enabled AI chatbot using a Raspberry Pi 4 as the

frontend interface and a laptop running LLaMA 3 as

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4843

the backend for language processing. The system is

designed to deliver responsive, real-time

conversational experiences by leveraging the

computational capabilities of both devices efficiently.

System Architecture

1. Frontend: Raspberry Pi 4 with GUI

The Raspberry Pi 4 serves as the main user interface,

designed to be energy-efficient and cost-effective. It

captures user input through a graphical interface built

using Tkinter, displayed on a 7-inch touchscreen.

Users can interact via typed text or voice commands

using a USB or onboard microphone

• Voice Input: Processed using audio libraries such

as PyAudio, Sounddevice, SpeechRecognition

• Data Transmission: Inputs are sent to the backend

via WebSockets or REST APIs (Flask/FastAPI),

with WebSockets preferred for low-latency, real-

time interactions.

• Response Display: Received responses are shown

in a chat-style GUI, with options for Text-to-

Speech (TTS) output using tools like gTTS,

pyttsx3, Piper, or Festival.

The Raspberry Pi acts as the communication and

display hub, delegating all intensive AI tasks to the

backend, ensuring lightweight and smooth operation.

2. Backend: Laptop Running LLaMA 3

The laptop backend runs LLaMA 3, a powerful large

language model that handles all Natural Language

Processing (NLP) tasks. It receives input from the

Raspberry Pi over a LAN or Wi-Fi connection,

processes it, and returns context-aware, intelligent

responses.

• Server Implementation: Built using Flask or

FastAPI, capable of handling multiple concurrent

requests.

• Whisper for high-accuracy speech recognition.

• TTS Engines to convert text responses into audio.

• Databases to support session management and

user personalization.

• Third-party API integration for dynamic queries

(weather, news, etc.).

This architecture supports upgrades to models,

features, and security without requiring changes to the

Raspberry Pi frontend.

3. Communication Workflow

• User interacts with Raspberry Pi via voice/text.

• Voice is optionally transcribed using ASR tools.

• Transcribed or typed input is sent to the backend.

• LLaMA 3 processes the query and generates a

response.

• Response is returned via WebSocket and

displayed on the GUI or spoken aloud.

This client-server communication is both modular and

scalable, allowing for rapid iteration and expansion.

4. Interactive Hardware Design

To enhance physical interaction, a robotic demo model

was built inspired by NVIDIA’s AI robot “Blue.” It

transforms the chatbot into a visually expressive

companion.

• Head Design: ESP32-Controlled OLED Eyes

Two OLED displays show animated eye-like graphics.

Controlled by an ESP32, simulating emotion and eye

movement to improve engagement.

• Visual Indicators and Body Design

RGB LED lights embedded in the head and body

indicate states such as listening, thinking, or speaking.

A 7-inch touchscreen display, powered by the

Raspberry Pi, shows the chatbot GUI.

• Hidden components include Raspberry Pi 4, USB

Microphone, Speaker + Amplifier for high-

quality audio output. This combination ensures

clear communication, visual feedback, and hands-

free interaction.

• Advanced Features and Expandability include

Face recognition (via OpenCV), gesture

detection, and wake word activation are potential

add-ons. Backend support for conversation

memory enables more natural, personalized

dialogue. Modular design allows for hardware

and software upgrades independently.

This project showcases a powerful blend of embedded

systems and conversational AI. The Raspberry Pi

provides a portable, user-friendly interface, while the

laptop backend delivers high-quality language

processing via LLaMA 3. Together, they form a

responsive, voice-enabled assistant enhanced by

robotic expression and visual feedback, offering a

real-world, scalable AI solution ideal for both

hobbyists and research applications.

VII RESULTS

The AI Voice Assistant system was tested under

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4844

various real-world conditions to evaluate its

responsiveness, accuracy, and user interaction quality.

During the evaluation phase, the assistant exhibited an

average end-to-end latency ranging from 2.1 to 2.8

seconds, measured from the moment the user

completed a voice query to the point when the system

responded audibly. This low latency was achieved by

efficiently balancing on-device processing and remote

backend communication with the LLaMA 3 language

model. The delay varied slightly based on the strength

of the Wi-Fi connection and the load on the backend

server running LLaMA 3.

Drawing inspiration from NVIDIA’s AI robot "Blue,"

the design combines functional components with an

expressive physical presence that enhances user

interaction. At the heart of this model is a custom-built

head structure, which houses two OLED screens

controlled by an ESP32 microcontroller. These OLED

displays are programmed to show animated, eye-like

graphics that simulate natural human expressions such

as blinking, eye movement, or focus changes, creating

a sense of emotional response and presence.

5.1 Graphical User Interface of AI Chatbot

In terms of speech recognition, the system achieved

approximately 94% accuracy in quiet indoor

environments, making it suitable for home or

classroom use. When tested in environments with

moderate background noise, the accuracy slightly

declined to around 80–85%, depending on microphone

placement and ambient sound levels. Despite these

variations, the system consistently maintained clear

recognition of commands and conversational queries,

validating the effectiveness of the speech_recognition

library and the selected hardware.

A standout feature of the implementation was the

integration of OLED-based expressive eyes controlled

by ESP32 microcontrollers. These eyes responded in

real-time to system states such as listening, thinking,

or speaking, providing users with non-verbal visual

cues. Feedback from test users highlighted that these

dynamic expressions added a layer of emotional

engagement, making the assistant appear more “alive”

and interactive. The animations, including blinking

and pulsing patterns, were executed with minimal

latency, further enhancing user experience.

The speech synthesis output delivered through a

connected speaker was reported to be clear and

natural. The system used either pyttsx3 for offline

speech or gTTS for high-quality cloud-based speech

synthesis. Users appreciated the system’s ability to

maintain conversational flow with fluid and

understandable voice output. In addition, the assistant

supported adjustable voice speed and tone, which was

particularly useful for tailoring the response delivery

to user preferences or accessibility needs.

5.2 Working Model of AI Chatbot

A 7-inch HDMI monitor, optionally connected to the

Raspberry Pi, allowed for real-time visualization of

the assistant’s operations, including transcription logs,

response generation, and HTTP communication with

the backend. This display was particularly useful for

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4845

demonstration purposes and debugging during

development.

5.3 Working Model of AI Chatbot

Overall, the assistant was able to operate continuously

for over two hours in demonstration mode, handling

multiple queries without overheating or failure. Users

praised the system’s ease of use, natural interaction,

and unique expressiveness. The combination of real-

time voice recognition, natural language

understanding via LLaMA 3, and animated visual

feedback proved highly effective in creating an

engaging AI interaction experience.

VIII CONCLUSION

The AI Voice Assistant system developed using

Raspberry Pi and the LLaMA 3 language model

demonstrates a powerful yet accessible solution for

real-time, conversational human-machine interaction.

Through the seamless integration of speech

recognition, natural language processing, and speech

synthesis, the assistant is capable of interpreting user

voice commands, generating intelligent responses, and

delivering them audibly—closely mimicking a natural

conversation flow. The use of expressive OLED eyes

driven by ESP32 microcontrollers adds a unique

emotional and visual dimension to the interaction,

making the assistant more relatable and intuitive to

users.

One of the key achievements of the project is its

modular, cost-effective design that relies primarily on

open-source tools and widely available hardware. The

system is capable of functioning in real-time with

minimal latency and high accuracy, making it suitable

for various applications including personal

productivity, educational assistance, and human-

computer interface research. The use of edge

computing through the Raspberry Pi reduces reliance

on cloud services, enhancing privacy, while the ability

to offload heavy NLP tasks to a remote LLaMA 3

backend ensures scalability and adaptability.

The successful implementation and testing of this

assistant validate its potential as a foundational

platform for future developments. The project also

lays the groundwork for a wide range of extensions,

such as incorporating face recognition, emotion

detection, multilingual support, or integration with

smart home systems. The expressive design and

interactive feedback further enhance user engagement,

distinguishing it from traditional voice assistant

implementations.

In conclusion, the project not only fulfills its primary

objective of creating an intelligent, responsive, and

expressive voice assistant but also opens new avenues

for developing personalized and adaptive AI systems

in the embedded domain. With continued

enhancements, this assistant can evolve into a highly

capable real-world interface, bridging the gap between

artificial intelligence and everyday human interaction.

IX ACKNOWLEDGMENT

We sincerely express our gratitude to everyone who

contributed to the successful development of this AI

Voice Assistant using Raspberry Pi 4. Special thanks

to our mentors and faculty members for their

continuous guidance, technical support, and

constructive feedback throughout the project, which

significantly shaped our approach and

implementation.

We are deeply grateful to our project team for their

dedication, collaboration, and hands-on effort in

integrating hardware components and software tools

to bring this system to life. We also acknowledge the

contributions of researchers and developers whose

work in speech recognition, edge computing, and AI-

based assistant systems inspired and informed our

design, particularly those exploring the feasibility of

voice assistants on low-powered devices like the

© June 2025 | IJIRT | Volume 12 Issue 1| ISSN: 2349-6002

IJIRT 181648 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4846

Raspberry Pi.

Lastly, we extend our appreciation to the institution for

providing the necessary resources, tools, and

encouragement that enabled us to complete this

project. This support was instrumental in building a

functional, responsive, and privacy-conscious voice

assistant system that operates effectively on edge

hardware.

REFERENCES

[1] ChatGPT Integration, Brown, T., Mann, B.,

Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,

... & Amodei, D. (2020). Language Models are

Few-Shot Learners. Advances in Neural

Information Processing Systems, 33, 1877-1901.

[2] Speech Recognition Technology, Hinton, G.,

Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R.,

Jaitly, N., ... & Kingsbury, B. 2012). Deep Neural

Networks for Acoustic Modeling in Speech

Recognition. IEEE Signal Processing Magazine,

29(6), 82-97.

[3] Raspberry Pi Applications, Upton, E., &

Halfacree, G. (2014). Raspberry Pi User Guide.

John Wiley & Sons

[4] AI in Voice Assistants, Hoy, M. B. (2018). Alexa,

Siri, Cortana, and Google Assistant: Virtual

Assistants and Smart Home Integration. Medical

Reference Services Quarterly, 37(1), 81-88.

[5] Natural Language Processing (NLP), Jurafsky,

D., & Martin, J. H. (2020). Speech and Language

Processing (3rd ed.). Pearson.

[6] ChatterBot Framework, ChatterBot Team. (n.d.).

ChatterBot Documentation.

