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Abstract—Early diagnosis and treatment of skin cancer 

depend heavily on its classification; nevertheless, 

manual classifi- cation is frequently laborious and 

prone to human error. Deep learning approaches have 

demonstrated significant promise in automating and 

enhancing the precision of skin lesion classi- fication, 

particularly in light of the swift progress of artificial 

intelligence. However, issues like data imbalance and 

restricted sample availability can sometimes hinder the 

efficacy of deep learning models. In order to improve 

model training, this study uses Auxiliary Classifier 

Generative Adversarial Networks (AC- GAN) to 

balance class distributions and create synthetic data. 

For the purpose of accurately and efficiently classifying 

skin cancer, we suggest a new hybrid model called 

Faster-CAN, which is a faster convolutional neural 

network architecture. Results from experiments show 

that adding data augmentation based on AC-GANs 

greatly enhances model performance. With a testing 

accuracy of 98.42%, precision of 98.50%, recall of 

98.31%, and F1-score of 98.40%, the suggested Faster-

CAN model produces exceptional results. These 

findings show how well synthetic data augmentation 

and a quicker, more efficient hybrid architecture work 

together to provide a reliable and scalable method for 

diagnosing skin cancer in clinical settings. 

 
Index Terms—Skin Cancer; Faster-CNN, Attention 

Mechanism, Federated Learning, HAM1000 

 
I. INTRODUCTION 

 
Millions of cases of skin cancer are diagnosed 

annually, making it one of the most prevalent 

types of cancer in the world. Multi-type cancer is 

possibly the most dangerous disease and a major 

threat to human health [1]. Melanoma skin cancer is 

among the deadliest types of cancer. Skin cancer 

is the second leading cause of death globally, after 

heart disease [2]. It is at significant danger because it 

is currently the 19th most frequent cancer 

worldwide and its incidence is increasing [3]. There 

are several varieties of skin cancer, each with unique 

traits, risk factors, and treatment choices. Skin cancer 

is a type of cancer that starts in the skin’s cells [4]. 

The human body is primarily covered by the skin, 

which also provides protection from the elements, 

including heat, dust, UV radiation, and contaminated 

water [5]. Even with this protective role, the skin 

can still be susceptible to a number of illnesses that 

can affect people of all ages, such as eczema, rosacea, 

moles, and different types of cancer. Skin cancer has 

become a growing risk in addition to these diseases 

[6]. There are two sorts of tumors: benign and 

malignant. Whereas benign cells stay confined and 

noninvasive, malignant cells proliferate and spread 

quickly. Because cancer cells are aggressive, a 

variety of therapeutic modalities are used, including 

radiation, chemotherapy, and surgery.  

 
The World Health Organization (WHO) reports that 

three out of every four cancer cases are caused by 

skin cancer, which is also notably on the rise in 

countries like the US, Canada, and Australia. The 

increasing prevalence of skin cancer, which is 

brought on by a 10% ozone layer depletion and 

increased UV radiation, is a major global health 

problem [7]. Protecting the skin from the sun is 

crucial by applying sunscreen, donning protective 

clothing, and avoiding direct sunlight. Early 

diagnosis of new or developing skin lesions depends 

on routine skin inspections and prompt medical care. 
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It is crucial to remain vigilant and take preventative 

action because aging, hormonal changes, 

medications, smoking, HPV infections, artificial UV 

exposure, and underlying medical disorders can also 

bring on skin lesions. As a result, cancer patients, 

particularly those with skin cancer, require early 

detection and treatment [8]. Thirty to fifty percent of 

skin cancer cases are treatable if detected early and 

treated adequately [9]. Previously, this diagnosis 

was done manually. But, in recent years, deep 

learning (DL) and machine learning (ML) techniques 

have greatly aided skin cancer detection and 

classification. But the limited number of images 

hinders the accurate classification of the model [10]. 

 
This work uses Auxiliary Classifier Generation 

Adversarial Networks (AC-GAN) for enhanced data 

augmentation to over- come the problem of limited 

sample availability in medical imaging [11]. By 

producing high-quality synthetic pictures conditioned 

on class labels, AC-GAN successfully balances class 

distributions and adds a variety of dermatoscopic 

patterns to the training dataset. Model generalization 

and robustness are greatly improved by this 

augmentation strategy, particu- larly in situations 

involving rare illness categories or class imbalance. 

The study presents Faster-CAN (Faster Convolu- 

tional Attention Network) [12], a revolutionary deep 

learning architecture for automated and privacy-

preserving skin cancer classification, built on this 

enriched dataset. The HAM10000 dermatoscopic 

image dataset is used to train and assess the model, 

and Federated Learning (FL) protects patient 

privacy 

 
in dispersed healthcare settings [13]. Faster-CAN 

enhances classification accuracy and makes feature 

selection more effi- cient and comprehensible by 

fusing lightweight convolutional encoders with both 

channel and spatial attention techniques. By using 

FL, it is possible to train the model cooperatively 

across several clients (such as clinics or hospitals) 

without exchanging sensitive raw data, protecting 

patient privacy. The overall framework of the 

research is shown in Figure 1. 

 
Fig. 1. 

 

The major contributions of the research are as 

follows: 

• Auxiliary Classifier Generative Adversarial 

Networks (AC-GAN) are used in this study to 

enrich the data. 

This method successfully increases dataset diversity 

and balances class distributions by generating high- 

fidelity synthetic images conditioned on class labels. 

• Faster-CAN (Faster Convolutional Attention 

Network) is a new deep learning model that is 

suggested. The architecture allows for focused 

and effective feature 

extraction by combining channel and spatial attention 

techniques with lightweight convolutional encoders. 

The model’s capacity to locate and identify pertinent 

characteristics linked to different skin lesions is im- 

proved by this attention-guided structure, which 

raises classification accuracy. 

• The model is coupled with Federated Learning 

(FL) to guarantee the confidentiality of patient 

data. With this method, several clients—like 

clinics or hospitals—can 

work together to train the model without exchanging 

raw picture data. FL preserves data locality, allowing 

for secure and privacy-preserving learning over dis- 

persed data sources. 

• Standard classification metrics like accuracy, 

preci- sion, recall, F1-score, Cohen’s Kappa, and 

Matthews 

Correlation Coefficient (MCC) are used to 

completely assess the model’s performance. The 

suggested frame- work’s robustness, dependability, 

and appropriateness for clinical deployment are 

confirmed by the results, which demonstrate its 
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outstanding and balanced per- formance across all 

criteria. . 

This paper has been organized into multiple sections. 

First, we will review the existing methods for 

identifying skin cancer 

in Section II. Then, Section III will provide an 

overview of the dataset description and 

preprocessing steps. Section IV presented our 

proposed model. The outcomes of the research and 

analysis is discussed in Section V. Ultimately; we 

will showcase our research findings in Section VI. 

 

II. LITERATURE REVIEW 

 

Many studies have been conducted in the last ten 

years to increase the classification of skin cancer’s 

precision, generalizability, and clinical usefulness. 

With differing emphasis on segmentation, feature 

extraction, controlling data imbalance, and real-time 

diagnosis, these attempts range from conventional 

deep learning methods to more complex hybrid 

frameworks. 

 

Monica et al. [14] and Rajesh et al. [15] only 

used deep convolutional neural networks (DCNNs) 

enhanced by pre-trained models like Inception V3, 

DenseNet201, and GRU variants, whereas Naeem et 

al. [16], [17] combined handcrafted features with deep 

learning models (SNC Net and DVFNet) to capture 

both low-level and high-level representations. Using 

a Swish-ReLU-activated GRU model, Monica et al. 

notably out- performed the majority of traditional 

CNN-based techniques, reaching near-perfect 

accuracies (99.98%) on HAM10000. However, the 

performance ceiling of traditional architectures 

without sophisticated augmentation or feature fusion 

was re- vealed by Rajesh et al.’s ensemble technique, 

which used Inception V3 and DenseNet201 and 

capped at 87.42%. 

To illustrate the superiority of hybrid features 

over pure CNNs in capturing discriminative lesion 

characteristics, DVFNet [17] stands out in terms of 

feature engineering and hybridization by integrating 

Histogram of Oriented Gradients (HOG) with 

VGG19, resulting in a 98.32% accuracy. Similarly, 

SNC Net demonstrated the efficacy of 

complementary feature integration by surpassing 

multiple state-of-the-art models on the ISIC 2019 

dataset [16] thanks to its utilization of both handmade 

and deep features. 

Handling data imbalances is another crucial element 

that has a big impact on the classification of 

uncommon skin lesion types. SMOTE-Tomek was 

used by Naeem et al. [17] to address this, and 

Kousis et al. [18] used targeted augmenta- tion and 

fine-tuning, which was particularly advantageous for 

underrepresented lesion types. In contrast to many 

previous models that were primarily tested in 

academic or server-based settings, their 

implementation of DenseNet169 in a mobile 

application not only exhibited realistic deployment 

possibil- ities but also achieved excellent accuracy 

(92.25%). Strategies for localization and 

segmentation also differed significantly. Sivakumar 

et al. [19] coupled ResNet50 with hybrid pool- 

ing and innovative preprocessing for spectral 

enhancement, resulting in a 94% classification 

accuracy, whereas Monica et al. [14] used Mask R-

CNN for accurate lesion segmen- tation, enabling 

superior downstream feature extraction. This 

demonstrates how using efficient segmentation 

before classi- fication can greatly enhance model 

performance, particularly for intricate lesion 

boundaries.Campos et al. [20] investigated a non-

computational treatment-based strategy that used 

MoS nanoparticles and photothermal therapy to 

specifically target malignant skin cells, in contrast to 

algorithmic advancements. 

 

This work complements the diagnostic focus of 

machine learning research and highlights an 

alternative, therapeutic breakthrough, although having 

nothing to do with classification methods. 

AlSadhan et al. [21] evaluated many YOLO 

structures for real-time skin lesion localization and 

classification from the standpoints of optimization 

and computing efficiency. With 86.3% IoU and quick 

inference (0.32s/image), YOLOv7 was found to be 

the most efficient, indicating that lightweight object 

detectors hold promise for latency-sensitive real-

world applications. In a similar vein, Rahman et al. 

[22] modified NASNet designs by adding a layer to 

manage sparse and irregular data; this resulted in a 

respectable accuracy of 85.62 percent, but it did not 

equal hybrid or fine-tuned deep models. From simple 

CNN models to more hybrid, ensemble, and 

application-aware frameworks that emphasize feature 

fusion, data imbalance, segmentation, and 
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deployment efficiency, the field of skin cancer 

classification research is generally showing a 

transition. Some studies emphasize practicality and 

inter- pretability (e.g., Kousis et al. [18], Sivakumar et 

al. [19]), while others place more emphasis on raw 

classification performance (e.g., Monica et al. [14]). 

Combining these elements could help future methods 

produce models that are not only precise and 

generalizable but also quick, easy to understand, and 

clinically applicable. 

Many deep learning approaches have been used to 

tackle the universal problem of classifying skin 

cancer. In comparison to current machine learning 

models, Sowmya and Balasub- ramanian [23] 

achieved greater accuracy on the HAM10000 dataset 

by merging convolutional neural networks (CNN) 

with the Discrete Wavelet Transform (DWT) for 

feature extraction. In a similar vein, Naz et al. [24] 

developed an ensemble CNN model based on VGG-

16 and a hair removal preprocessing strategy to 

detect malignant melanoma. This improved classi- 

fication performance and showed increased accuracy 

and F1- score on the same dataset. Using sequential 

2D CNN layers and data augmentation techniques to 

balance the dataset, Javed et al. [25] presented a 

stacked CNN model that performed better on the 

MINST-HAM10000 datasets than other pretrained 

CNN variations.To improve the accuracy of skin 

disease cat- egorization, Basha et al. [26] investigated 

multimodal data integration by integrating metadata 

and high-resolution images of Squamous Cell 

Carcinoma (SCC) using multi-model CNNs. Their 

strategy gave priority to the 92% accurate 

detection of SCC, demonstrating the value of 

integrating diverse data sources with cutting-edge 

machine learning techniques for early skin cancer 

detection. Although these studies agree that deep 

learning can be used to classify skin cancer, they take 

different approaches, ranging from feature 

engineering and ensemble learning to multimodal 

data integration. This shows that efforts are still being 

made to improve diagnostic accuracy and early 

prediction through a variety of methodological 

advancements. 

 

III. DATASET DESCRIPTION & 

PREPROCESSING 

 

A popular benchmark dataset for analyzing and 

classifying skin lesions in dermatology is the 

HAM10000 dataset, which stands for Human Against 

Machine with 10,000 training pho- tos. It was created 

to aid in diagnosing pigmented skin lesions and was 

explicitly designed to promote machine learning and 

deep learning research in dermatoscopic image 

recognition. The dataset, which is housed on the ISIC 

(International Skin Imaging Collaboration) archive, 

was selected and made public by the Medical 

University of Vienna in association with the 

Australian Skin Cancer Institute.10,015 

dermatoscopic images in all, each identified by one 

of seven different types of skin lesions, are 

included in this collection. These include 

dermatofibroma (df), actinic keratoses and 

intraepithelial car- cinoma (akiec), vascular lesions 

(vasc), benign keratosis-like lesions (bkl), 

melanocytic nevi (nv), melanoma (mel), and basal 

cell carcinoma (bcc). Of these, dermatofibroma is the 

rarest, with just 115 samples, and melanocytic nevi is 

the most common class, with 6,705 photos. This 

dataset is perfect for testing out sophisticated 

classification methods that deal with imbalance, like 

data augmentation, class weighting, and focus loss, 

because of its unequal distribution, which poses a 

serious class imbalance problem. Because of their 

excellent quality and uniform resolution (600x450 

pixels), the photos in HAM10000 provide reliable 

input for deep learning models. The dataset supports 

multimodal learning techniques by integrating patient 

metadata such as age, sex, and lesion site with the 

image data. The dataset samples are shown in Figure 

2. 

 
Fig. 2. Samples of the dataset 

 

A. Preprocessing 

Some preparation procedures were used on the 

HAM10000 dataset to guarantee consistency and 



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 
 

IJIRT 181743 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6045  

enhance the classification model’s performance. To 

assign each image to its appropriate class, the 

metadata file comprising image identifiers and diag- 

nostic labels was first parsed. Since the original 

photos were saved in JPEG format using OpenCV 

standards, they were loaded from the source directory 

and converted from BGR to RGB format. 

Every dermoscopic image was downsized to a fixed 

224 by 224 pixel size to satisfy the input 

specifications of the models, including ResNet, VGG, 

MobileNet, and the proposed model. While 

preserving enough lesion detail for classification, this 

downsizing procedure helps standardise the data and 

lower computational overhead. Pixel intensity data 

were then adjusted by dividing by 255.0 and scaling 

them to the [0, 1] range. In deep learning models, this 

normalisation guarantees numerical stability and 

promotes quicker convergence during training. 

Normalisation was followed by label encoding. While 

classes were labelled as 0 to 6 for multi-class 

classification tasks, one-hot encoding was used to 

encode the seven diag- nostic categories in the multi-

class classification instance. Data augmentation 

techniques were utilised to address the notable class 

imbalance present in the dataset. Below is a 

description of the data augmentation methods used in 

the study. 

B. Data Balancing Using AC-GAN 

An Auxiliary Classifier Generative Adversarial 

Network (AC-GAN) was used as a data balancing 

tool to address the notable class imbalance in the 

HAM10000 dataset. Conven- tional augmentation 

methods, such as rotation, flipping, and zooming, are 

often limited in their capacity to add meaningful 

variety, particularly when only a few examples are 

available from underrepresented classes. 

Consequently, we employed AC-GAN to produce 

class-conditional synthetic dermoscopic images, 

increasing sample diversity and preserving class- 

specific characteristics crucial for accurate 

classification. 

 

The class balancing strategy in our study was 

based on equalizing the number of samples in each 

class to match the count of the majority class. 

Assume the dataset contains C total classes, and 

each class c has Nc original images. The class 

with the highest number of instances is denoted as 

Nmax, computed as: 

 
For every class c where Nc < Nmax, the number of 

synthetic images to be generated is calculated as: 

 

 
In our dataset, the Melanocytic nevi (nv) class was 

the most populous, with Nmax = 6705 samples. 

Accordingly, N gen synthetic images were generated 

for each minority class using AC-GAN, resulting in a 

perfectly balanced dataset with Nmax samples per 

class. 

 

The AC-GAN architecture comprises two neural 

networks trained adversarially: a generator G and a 

discriminator D. The generator is conditioned on a 

class label y and a random noise vector z ∼ N (0, I), 

allowing it to generate synthetic images G(z, y) 

that resemble dermoscopic images from the target 

class. The discriminator receives either real or 

generated images and produces two outputs: one 

predicting whether the input is real or fake, and 

another predicting the class label. This dual-task 

setting enables the discriminator to extract and learn 

rich, class-specific features while distinguishing 

between authentic and synthetic images. 

 

The training objective of the AC-GAN incorporates 

both adversarial and classification loss components. 

The discrimi- nator loss LD is defined as: 

 

LD = E [log P (S = real | xreal)] 

+ E [log P (S = fake | G(z, y))] 

+ E [log P (C = y | xreal)]                                 (3) 

 

and the generator loss LG is given by: 

 
 

where P (S | x) represents the probability that the 

discrim- inator assigns to the image being real or 

fake, and P (C | x) is the probability distribution 

over the class labels. These loss 

functions are optimised using alternating gradient 

descent, encouraging the generator to produce 

semantically accurate and visually realistic images. 

 

The generator begins with a fully connected input 

layer that accepts the concatenated noise vector and a 
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one-hot encoded class label. It then passes through a 

series of upsampling layers implemented using 

transposed convolutions, each followed by batch 

normalisation and ReLU activations. The final output 

layer uses a Tanh activation function to generate a 

224 × 224 

RGB image. 

Conversely, the discriminator is a convolutional 

neural net- work that processes images using several 

convolutional layers, LeakyReLU activations, and 

dropout layers for regularisation. It has two output 

heads: one uses a sigmoid function for real/fake 

discrimination, and the other uses softmax for class 

label prediction. 

Once the AC-GAN model was adequately trained and 

its outputs were visually verified, the required number 

of synthetic images for each minority class was 

generated and merged with the real training data. 

This resulted in a final, balanced dataset with all 

lesion categories equally represented with Nmax = 

6705 samples per class. In addition to addressing 

the imbalance issue, the AC-GAN introduced 

complex, high- fidelity variations that enhanced 

the robustness and gener- alisation capability of the 

downstream classification model. The parameters of 

AC-GAN during training are shown in Table I. 

The number of samples of each class before and 

after augmentation is shown in Table II. Architecture 

of the proposed customised AC-GAN augmentation 

techniques is shown in Figure 3. 

 

 
Fig. 3.  Proposed AC-GAN schema 

 

TABLE I. TRAINING PARAMETERS OF THE AC-

GAN MODEL 

 

Parameter Value 

Optimizer Adam 

Learning Rate 0.0002 

Beta1 (Adam) 0.5 

Beta2 (Adam) 0.999 

Batch Size 64 

Epochs 200 

Latent Vector 

Dimension (z) 

100 

Image Resolution 224 × 224 × 3 

Activation (Generator) ReLU (intermediate), Tanh 

(output) 

Activation 

(Discriminator) 

LeakyReLU (slope = 0.2) 

Loss Functions Categorical Cross-Entropy 

(class) 

Weight Initialization Normal distribution (µ = 0, 

σ = 0.02) 

Dropout Rate 

(Discriminator) 

0.3 

Conditioning Method Concatenation of z and one-

hot class label 

 

TABLE II. NUMBER OF SAMPLES PER CLASS 

BEFORE AND AFTER AC-GAN AUGMENTATION 

 

Class Before 

Augmentation 

After 

Augmentation 

Melanocytic Nevi 

(nv) 

6,705 6,705 

Melanoma (mel) 1,113 6,705 

Benign Keratosis 

(bkl) 

1,099 6,705 

Basal Cell 

Carcinoma (bcc) 

514 6,705 

Actinic Keratoses 

(akiec) 

327 6,705 

Vascular Lesions 

(vasc) 

142 6,705 

Dermatofibroma 

(df) 

115 6,705 

 

C. Dataset Splitting and Experimental Setup 

The fully balanced HAM10000 dataset, which 

consists of N images after AC-GAN augmentation, 
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was divided into training and test subsets in an 80:20 

ratio to assess our classification system thoroughly. 

In particular, we calculated 

Ntrain =
 

0.8 N
 
, Ntest = N − Ntrain. 

To ensure that the proportion of each class in the 

training and test sets matched that of the entire 

dataset, this split was implemented using the 

train_test_split function from the scikit-learn library 

with the parameters test_size=0.2, shuffle=True, and 

stratify=labels. A fixed random seed 

(random_state=42) ensured reproducibility between 

tests. We reduced sampling bias and made it possible 

to reliably evaluate the model’s generalization 

performance on unseen dermoscopic images by 

maintaining class frequencies via stratification and 

rearranging the data before splitting. 

 

IV. PROPOSED MODEL 

 

This work uses the HAM10000 dermatoscopic image 

dataset to propose a novel model called Faster-CAN 

(Faster Convolutional Attention Network) integrated 

with Federated Learning (FL) for automated and 

privacy-preserving skin cancer classification. The 

suggested model improves classification accuracy 

and facilitates effective feature selection by 

combining lightweight convolutional encoders with 

channel and spatial attention methods. Federated 

learning is used to disperse the learning process 

without allowing customers (such as clinics or 

hospitals) to share raw data to protect patient data 

privacy. Figure 4 shows the proposed model 

architecture. 

The suggested Faster-CAN model requires 

convolutional feature encoding to extract 

hierarchical visual patterns from dermatoscopic 

images. Low-level information like edges and 

textures is captured, and it gradually picks up more 

intricate 

 
Fig. 4.  Proposed model architecture 

representations like the shape and structure of 

lesions. Con- volutional layers improve learning 

effectiveness and general- isation by maintaining 

spatial links and permitting parameter sharing. The 

most informative areas of skin lesions are the focus 

of later attention modules, which are built upon these 

stored traits. For a reliable and precise classification 

of skin cancer, this encoding procedure is essential. 

With H, W , and C standing for the image height, 

width, and number of channels, respectively, let X 

∈ RH×W ×C rep- resent an input dermatoscopic 

image. A series of convolutional layers are applied to 

the input in order to extract hierarchical low- to 

high-level features. 

 

The following transformation is carried out by each 

layer: 

 

F (l) = ReLU (BN (Conv (F (l−1); W (l)))) 

 

where BN stands for batch normalization, ReLU is the 

rectified linear unit activation function, and F (0) = 

X. Here, W (l) indicates the learnable weights of the 

l-th convolutional layer. Training stability and 

convergence are enhanced by this design. 

 

After convolutional feature extraction, the Channel 

At- tention Module (CAM) is included to improve 

the model’s capacity to concentrate on the most 

informative feature maps across channels [27]. Not 

every channel makes an equivalent contribution to 

the final classification task, even when convo- 

lutional layers encode a large set of data. By 

simulating inter- channel interactions, CAM 

dynamically reweights the channel- wise feature 

responses, enabling the network to highlight more 

pertinent features essential for skin cancer detection, 

such as colour variations, lesion borders, and 

pigmentation patterns. 

We implement a channel attention module 

inspired by the CBAM framework to prioritize 

informative channels that contribute significantly to 

lesion classification. 

Global max pooling (GMP) and global average 

pooling (GAP) are first carried out over the spatial 

dimensions: 
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To determine the inter-channel relationship, these 

two feature descriptors are fed into a shared multi-

layer perceptron 

 

(MLP) with a bottleneck (reduction ratio r): 

 

 

where , and σ is the 

sigmoid function. 

 

The refined feature map by channel is: F ′ = Mc · F 

The Spatial Attention Module (SAM) is intended to 

highlight” where” the most pertinent information is 

found within the feature map, whereas the CAM 

concentrates on ”what” useful features to stress 

across channels. The lesion’s location and shape are 

crucial in distinguishing between benign and ma- 

lignant instances in dermatoscopic pictures. SAM 

improves the feature representation by giving spatial 

regions with prominent lesion structures, like 

irregular borders, pigmentation clusters, or 

asymmetrical patterns, higher attention weights [28].  

SAM improves classification accuracy and resilience 

by integrating spatial dependencies, which help the 

model concentrate on the most discriminative 

regions. This is especially useful when background 

noise or irrelevant skin texture could normally 

cause the model to become confused. 

We compute two spatial descriptors using average 

and max over the channel dimension, pooling is 

applied as follows: 

 

 
 

These two spatial descriptors are then concatenated 

and passed through a 7 × 7 convolutional layer: 

 
The spatial attention map Ms is then applied to the 

feature map from the previous channel attention 

stage: 

 
The model can filter background noise and flexibly 

focus on pertinent semantic regions by this dual 

attention technique. This dual attention mechanism 

allows the model to focus on relevant semantic 

regions and suppress background noise dynamically. 

After being flattened, the attention-enhanced feature 

map F ′′ is passed through a dense classification 

layer: 

 

 
In this case, the projected class probabilities over the 

C = 7 skin cancer categories in HAM10000 are 

represented by yˆ ∈ RC. 

 

The model is trained using the categorical cross-

entropy loss function: 

 

 
 

where yˆij is the predicted probability for class j 

of the i-th image, and yij ∈ {0, 1} is the 

corresponding ground truth label. 

Federated Learning (FL) is used to train the 

suggested architecture in order to safeguard 

private patient data. Let 

where each of the K participating 

clients has a local dataset Dk of size nk. 

 

At communication round t, each client trains the 

model locally and transmits updated weights wt to 

a central server. 

The server uses the Federated Averaging (FedAvg) 

algorithm to aggregate the weights: 

 

 
 

Stochastic gradient descent is used by clients to 

update their weights: 

 

 
where Lk(wt ) is the gradient of the local loss 

computed on dataset Dk, and η is the learning rate. 

The use of convolutional blocks makes hierarchical 

feature extraction efficient. The network can 

prioritise critical lesion sites and reduce noise in the 

channel and spatial attention mod- ules, which also 

improves model interpretability. FL lessens 

overfitting to the data of any one institution by 

ensuring pri- vacy, equity, and collaborative learning 

across several clinical sites. 
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All things considered, the suggested Faster-CAN 

with FL strikes a good balance between precision, 

interpretability, effectiveness, and data security, 

which qualifies it for practi- cal implementation in 

dermatology clinical decision support systems. The 

proposed model parameters are shown in Table III. 

 

V. RESULT AND DISCUSSION 

 

The study uses a multifaceted assessment 

methodology to fully examine the robustness and 

performance of the suggested model. The effect of 

AC-GAN data balancing approaches on model 

accuracy, recall, precision, and generalization is one 

overfitting or underfitting in order to evaluate the 

model’s gen- eralization capabilities. Comprehensive 

classification reports are produced for the suggested 

hybrid model and a number of benchmark models 

after these diagnostics. These reports give a 

comprehensive picture of model performance by 

include specific measures like accuracy, precision, 

recall, F1-score, Cohen’s Kappa, and Matthews 

Correlation Coefficient (MCC). In order to visually 

evaluate the model’s strengths and flaws, a number 

of graphical evaluations are also provided, including 

metric comparison bar charts, ROC curves, and 

confusion matrices.Performance measures are 

calculated for each class to evaluate bias and 

fairness, enabling a thorough analysis of the 

model’s treatment of different categories. Particularly 

with datasets that are unbalanced, this phase is 

essential for detecting any systemic bias.Using the 

TensorFlow and PyTorch deep learning frameworks 

for model generation and training, the complete 

model development and assessment pipeline is 

implemented in Python. Essential Python modules like 

NumPy, Pandas, and Matplotlib are used for data 

preprocessing, ma- nipulation, and visualization. 

Throughout the research process, this integrated 

development environment guarantees scalability, 

reproducibility, and adaptability. Data augmentation 

techniques of the research are shown in Table IV. 

At first, the accuracy of the baseline CNN model 

was 87.12%. Its performance increased to 91.45% 

after adding AC-GAN, indicating a discernible 

improvement brought about by improved class 

representation in the training set. Similarly, after AC-

GAN, the deep convolutional model ResNet50 in- 

creased from 89.34% to 94.21%, demonstrating its 

capacity to better utilize more balanced input. 

The improvement from 90.58% to 95.63% for 

DenseNet121, renowned for its dense connections 

and feature reuse, suggests that models with deeper 

and more intricate architectures typically gain a great 

deal from the synthetic data augmentation offered by 

AC-GAN. 

Above all, the suggested model showed a significant 

im- provement. Before using AC-GAN, it already 

outperformed the baseline models with an accuracy 

of 93.65%. Following the incorporation of samples 

generated by AC-GAN, the model’s accuracy was 

an impressive 98.42%. This demonstrates the 

important factor examined. This guarantees that the 

model operates consistently across all categories and 

does not show bias toward the majority classes. 

Additionally, training and validation curves are 

monitored to look for indications of strength of 

the suggested architecture as well as how well AC- 

GAN addresses class imbalance and improves deep 

learning models’ capacity for generalization. 

Overall, the experimental findings show that using 

AC- GAN greatly improves the accuracy and fairness 

of more complex, custom-built models and the 

performance of con- ventional deep learning 

architectures. This emphasizes how crucial synthetic 

data creation methods are in fields where data 

imbalance is a significant problem. 

A. Model generlization analysis 
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The performance of different models, such as their 

training, testing, and validation accuracy, is shown in 

Table V. 

Following the application of AC-GAN for data 

augmentation, the performance of four distinct 

models—CNN, ResNet50, DenseNet121, and the 

suggested hybrid model—was assessed based on 

training, validation, and testing accuracy.  The 

ultimate performance metric for 

 

TABLE III. PROPOSED FASTER-CAN MODEL 

PARAMETERS 

 

Parameter Value / Description 

Input Image Size 224 × 224 × 3 

Convolution Layers Multiple layers with BatchNorm and 

ReLU 

Channel Attention 

Module 

Global Average Pooling (GAP), 

Global Max Pooling (GMP), MLP 

with bottleneck ratio r = 16 

Spatial Attention 

Module 

7×7 convolution over concatenated 

spatial descriptors 

Attention-enhanced 

Feature Map 
F′′ ∈ RH′×W ′×C′ 

Pooling for 

Classification 

Global Average Pooling (GAP) 

Classifier Dense Layer + Softmax 

Number of Classes C = 7 (HAM10000 categories) 

Loss Function Categorical Cross-Entropy 

Learning Rate η 0.01 (can be adjusted) 

Federated Learning 

Algorithm 

FedAvg (Federated Averaging) 

Number of Clients 

K 

Variable, depending on deployment 

Local Dataset Size 

nk 

Varies per client 

Communication 

Rounds t 

Typically 100–500 

 

TABLE IV. COMPARISON OF MODEL ACCURACY 

BEFORE AND AFTER 

APPLYING AC-GAN 

Model Accuracy Before 

AC-GAN (%) 

Accuracy After 

AC-GAN (%) 

CNN 87.12 91.45 

ResNet50 89.34 94.21 

DenseNet121 90.58 95.63 

Proposed 

Model 

93.65 98.42 

 

unseen data is testing accuracy. The baseline 

models’ greatest testing accuracy was 95.63% for 

DenseNet121, 94.21% for ResNet50, and 91.45% for 

CNN.With training accuracy of 98.84%, validation 

accuracy of 98.11%, and testing accuracy of 

98.42%, the suggested Faster-CAN model 

performed noticeably better than the others. This 

demonstrates unequivocally how the proposed 

architecture is superior in generalization and 

learning capacity, making it ideal for the 

categorization challenge. The performance 

improvement seen in all models following the use of 

AC-GAN validates the advantages of class-

balancing and the creation of synthetic data in 

enhancing neural networks’ learning dynamics and 

decision boundaries. Insightful trends in model 

fitting behavior are revealed by closely examining the 

training, validation, and testing accuracies. The CNN 

model demonstrated 92.35% training accuracy, 

90.14% validation accuracy, and 91.45% testing 

accuracy. Although the CNN model’s lower overall 

performance reveals limits in catching deeper 

patterns in the data, the little difference between 

training and validation/testing suggests that the 

model is reasonably well-fitted.With ResNet50 at 

94.20% (training) vs. 93.01% (validation) and 

DenseNet121 at 95.10% (training) vs. 94.28% 

(validation), both models demonstrated less variation 

between training and validation accuracy. Both 

models are well-fitted and not substantially 

overfitted, as these small gaps show. Their capacity 

to generalize to unknown data is further supported 

by improved test accuracy. With closely comparable 

validation (98.11%) and testing (98.42%) accuracies, 

the suggested model showed an extraordinarily high 

training accuracy (98.84%). The slight variation 

between these phases attests to the model’s high 

generalization and avoidance of overfitting. This 

consistency throughout the evaluation process shows 

that, even with highly enriched synthetic data from 

AC-GAN, the suggested model is strong at learning 

from the training data and resistant to overfitting. The 

proposed model’s training and validation accuracy 

and training and validation loss are shown in Figure 

5,6. 
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Fig. 5.  Training and validation accuracy 

 
Fig. 6.  Proposed model architecture 

 

TABLE V. TRAINING, TESTING, AND VALIDATION 

ACCURACY OF THE PROPOSED MODELS AND OTHERS 

Model Training 

Accuracy 

(%) 

Validation 

Accuracy (%) 

Testing 

Accuracy 

(%) 

CNN 92.35 90.14 91.45 

ResNet50 94.20 93.01 94.21 

DenseNet121 95.10 94.28 95.63 

Proposed 

Model 

98.84 98.11 98.42 

 

TABLE VI. CLASSIFICATION REPORT OF 

DIFFERENT MODELS AFTER APPLYING AC-GAN 

Model Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

CNN 90.76 91.21 90.98 

ResNet50 93.85 94.05 93.95 

DenseNet121 95.40 95.80 95.60 

Proposed 

Model 

98.50 98.31 98.40 

B. Classification report and agreement analysis 

Additionally, the suggested model is assessed using 

com- mon classification metrics such as accuracy, 

precision, recall, and F1-score. Table VI, which 

highlights the classification report received after 

applying AC-GAN for class balance and data 

augmentation, provides a detailed performance com- 

parison among all models. F1-score of 90.98% and 

recall of 91.21%. These findings show that, despite 

AC-GAN support, the model occasionally had 

trouble with misclassifications, especially when 

processing cases of minority classes, even if it was 

able to capture broad patterns. 

With a precision of 93.85%, recall of 94.05%, and F1-

score of 93.95%, ResNet50 showed enhanced 

performance. Better feature extraction made possible 

by the deeper architecture resulted in more precise 

class predictions. A favorable balance between 

erroneous positives and false negatives is also indi- 

cated by the narrow precision-recall gap. 

DenseNet121’s dense connectivity allowed for 

effective feature reuse, outperforming both CNN and 

ResNet50. Its F1-score was 95.60%, its preci- sion 

was 95.40%, and its recall was 95.80%. This 

consistency in metrics demonstrates that 

DenseNet121 maintained robust- ness across the 

dataset’s different class distributions in addition to 

generalizing successfully. The suggested Faster-CAN 

model performed the best of all the assessed 

designs. It achieved a remarkable F1-score of 

98.40%, recall of 98.31%, and precision of 98.50%. 

These findings demonstrate the model’s exceptional 

efficacy in accurately determining class labels with 

few misclassifications. The model appears to be 

neither biased toward over-prediction nor under-

prediction, based on the precision and recall metrics’ 

extremely near agreement. The model’s capacity to 

efficiently manage precision and recall is further 

validated by its high F1-score, which makes it the 

most dependable option for practical implementation. 

 

TABLE VII. KAPPA AND MCCC PERFORMANCE 

Model Kappa MCC 

CNN 0.878 0.881 

ResNet50 0.917 0.920 

DenseNet121 0.940 0.943 

Proposed Model 0.981 0.982 

As indicated in Table VII, further analysis was 

carried out utilizing Cohen’s Kappa and the 



© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002 
 

IJIRT 181743 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6052  

Matthews Correlation Coefficient (MCC) to 

supplement the conventional classifica- tion metrics. 

These metrics are especially useful for assessing 

performance on unbalanced datasets and offer greater 

insights into the agreement between anticipated and 

true labels. 

 

Despite obtaining respectable classification metrics, 

the CNN model showed fair agreement and 

correlation with a Kappa score of 0.878 and an 

MCC of 0.881. These num- bers imply that while 

CNN has a modest level of gen- eralization, it may 

occasionally misclassify, particularly in minority 

classes. With a Kappa of 0.917 and an MCC of 

0.920, ResNet50 demonstrated superior reliability and 

stronger predictive alignment. With a Kappa of 

0.940 and an MCC of 0.943, DenseNet121 

significantly enhanced these results, which is in line 

with its higher accuracy and F1-score. This 

demonstrates that DenseNet121 performs 

consistently across class distributions in addition to 

being accurate. 

 

Notably, the suggested model obtained the greatest 

scores on both measures (MCC of 0.982 and Kappa 

of 0.981). With low chance agreement and a strong 

connection between the predicted and actual class 

labels, these nearly flawless scores demonstrate 

remarkable consistency and durability. 

 
Fig. 7.  ROC curve AUC values of proposed model 

The Area Under the Receiver Operating 

Characteristic Curve (AUC), a reliable metric that 

measures the model’s capacity to distinguish between 

positive and negative instances independent of the 

chosen threshold, was used to assess the model’s 

discriminative performance to supplement the 

agreement analysis (Figure 7). The suggested 

model’s strong discriminative capacity was further 

supported by the ROC- AUC analysis, which showed 

that it consistently obtained high AUC scores across 

all seven classes in the multi-class classification test. 

In particular, Class 1 obtained a perfect score of 1.00, 

suggesting perfect separability between positive and 

negative cases for that class, but Class 0 obtained an 

AUC of 0.99. The model’s remarkable ability to 

differentiate between Class 2 and Class 4 is 

demonstrated by their respective AUCs of 0.98. 

Additionally, Class 3 and Class 6 both received 

AUC scores of 0.96, highlighting the model’s strong 

predictive capabilities. Class 5 achieved a high AUC 

value of 0.94, which is well within the range 

regarded as excellent in medical imaging 

classification tasks, albeit being somewhat lower. 

 

These AUC results offer further proof of the model’s 

diag- nostic reliability and confirm the conclusions of 

the agreement- based evaluation. 

 

C. Discussion 

To improve the classification model’s training, the 

sug- gested study’s main goal was to generate 

synthetic data using the AC-GAN model. As 

demonstrated by the earlier findings, a significant 

improvement in model performance was noted after 

data augmentation approaches were applied. Strong 

general- isation capacity was indicated by the 

model’s well-fitted be- haviour in both the training 

and validation stages. Furthermore, the categorisation 

performance held up well across all evalu- ation 

metrics. High Kappa and MCC scores from 

agreement analysis further supported the model’s 

dependability. Figure 8 thoroughly summarises the 

model’s assessment. Class-wise performance analysis 

was carried out to evaluate potential bias and 

guarantee balanced learning. Table VIII offers a 

comprehensive analysis of this class-wise 

assessment. 
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Fig. 8.  Summary of all models performance 

 

TABLE VIII. CLASSIFICATION REPORT OF THE 

PROPOSED MODEL (CLASS-WISE 

Class Precision Recall F1-Score 

0 1.00 1.00 1.00 

1 0.99 1.00 0.99 

2 0.94 0.97 0.96 

3 1.00 1.00 1.00 

4 0.97 0.85 0.91 

5 1.00 1.00 1.00 

6 0.91 0.98 0.95 

 

Class-wise precision, recall, and F1-score values 

were analysed to find any differences in the model’s 

capacity to categorise particular classes in order to 

evaluate model bias. According to the analysis, the 

model produces highly accurate and consistent 

predictions for Classes 0, 3, and 5 with excellent 

precision, recall, and F1-scores (1.00). Class 1 

performs almost flawlessly, with a recall of 1.00 and 

an accuracy of 0.99, indicating even fewer 

categorisation errors. Even though they are still doing 

well, Classes 2, 4, and 6 have somewhat lower 

scores, particularly in recall (0.85) and precision 

(0.91). With a recall of 0.85, Class 4 stands out in 

particular. This means that 

15% of real Class 4 cases were incorrectly classified, 

which may indicate a slight underrepresentation or 

confusion with other classes. Class 6’s somewhat 

lower precision of 0.91 also raises the possibility of 

some false positives. Despite these little variances, 

all F1-scores (≥ 0.91) show a good balance 

between recall and precision in every class. This 

implies that 

there is no discernible bias towards or against any 

specific class and that the model is generally well-

calibrated. Overall, the model shows equitable 

performance across the class spectrum, while the 

relatively minor decline in scores for a few classes 

points to areas that could use improvement, such as 

targeted augmentation or class rebalancing.A sample 

output of the proposed model is shown in Figure 1, 

where the original class is melanoma (MEL) and the 

predicted class matches it. The model’s confidence 

score during prediction is 100%. 

 
Fig. 9.  Sample output of the model 

 

VI. CONCLUSION 

 

This study introduces a new method for classifying 

skin cancer by combining the suggested Faster-CAN 

model, a faster convolutional neural network 

architecture, with AC- GAN-based synthetic data 

creation. The training process and overall model 

performance are improved by the practical usage of 

AC-GAN, which tackles the problems of class 

imbalance and limited data. Experimental findings 

show that Faster-CAN outperforms baseline models 

in accuracy, precision, recall, and F1-score while 

achieving high agreement metrics (MCC and 

Cohen’s Kappa). The model reduces the likelihood of 

bias and misclassification by maintaining balanced 

performance across all skin lesion categories, as 

confirmed by the class-wise study. The results 

demonstrate how cutting-edge data augmentation 

methods and well-designed hybrid architectures can 

create accurate and effective skin cancer diagnosis 

systems.In order to further enhance model 

generalizability, future studies can concentrate on 

growing the dataset by adding a variety of skin 
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lesion photos from various sources. Furthermore, 

inves- tigating the integration of multi-modal data—

for example, dermoscopic pictures paired with patient 

metadata—may im- prove the accuracy of 

classification. Performance may also be improved by 

fine-tuning the AC-GAN design to produce even 

more varied and realistic synthetic examples, 

particularly for underrepresented classes. Lastly, 

evaluating the Faster-CAN model’s practicality and 

directing advancements for scalable skin cancer 

diagnostic systems will require its deployment and 

validation in actual clinical settings. 
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