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Abstract—Human Activity Recognition (HAR) based 

research develops innovative frameworks to enhance 

recognition performance. In this research topic utilizes a 

Graph Convolutional Recurrent Neural Network 

(GCRNN) to effectively capture both spatial and 

temporal dependencies in motion data collected from 

wearable sensors. The GCRNN model integrates Graph 

Convolutional Networks (GCN) to learn spatial 

relationships among sensor nodes, while recurrent layers 

model sequential dependencies, enhancing the 

classification of fall-related activities. To further 

optimize model performance, we incorporate the Ninja 

Optimizer, a novel optimization technique designed to 

improve learning rate adaptation and parameter fine-

tuning. The Ninja Optimizer accelerates convergence, 

mitigates overfitting, and enhances generalization, 

leading to more reliable fall detection outcomes.  We 

conduct experiments on the KFall dataset, 

demonstrating that our GCRNN model, fine-tuned with 

the Ninja Optimizer, outperforms conventional machine 

learning classifiers and baseline deep learning models. 

The model is first trained using the dataset and later 

tested with real-time sensor values.  After getting the 

dataset, we used preprocessing of the KFall dataset, it 

involves multiple steps to ensure the data is clean and 

suitable for training the GCRNN model. First, the 

dataset is loaded using Pandas, and missing values are 

handled through mean imputation. Next, sensor data 

from Sensor, are normalized using Min-Max Scaling to 

bring all features into a uniform range. Our system 

employs Accelerometers, Gyroscopes, and Heart Rate 

Sensors to predict fall events accurately. The Heart Rate 

Sensor is used to detect sudden heart rate fluctuations 

after a fall, helping differentiate real falls from normal 

activities. It enhances fall detection accuracy by 

providing physiological insights, enabling timely medical 

intervention for hospitalized patients. Additionally, IoT 

integration enables real-time transmission of sensor data 

from patients to the hospital control room, ensuring 

continuous monitoring of patient activities. The results of 

this study highlight the potential of GCRNN-based 

Human Activity Recognition (HAR) models in 

improving fall detection accuracy and reliability for 

hospitalized patients as accuracy of 98. 93% respectively. 

 

Index Terms—Graph Convolutional Recurrent Neural 

Network; Ninja Optimizer; Human Activity 

Recognition; Elderly fall uncovering; Wearable sensors; 

Sequential dependencies. 

 

I. INTRODUCTION 

 

One of the most important areas of the broad field of 

computer vision research is Human Activity 

Recognition (HAR).  Fundamentally, HAR entails 

creating and deploying models and algorithms that can 

automatically recognise and analyse human 

behaviours and actions from visual data [1].  Because 

of its wide range of applications in different domains, 

this field has seen a surge in significance.  Multimedia 

data dissemination has rapidly expanded in recent 

years, involving a huge amount of photos and videos.  

This massive volume of data is too large for manual 

analysis, so suitable AI-based algorithms must be used 

to automatically understand it.  Because of its many 

uses in domains like surveillance, video classification, 

human-computer interaction, health monitoring, and 

intelligent systems [2], the identification of human 

activities has attracted a lot of interest in computer 

vision research.  Since both local and global features 

are usually created by hand, achieving high 

recognition accuracy requires a lot of time and domain 

expertise.  Direct feature acquisition from raw data has 

been made possible by the remarkable advances in 

deep learning techniques in recent years, which have 
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completely changed the methodology [3].  There are 

two main benefits to deep features.  RGB video data 

has limitations in dim or dark environments, despite 

being widely used in HAR systems [4].   

However, even in dimly lit environments, infrared (IR) 

data can record human activity.  Creating reliable deep 

learning algorithms that can precisely identify human 

activity from infrared data—which frequently lacks 

the fine details available in RGB data—is the main 

challenge for achieving this goal [5].  If this goal is 

accomplished, HAR systems' usability in surveillance, 

medical monitoring, and other applications that 

function in low-visibility environments will be greatly 

improved. Falls among hospitalized patients, 

especially the elderly and those with mobility issues, 

pose serious health risks, leading to injuries and 

complications [6]. To address this, we propose an IoT-

based fall detection system that utilizes wearable 

sensors such as accelerometers, gyroscopes, and heart 

rate sensors for real-time monitoring. The collected 

motion and physiological data are processed using a 

Graph Convolutional Recurrent Neural Network 

(GCRNN), which effectively captures both spatial and 

temporal dependencies in human movements [7]. To 

further enhance model accuracy and efficiency, we 

incorporate the Ninja Optimizer for fine-tuning, 

ensuring faster convergence and reduced overfitting. 

This system enables continuous monitoring and real-

time fall detection, improving patient safety and 

healthcare response in hospitals [8]. 

Existing fall detection systems face several limitations 

and challenges that impact their accuracy and 

reliability. Traditional machine learning models 

struggle to capture both spatial and temporal 

dependencies in motion data, leading to higher false 

alarm rates. Many deep learning-based approaches 

rely on manual feature extraction, limiting their 

adaptability to diverse patient conditions. 

Additionally, real-time IoT integration is often 

inefficient due to high latency and power 

consumption, affecting continuous monitoring in 

hospital environments [9 and 10]. 

A. Contribution of this research paper 

The primary contribution of this research is the 

development of an IoT-based fall detection system that 

integrates a Graph Convolutional Recurrent Neural 

Network (GCRNN) with the Ninja Optimizer to 

enhance Human Activity Recognition (HAR) for 

hospitalized patients. Unlike conventional fall 

detection models, which struggle with capturing both 

spatial and temporal dependencies, the proposed 

GCRNN model effectively processes motion data 

collected from wearable sensors, such as 

accelerometers, gyroscopes, and heart rate sensors. 

The graph convolutional layers learn spatial 

relationships among sensor nodes, while the recurrent 

layers capture sequential dependencies, leading to 

improved recognition of fall-related activities.   

To further optimize performance, the Ninja Optimizer 

is incorporated for fine-tuning model parameters, 

enabling faster convergence, reduced overfitting, and 

better generalization across different patient 

conditions. Additionally, this research leverages IoT 

technology for real-time data transmission, ensuring 

continuous patient monitoring by securely sending 

sensor data to the hospital control room. Experimental 

validation using the KFall dataset demonstrates that 

the proposed GCRNN-Ninja Optimizer framework 

achieves higher accuracy and robustness compared to 

traditional machine learning classifiers and baseline 

deep learning models. The findings of this study 

highlight the potential of advanced deep learning and 

optimization techniques in improving fall detection 

accuracy, making it a valuable contribution to smart 

healthcare and patient safety. 

B. Organisation of paper 

The remaining section of the paper structured  as 

follow as,  in section 2 state as literature survey, and 

section 3 as followed as proposed methodology, 

anthen the proposed model experimental results are 

stated as section 4, and the finally conclusion of the 

paper is stated as section 5. 

II. RELATED WORKS 

 

A thorough HAR system for multi-classification tasks 

is created by Al-qaness MA et al., [11] to identify a 

variety of human movements, including walking, 

sitting, standing, falling, and more.  Additionally, this 

model is trained to distinguish between fall and non-

fall behaviours; this categorisation can be utilised to 

monitor the behaviour of the elderly and trigger rescue 

efforts in the event of a fall.  A PCNN-Transformer, 

an architecture based on parallel convolutional neural 

networks, is used to construct the created system.  In 

order to learn representations of temporal features 

from sensor data, PCNN-Transformer makes use of 
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the residual mapping method and the parallel 

architecture.  A concatenation operation is used to 

summarise the retrieved features from the input data 

(sensor data), after which the CNN blocks are aligned 

in parallel with several encoders based on 

Transformers.  Additionally, in order to decrease the 

model's complexity and training time, the CNN blocks 

employ a residual mapping approach.  Several open-

source datasets, including SisFall, UniMib-SHAR, 

and MobiAct, are used to test the proposed approach.  

When compared to other deep learning models, it 

achieved very high accuracy rates.  One example is the 

binary classification (fall detection) task, where the 

suggested model attained an average accuracy of 

99.95% for SisFall, 98.68% for UniMib-SHAR, and 

99.71% for MobiAct. 

 Recent advancements in deep convolutional neural 

networks have significantly increased the accuracy of 

video-based fall detection, as suggested by Chen Z. et 

al. [12].   This research proposes a video-based fall 

detection method that uses human poses to address 

these issues.  Lifting 2D poses to 3D poses is the first 

step after a lightweight pose estimator captures them 

from video sequences.  The second part of our work is 

a fall detection network that is both resilient and 

efficient. It uses predicted 3D postures to identify fall 

occurrences, which improves the respective field 

while keeping computation cost low through the use 

of relaxed convolutions.  The experimental results 

demonstrate that the suggested method for fall 

detection achieves a real-time speed of 18 frames per 

second on a non-GPU platform and 63 frames per 

second on a GPU platform, with an impressive 

accuracy of 99.83% on the big benchmark action 

recognition dataset NTU RGB+D. 

 Using Internet of Things (IoT) and multi-stage deep 

learning algorithms, Paul SK et al. [13] suggests a new 

HMR approach to MRHA identification.  Starting with 

skeletal frame sequences, the method uses 

EfficientNet to optimise spatial feature extraction 

using seven Mobile Inverted Bottleneck Convolutions 

(MBConv) blocks. Then, it uses ConvLSTM to 

capture spatio-temporal patterns.  In the end, the 

predictions are made using a classification module that 

uses global average pooling, a fully connected layer, 

and a dropout layer.  The model is tested using the 

HMDB51 and NTU RGB+D 120 datasets, with an 

emphasis on MRHA, including activities like sitting, 

sneezing, falling, walking, and so on.  It attains an 

accuracy of 89.00% on HMDB51 and 94.85% for 

cross-subject and cross-view evaluations, 

respectively, on NTU RGB+D 120.  In addition, the 

system incorporates Internet of Things capabilities 

through the use of a Raspberry Pi and a GSM module, 

which allows for the delivery of real-time notifications 

to both carers and patients through the Twilios SMS 

service.  Patient monitoring, healthcare outcomes, and 

costs are all enhanced by this efficient and scalable 

solution that connects HMR with the Internet of 

Things. 

 A wearable gadget was created by Paramasivam et al. 

[14] to help the elderly identify and avoid falls.  In 

addition, a number of deep learning algorithms are 

employed for the purpose of activity recognition in the 

elderly. These include RNN, CNN, LSTM, and GRU.  

In addition, the optimum deep learning model is 

determined by analysing performance data for CNN-

LSTM, RNN-LSTM, and GRU-LSTM with and 

without an attention layer, respectively.  In addition, 

the best deep learning model is used and the 

calculation time is evaluated using three separate 

hardware boards: the Raspberry PI 3 and 4, the Jetson 

Nano developer board, and the Raspberry Pi 2.  When 

compared to other deep learning models, the results 

show that the CNN-LSTM with attention layer 

exhibits greater accuracy (97%), recall (98%), 

precision (0.98), and F1_Score (0.98).  Additionally, 

compared to other edge computing devices, NVIDIA 

Jetson Nano has a shorter processing time.  With the 

proposed wearable gadget being able to track the 

movements of the elderly and so reduce the risk of 

falls, this work seems to have significant societal 

value. 

 Using FMCW radar and an asymmetric convolutional 

residual network, Zhang Y et al. [15] suggests a way 

for human action recognition.  The micro-Doppler 

time domain spectrograms of various actions are first 

extracted from the processed and analysed radar echo 

data.  Secondly, to overcome the shortcomings of 

linear and nonlinear transformations in the ResNet18 

network's residual block for micro-Doppler spectrum 

recognition, a technique that combines asymmetric 

convolution with the Mish activation function is 

implemented.  The goal of this method is to improve 

the network's feature learning performance.  The last 

step in improving the model's attention and 

understanding of input data is to incorporate the 

Improved Convolutional Block Attention Module 
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(ICBAM) into the residual block.  The experimental 

results show that the suggested strategy outperforms 

traditional deep learning methods with a 98.28% 

success rate in action detection and scene 

categorisation, even in highly complicated 

environments.  This approach also shows great anti-

noise recognition performance and greatly enhances 

the recognition accuracy for actions with similar 

micro-Doppler properties. 

C. Challenges and limitation of existing studies 

While the existing studies have significantly 

contributed to fall detection and human activity 

recognition (HAR), they still face certain limitations 

and challenges. Al-Qaness et al. utilized a PCNN-

Transformer model, but the approach relies heavily on 

parallel architectures and residual mapping, increasing 

computational complexity and requiring significant 

hardware resources for real-time deployment. Chen et 

al. introduced a video-based fall detection system 

using 2D-to-3D pose estimation, but video-based 

methods are sensitive to lighting conditions, 

occlusions, and privacy concerns in hospital 

environments. Paul et al. proposed an EfficientNet and 

ConvLSTM-based IoT-integrated model, but the 

approach depends on external Raspberry Pi and GSM 

modules, which may introduce latency and 

communication overhead. Paramasivam et al. 

experimented with multiple deep learning 

architectures on wearable devices, but their edge 

computing implementation using Jetson Nano and 

Raspberry Pi showed varying computational 

efficiency, making it challenging to standardize across 

different hardware. Zhang et al. employed FMCW 

radar with asymmetric convolutional networks, 

achieving high accuracy, but radar-based systems are 

prone to interference and require specialized 

hardware, limiting their adaptability in hospital 

settings. These challenges highlight the need for an 

optimized IoT-integrated deep learning model that 

balances accuracy, real-time processing, and 

computational efficiency for hospitalized patient 

monitoring. 

III. PROPOSED METHODOLOGY 

 

The proposed methodology integrates an IoT-enabled 

fall detection system using wearable sensors and a 

deep learning model to ensure real-time monitoring of 

hospitalized patients. The system employs 

accelerometers, gyroscopes, and heart rate sensors to 

continuously capture motion and physiological data, 

which are transmitted via Bluetooth Low Energy 

(BLE) or Wi-Fi (MQTT/HTTP protocols) to an edge 

computing device such as a Raspberry Pi. The 

received sensor signals undergo preprocessing, 

including noise filtering, normalization, and 

segmentation using a sliding window approach to 

extract relevant features. The preprocessed data is then 

fed into a Graph Convolutional Recurrent Neural 

Network (GCRNN), where graph convolutional layers 

capture spatial relationships between sensor nodes, 

and recurrent layers (GRU/LSTM) learn temporal 

dependencies in the motion sequences. To enhance 

model accuracy, the Ninja Optimizer is utilized for 

fine-tuning, ensuring faster convergence, reduced 

overfitting, and improved generalization. The trained 

model classifies activities as fall or non-fall events, 

and if a fall is detected, the system sends real-time 

alerts to the hospital control room via a cloud server 

(AWS, Firebase) for immediate intervention. This 

IoT-driven GCRNN-based framework enhances fall 

detection accuracy, reliability, and real-time response, 

making it an effective solution for patient safety and 

smart healthcare monitoring.In elderly fall detection 

for smart healthcare is carried out by advanced deep 

learning model and it is shown in Figure 1, where each 

of its blocks are described in the upcoming sub-

section. 

 
Figure 1: workflow of proposed methodology 

D. Dataset description 

The KFall dataset is a widely used benchmark dataset 

designed for fall detection and human activity 

recognition (HAR). It consists of motion data 

collected from wearable sensors that track human 

movements, particularly falls, to develop and evaluate 

fall detection models. Sensor Modalities: The dataset 
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typically includes data from accelerometers and 

gyroscopes, which are essential for detecting sudden 

movements, changes in posture, and fall-related 

activities. The dataset contains a mix of fall events 

(e.g., forward fall, backward fall, side fall) and non-

fall activities (e.g., walking, sitting, and standing, 

lying down). This helps in distinguishing falls from 

regular human movements.The dataset is collected 

using wearable devices placed on different body parts 

(such as the waist, wrist, and chest) to capture diverse 

motion patterns.The dataset provides high-resolution 

time-series data, allowing machine learning and deep 

learning models to analyze fine-grained motion 

variations. KFall is designed for hospitalized and 

elderly patient monitoring, making it ideal for IoT-

based fall detection systems in healthcare 

environments. KFall [24] dataset was collected from 

32 young, healthy Korean men who participated in 21 

different types of ADL: “walk quickly”, “jog quickly”, 

“sit down to a chair quickly”, and “lie down on a bed 

quickly”. Addition-ally, 15 distinct types of 

engineered falls are featured, including 

“forward/lateral fall when trying to get up”, 

“forward/lateral/backward fall while sitting, caused by 

fainting”, “forward fall while walking/jogging caused 

by a trip/slip”, and “forward/lateral fall when trying 

tosit/get down/up”. KFall encompasses 5,075 

instances, comprising 2,729 related to 2,346 related to 

falls. Triaxial acceleration, triaxial Euler angle, and 

triaxial gyroscope data are included in each instance. 

Each individual had an affixed to their lower back, 

with a frequency of 100 Hz. The dataset is split 

randomly using sci-kit learn library’s train test split (), 

80% for training and 20% for testing. The NiOA 

algorithm optimizes the network, 

E. preprocessing of the KFall dataset 

The preprocessing of the KFall dataset involves 

multiple steps to ensure the data is clean and suitable 

for training the GCRNN model. First, the dataset is 

loaded using Pandas, and missing values are handled 

through mean imputation. Next, sensor data from 

accelerometers and gyroscopes are normalized using 

Min-Max Scaling to bring all features into a uniform 

range. Feature engineering is applied by extracting 

statistical metrics such as mean, standard deviation, 

variance, and computing the Signal Magnitude Vector 

(SMV) to capture movement intensity. Additionally, 

Fast Fourier Transform (FFT) is used to analyze 

frequency domain characteristics. Since the dataset 

consists of time-series sensor data, a sliding window 

technique is applied with a 2-second window and 50% 

overlap to segment data into meaningful sequences. 

Finally, activity labels (e.g., Fall, Walking, Sitting) are 

encoded into numerical values for model 

compatibility. These preprocessing steps enhance 

feature representation, improve classification 

performance, and prepare the dataset for training and 

evaluation in the fall detection system. 

F. Sensors we used in our study 

1) . Heart Rate Sensor 

The Heart Rate Sensor (e.g., MAX30102, Pulse 

Oximeter Sensor) measures the patient's heart rate and 

oxygen saturation levels. It helps in identifying 

abnormal physiological responses after a fall, such as 

sudden changes in heart rate. The sensor uses optical 

photoplethysmography (PPG) technology to detect 

blood volume changes in the fingertip or wrist. It is 

crucial for monitoring stress, fatigue, and potential 

cardiac issues in hospitalized patients. This sensor 

enhances real-time fall detection by providing 

physiological insights along with motion data. 

2) Accelerometer 

The Accelerometer (e.g., MPU6050, ADXL345) 

measures the linear acceleration of a patient’s body in 

different directions. It detects sudden movements, 

such as a fall, by analyzing acceleration peaks and 

free-fall events. The accelerometer provides data on 

body posture and movement patterns, allowing the 

system to classify fall-related activities. It is 

lightweight, power-efficient, and ideal for wearable 

IoT applications. The sensor’s three-axis motion 

tracking improves the accuracy of human activity 

recognition. 

3) 3. Gyroscope 

The Gyroscope (e.g., MPU6050, L3G4200D) 

measures angular velocity and rotational movements, 

helping in detecting postural instability. It captures 

balance changes and body orientation shifts, which are 

essential for differentiating falls from normal 

activities. The gyroscope works alongside the 

accelerometer to enhance motion classification 

accuracy. It provides real-time feedback on a patient's 

movement, helping caregivers in continuous 

monitoring. The sensor plays a crucial role in reducing 

false alarms by refining fall detection algorithms. 
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G. Transmission of Sensor Signals to Deep 

Learning Model for Classification 

The process of sending sensor signals from the 

wearable sensors (accelerometer, gyroscope, and heart 

rate sensor) to the deep learning model involves 

multiple steps, including data acquisition, 

communication protocols, preprocessing, and 

classification. 

1. Sensor Data Acquisition: The accelerometer, 

gyroscope, and heart rate sensor continuously 

collect motion and physiological data in real-

time. These sensors generate raw data in the form 

of acceleration (m/s²), angular velocity (°/s), and 

heart rate (BPM) at predefined sampling rates 

(e.g., 50 Hz for motion sensors, 1 Hz for heart 

rate). 

2. Communication Protocols: The collected sensor 

values are transmitted using IoT communication 

protocols such as Bluetooth Low Energy (BLE), 

Wi-Fi (MQTT/HTTP), or Zigbee to a local 

processing unit (e.g., Raspberry Pi, ESP32, or an 

IoT gateway). The selected protocol ensures 

efficient low-latency, real-time data transmission 

while maintaining energy efficiency in wearable 

devices. 

3. Preprocessing and Data Formatting: The 

received raw sensor signals undergo noise 

filtering (e.g., Butterworth filter), normalization 

(Min-Max scaling), and segmentation (sliding 

window method) to prepare the data for deep 

learning analysis. The formatted data is 

structured into time-series feature vectors, which 

are then sent to the classification model. 

4. Deep Learning Model Processing: The Graph 

Convolutional Recurrent Neural Network 

(GCRNN) takes the preprocessed data and 

extracts both spatial and temporal dependencies 

in the sensor readings. The graph convolutional 

layers capture relationships between different 

sensor nodes. 

H. Classification Model 

The GCRNN model is utilized for detection task in this 

work. Convolutional operations are key in ML, 

especially in CNNs, which outperform in image 

classification by processing multidimensional arrays. 

While CNNs focus on Euclidean structures, Graph 

Convolutional Networks (GCNs) adapt these 

operations to data, enabling effective node feature 

extraction from graph models. The output of a GCN 

method is typically computed as: 

𝑌 = 𝐴̃𝑋𝑊                               (1) 

where, 𝑋 represents the input data, 𝑌 characterises 

the output, and 𝑊 is the parameter matrix of the 

model. Additionally, 𝐴̃ is the regularized adjacency 

matrix, which can be read as: 

𝐴̃ = (𝐷̂−
1

2𝐴̂𝐷̂−
1

2)                       (2) 

with 𝐴̂ = 𝐴 + 𝐼, and where A is the upon the graph in 

which the links characterise the correlation between 

the different time series, 𝐼 is the individuality matrix, 

and 𝐷̂ is the diagonal degree matrix of 𝐴̂. A Recurrent 

Neural Network (RNN) predicts outcomes by using 

both input data and outputs from neighboring units, 

processing temporal data through connections that 

exploit previous states, particularly within the Hidden 

Layer (HL). Here, 𝑥 = (𝑥1, … , 𝑥𝑡)  is the input 

sequence, 𝑦 = (𝑦1 , … , 𝑦𝑡) is the output arrangement, 

and ℎ𝑛 = (ℎ1
𝑛 , … , ℎ𝑡

𝑛) represents the hidden vectors in 

layer 𝑛. Based on this, the overall hidden state ℎt of 

the initial layer is computed as: 

ℎ𝑡
1 = tanh⁡(𝑊𝑥ℎ1𝑥𝑡 +𝑊ℎ1ℎ1ℎ𝑡−1

1 + 𝑏𝑛
1) (3) 

where 𝑊 denotes the weighted matrix, 𝑊𝑥ℎ1 . denotes 

the weights of the connection between the primary 

input layer, whereas 𝑊ℎ1ℎ1 . denotes the recurrent link 

weights in the initial HL and 𝑏𝑛
1 denotes the bias. The 

hidden states are the output sequence, and the layer n 

are computed as: 

ℎ𝑡
𝑛 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑛−1ℎ𝑛ℎ𝑡

𝑛−1 +𝑊ℎ1ℎ1ℎ𝑡−1
1 + 𝑏𝑛

1) (4) 

where 𝑊ℎ𝑛−1ℎ𝑛  signifies the weight assigned to the 

connection between the 𝑛 and 𝑛 − 1 layers, 𝑊ℎ𝑛−1ℎ𝑛  

characterises the weight allocated n-th layer, besides 

𝑏ℎ𝑡
𝑛  relative bias. The temporal output representation 

from the RNN is given by: 

𝑦𝑡 = 𝑊ℎ𝑛𝑦ℎ𝑡
𝑛 + 𝑏𝑦                  (5) 

where 𝑊ℎ𝑛𝑦 is the weight assigned to the connection 

among the output layer and the 𝑛 layer and 𝑏𝑦 is the 

bias. The basic recurrent units can suffer from the 

vanishing gradient problem, limiting the learning of 

LSTM units were introduced, with modified hidden 

state calculations, whereas (3-5) are still applicable. 

𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1
𝑛 + 𝑤𝑓ℎ𝑡

𝑡−1 + 𝑏𝑓) (6) 

𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1
𝑛 +𝑤𝑗ℎ𝑡

𝑛−1 + 𝑏𝑖) (7) 

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑐ℎ𝑡−1
𝑛 + 𝑤𝑐ℎ𝑡

𝑛−1 + 𝑏𝑐) (8) 
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𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1
𝑛 + 𝑤𝑜ℎ𝑡

𝑛−1 + 𝑏𝑜) (9) 

ℎ𝑡 = 𝑜𝑡tanh⁡(𝐶𝑡) (10) 

where the adopted activation functions for the gates 

are represented by the sigmoid (𝜎) and the hyperbolic 

tangent (𝑡𝑎𝑛ℎ). The conditions of the output, forget, 

and input gates are represented by 𝑓𝑡 , 𝑖𝑡 , 𝐶𝑡 and 𝑜𝑡, 

respectively. In addition, the weights and the biases 

assigned to these gates are 𝑏𝑓 , 𝑤𝑓, and 𝑊𝑓; 𝑏𝑖 , 𝑤𝑖 and 

𝑊𝑖; 𝑏𝑐 , 𝑤𝑐 and 𝑊𝑐; and 𝑏𝑜, 𝑤𝑜 and 𝑊𝑜. The GCRNN 

model combines RNNs and GCNs to capture the 

temporal and spatial features, with GCN layers 

extracting spatial data, LSTM layers modeling 

temporal aspects, and a dense layer producing the 

output. 

I. Fine-tuning using Ninja optimizer (NiOA) 

The framework uses the Ninja Optimizer (NiOA) [25], 

a high- meta-heuristic optimization technique, to 

improve the performance of the proposed GCRNN 

model. In order for NiOA to be effective, the network 

parameters must be adjusted to increase search space 

profit while lowering the chance of hitting local 

optima and raising the chance of reaching global 

optima. In addition to the relocation of their 

interactions with other, external random values, and 

their placements in earlier time, the fundamental 

components of NiOA are established by mathematical 

functions such as exponential and cosine wave 

functions. 

To manage the exploration and exploitation 

procedures, NiOA depends on a set of control 

parameters. A random integer between 6 and 10 is one 

of these parameters, along with elements like 

𝑣1, 𝑟2, 𝑟3, 𝐽1, 𝐽2, and n, each of within a clear range to 

aspects of optimization. For instance, 𝑟2 and 𝑟3 

manage the exploration phase's random movements, 

whereas J_1 and J_2 are in charge of tweaking it. By 

adjusting these settings, NiOA gains the flexibility it 

needs to tackle a variety of optimization problems. 

J. Exploration phase 

As indicated in Eq. (11) throughout the 

exploration phase, the agent's location (L_s) is updated 

using its current and previous positions as well as 

random search factors. By using a random element r_1 

in the position update equation, the algorithm may 

calculate the difference between two places at 

different times, allowing it to explore new search 

space., 𝑡1 and 𝑡2. The method adds randomization by 

choosing a new place from a predetermined list if the 

conditions are not met, enabling the exploration 

process to proceed widely. Finding the global 

optimum is more likely thanks to this technique, which 

makes sure the search encompasses a large number of 

possible solutions. 

𝐿𝑠(𝑡 + 1) = {𝐿𝑠(𝑡) + 𝑟1. (𝐿𝑠(𝑡1) − 𝐿𝑠(𝑡2))}, then, 

Random 𝐿𝑠(𝑡) and ∈ 𝐹𝑠 (11) 

where Fs stands for the fitness answer, guaranteeing 

that the agent successfully investigates new positions. 

The site of another agent, 𝐷𝑠, is updated using a 

formula that adds a random component and periodic 

function. 𝑟2. Because of this continuity, the agent that 

replaces fixed values can remain variable with 𝛾, 

preventing situations in which the search is confined 

to local optima. As explained in Eq. (12), the cosine 

wave introduces cyclical activity that enables the 

procedure to go to new areas in a controlled way, 

resembling certain biological systems: 

𝐷𝑠(𝑡 + 1) = 𝐷𝑠(𝑡) + |𝐷𝑠(𝑡)| + 𝑟2. 𝐷𝑠(𝑡). cos⁡(2𝜋𝑡)                       

(12) 

To facilitate a composite search technique, the search 

procedure incorporates the rationalised locations of Ls 

and Ds, as shown in Eq. (13): 

𝑆(𝑡 + 1) = 𝑟1. 𝐿𝑠(𝑡 + 1) + 𝑟2. 𝐷𝑠(𝑡 + 1)                                                 

(13) 

K. Exploitation phase 

The emphasis switches from discovery to honing the 

already-found answers during the exploitation phase. 

The approach makes use of a parameterized non-linear 

equation.. 𝐽1 and 𝐽2 so that the agent can manage the 

level of exploitation and make small but noticeable 

progress in their position. Because the algorithm fine-

tunes the outcome at this point, it is great for 

improving the phase. The optimizer is guided to 

identify local optimums within the search space by the 

exploitation equation's non-linearity, which, through 

modest incremental steps, drives the process towards 

the global optimum. As demonstrated in Equation (14) 

a non-linear equation governs the motion around the 

optimal solution: 

𝑀𝑠(𝑡 + 1) = 𝐽1. 𝑀𝑠(𝑡) + 2. 𝐽2. (𝑀𝑠(𝑡) + (𝑀𝑠(𝑡) +

𝐽1)). (1 −
𝑀𝑠(𝑡)

𝑀𝑠(𝑡)+𝐽1
)
2

                 (14) 

To improve the optimization process even more, 

NiOA includes a system for updating resources or 

rewards. This update introduces periodic increase in 

the state using an growth classical that is controlled by 
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a cosine function. Throughout the search, this 

recurring effect makes sure that the optimization 

procedure is flexible and able to react to shifting 

circumstances. The application of 𝐽2 as a control 

parameter enables the reward updates to be adjusted, 

giving the algorithm an additional degree of accuracy, 

as shown in Eq. (15): 

𝑅𝑠(𝑡 + 1) = 𝑅𝑠(𝑡) + (1 + 𝑅𝑠(𝑡) +

𝐽2). exp⁡(cos⁡(2𝜋))      (15) 

When the optimal solution remains unchanged after a 

number of repetitions (often three), the NiOA applies 

an update equation that includes numerous terms, such 

as the variation in the placements of the agents 𝐿𝑠 and 

𝐷𝑠, and the aids from 𝑀𝑠 and 𝑅𝑠. By forcing updates 

to happen even when progress has slowed, optimizer 

doesn't stagnate. This update method is made more 

flexible by the addition of scaling factors i and n as 

well as the parameter, which enables the algorithm to 

modify its strategy in response to the optimization 

process's present state. The search around the solution 

syndicates the refined values of 𝑀𝑠 and 𝑅𝑠for misuse, 

as designated in Eq. (16): 

𝑆(𝑡 + 1) = 𝐽1. 𝑀𝑠(𝑡 + 1) + 𝐽2. 𝑅𝑠(𝑡 + 1)   

  (16) 

The Ninja Optimizer (NiOA) is an adaptive 

optimization method that is built to fine-tune the 

GCRNNs in this outline. It is fast and efficient. To 

keep the perfect from being stuck and to aid it in 

managing a clearly split search area, NiOA employs a 

mix of random walks, fixed oscillations, non-linear 

changes. With the use of random characteristics 

including mutation methods, cosine, parameter 

updates, the model becomes resistant to local optima, 

quickly transitions to global optimum, and accurately 

predicts the parameters. 

4) Mutation 

The author introduces a mutation approach called 

NiOA to increase the process's diversity even further. 

Because of this, the agent's motion is affected by a 

non-linear mutation, and a summation equation is 

involved in which the signs shift. So that the amplitude 

of the mutations created in two repetitions varies, the 

mutation parameter an is evidently chosen at random 

from a range while keeping its sign. By doing so, .to 

can keep optimization from becoming overly 

deterministic and allow the procedure an opportunity 

to "break free" of local optima, opening up new and 

perhaps more fruitful areas of the search space to 

explore. 

According to Eq. (17), a mutation method can 

introduce variety by altering the present solution based 

on several factors if the solution does not recover after 

three iterations. 

𝑠(𝑡 + 1) = 𝐿𝑠(𝑡 + 1) + 𝑖. 𝑛. (𝐿𝑠(𝑡 + 1) − 𝐷𝑠(𝑡 +

1)) + 𝑖. 𝑛(𝑀𝑠(𝑡 + 1) + 2. 𝑟1. 𝑅𝑠(𝑡 + 1))     (17) 

Lastly, as shown in Eq. (18), the parameters 

controlling the phases guarantee the algorithm's 

flexibility and effectiveness: 

𝑟1 ∈ [0,1], 𝑟2 ∈ [0,1], 𝐽1 ∈ [0,2], 𝐽2 ∈ [0,2], 𝑖 ∈

[0,1], 𝑛 ∈ [0,2]    (18) 

 

IV. RESULTS AND DISCUSSION 

 

This section provides a thorough description of 

experimental settings and evaluation metrics used in 

the proposed approach. Experiments were showed on 

Kaggle using a PC equipped with 4GB RAM anda2.50 

GHz i5-4200M CPU. TensorFlow2.5.0, a deep 

learning framework, was utilized in these experiments 

to construct the proposed model. The model was built 

Rygen 5 processor besides utilized inbuilt graphics 

card. The dataset is split randomly using sci-kit learn 

library’s train test split (), 80% for training and 20% 

for testing. The NiOA algorithm optimizes the 

network, and dropout enhances generalization. A 

softmax classifier in the last dense layer calculates the 

final output result.  

 

L. Validation Analysis of proposed optimizer with 

existing techniques  

In this section, Validation Analysis of proposed 

optimizer with existing techniques as Extreme 

Learning Machine (ELM), Concolution Neural 

Network, Recurrent Neural Network Proposed model. 

Table 1: Experimental Analysis of various models on 

patient behaviour measures 

Perfect Name Sum of 
Epochs 

Accuacy Precision Recall F1 
Score 

Extreme 

Learning 

Machine 

10 92.78 92.78 93.54 93.78 

Concolution 

Neural 
Network 

10 95.43 95.43 96.43 94.45 

Recurrent 

Neural 

Network 

10 96.90 96.90 97.89 97.42 

Proposed 

model 

10 98.93 98.53 98.43 98.93 
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A comparative analysis of different machine learning 

and deep learning models used for patient behavior 

recognition and fall detection based on key 

performance metrics: accuracy, precision, recall, and 

F1-score. Each model was trained for 10 epochs, 

ensuring a fair comparison of their learning 

capabilities and classification performance. 

Extreme Learning Machine (ELM): This model 

achieved an accuracy of 92.78%, with a precision of 

92.78%, recall of 93.54%, and an F1-score of 93.78%. 

While ELM provides a fast training process, it may 

lack the ability to learn complex temporal 

dependencies in patient activity data. 

Convolutional Neural Network (CNN): The CNN 

model demonstrated an improved accuracy of 95.43%, 

with a precision of 95.43%, recall of 96.43%, and an 

F1-score of 94.45%. CNN effectively captures spatial 

patterns from sensor data but struggles with long-term 

dependencies in time-series data. 

Recurrent Neural Network (RNN): The RNN model 

further improves performance, reaching an accuracy 

of 96.90%, with precision (96.90%), recall (97.89%), 

and F1-score (97.42%). RNN captures sequential 

dependencies in patient movements, making it more 

effective than CNN for fall detection. However, 

standard RNNs suffer from vanishing gradient issues, 

limiting their ability to retain long-term information. 

Proposed Model (GCRNN + Ninja Optimizer): The 

proposed model outperforms all other models, 

achieving the highest accuracy (98.93%), with 

precision (98.53%), recall (98.43%), and F1-score 

(98.93%). By integrating Graph Convolutional 

Recurrent Neural Network (GCRNN) and the Ninja 

Optimizer, the model effectively learns both spatial 

and temporal dependencies from sensor data, resulting 

in more reliable fall detection and patient monitoring. 

The fine-tuning capability of the Ninja Optimizer 

helps reduce overfitting and improves the model’s 

generalization performance.    Deep learning models 

(CNN, RNN, and GCRNN) outperform traditional 

methods like ELM due to their ability to learn complex 

feature representations. 

RNN-based models show superior performance over 

CNN, confirming the importance of temporal 

modeling in patient activity recognition. 

The proposed GCRNN model with Ninja Optimizer 

achieves the highest accuracy and F1-score, proving 

its effectiveness in real-time IoT-based fall detection 

systems. 

These results highlight the efficiency and reliability of 

the proposed approach, making it a suitable solution 

for smart healthcare and patient safety applications. 

 

V. CONCLUSION 

 

This research presents an IoT-enabled fall detection 

system that integrates wearable sensors and a deep 

learning model to enhance patient safety in hospital 

environments. The proposed approach utilizes 

accelerometers, gyroscopes, and heart rate sensors to 

continuously monitor patient movements and 

physiological data. The collected signals are processed 

using a Graph Convolutional Recurrent Neural 

Network (GCRNN), which effectively captures both 

spatial and temporal dependencies in human activity 

patterns. To further enhance model accuracy and 

efficiency, the Ninja Optimizer is employed for fine-

tuning, ensuring faster convergence, reduced 

overfitting, and improved generalization. 

Experimental results on the KFall dataset demonstrate 

that the proposed GCRNN model with Ninja 

Optimizer outperforms traditional machine learning 

and deep learning models, achieving higher accuracy, 

precision, recall, and F1-score. Additionally, IoT-

based real-time data transmission enables continuous 

monitoring and timely intervention in case of falls. 

The findings of this study highlight the effectiveness 

of the proposed system in smart healthcare 

applications, offering an efficient and reliable solution 

for fall detection and patient monitoring. 

M. Future scope 

Future research can explore several enhancements to 

further improve the accuracy, robustness, and 

adaptability of the proposed fall detection system. 

Firstly, multimodal sensor integration involving 

temperature, blood pressure, and ECG sensors can 

provide deeper physiological insights for more precise 

fall detection and health monitoring. Secondly, 

implementing edge AI on low-power devices such as 

Raspberry Pi, Jetson Nano, or specialized AI chips can 

improve real-time processing efficiency, reducing 

dependency on cloud servers. Additionally, adaptive 

deep learning models with self-learning capabilities 

can be developed to dynamically adjust to patient-

specific movement patterns, ensuring personalized 

monitoring. Moreover, the system can be extended to 

work with 5G-enabled IoT infrastructure for low-
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latency, high-speed communication between patient 

devices and hospital control centers. Lastly, 

incorporating explainable AI (XAI) techniques can 

enhance model interpretability, ensuring trust and 

reliability in medical decision-making. These 

advancements will further strengthen smart healthcare 

solutions, making fall detection systems more 

accurate, scalable, and widely deployable in real-

world hospital environments.  
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