
© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 181807 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 5648

Real-Time Systems Experimentation Using C

Programming: Scheduling, Interrupt Handling, and

Deadline Analysis

Pavankumar M Patil. Author

YP-II (Software Developer), Indian Institute of Technology Dharwad

Abstract—This paper explores real-time system

experimentation using the C programming language,

which remains a fundamental tool for low-level system

development and embedded applications. Through

three focused experimental models—task scheduling,

signal-based interrupt handling, and deadline-based

performance evaluation under stress—we demonstrate

C's capabilities and boundaries in real-time contexts.

The experiments measure task execution durations,

interrupt response latencies, and behavior of deadline

adherence in the presence of CPU-heavy computations.

Data collected from these trials are logged into CSV

format and visualized using Python plots for

comprehensive analysis. Our findings indicate that

while C is suitable for soft real-time systems with

relatively predictable loads, hard real-time performance

requires OS-level scheduling control, such as the

integration of real-time patches or RTOS environments.

These experiments not only reinforce C's role in system-

critical programming but also highlight the need for

modern systems to balance determinism with

performance under load.

Index Terms—C programming, deadline violation,

interrupt handling, real-time systems, task scheduling.

I. INTRODUCTION

Real-time systems (RTS) play an essential role in

critical fields such as medical devices, automotive

electronics, industrial control, and robotics, where

precise timing guarantees are mandatory. Such

systems are characterized by their need to respond to

external inputs or internal triggers within strict time

constraints. The reliability of an RTS is not solely

dependent on functional correctness, but also on

temporal correctness.

C remains a preferred language for building real-time

systems due to its proximity to hardware, availability

of deterministic execution, and efficient memory

usage. It offers direct access to low-level system

calls, and minimal abstraction overhead makes it

ideal for timing-sensitive operations. However, most

educational and experimental environments run atop

general-purpose operating systems (GPOS), which

are not inherently real-time.

This paper investigates how well C, combined with

POSIX APIs and standard Linux environments, can

model real-time behaviors through three distinct

experiments: cyclic task scheduling, interrupt

simulation using signals, and deadline monitoring

under CPU stress. The goal is to identify limits and

feasibility when working with C in a soft real-time

context and determine how results might change in

an RTOS setting.

II. METHODOLOGY

A. Task Scheduling

 In this experiment, a simple round-robin task

scheduler was implemented using function pointers

in C. Three tasks simulate basic system activities

(e.g., reading a sensor, updating an actuator, logging

data), executed over 5 consecutive cycles. Execution

timing for each task was captured using the

clock_gettime() function with high-resolution

CLOCK_MONOTONIC settings. Results were

written to a CSV file for external analysis and

comparison across cycles. This experiment

demonstrates cyclic scheduling predictability.

B. Interrupt Handling Simulation

 To emulate asynchronous interrupts in a user-space

environment, POSIX signals were used. A secondary

thread was launched to simulate an external device

generating an interrupt (SIGUSR1) at 2-second

intervals. The main process registered a signal

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 181807 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 5649

handler that computed the response latency based on

the time difference between the signal trigger and its

handling. All data points were appended to a CSV

log. This demonstrates the practical latency of

handling events in soft real-time systems.

C. Deadline Stress Testing

 For evaluating how C handles real-time guarantees

under load, a deadline violation test was designed. A

single task with a soft deadline of 1000 ms was

created. It performed a combination of useful

computation and CPU-intensive dummy operations

(e.g., repeated square root calculations). Execution

time was measured and compared to the set deadline.

Misses and meets were recorded and visualized. This

experiment mimics real-time workloads under

constrained or saturated conditions.

All experiments were conducted on a standard Linux

machine using GCC compiler and POSIX-compliant

libraries, without the inclusion of a real-time kernel.

External Python scripts were used to generate visual

plots from the CSV logs for interpretation.

III. RESULTS AND DISCUSSION

A. Task Scheduling

The round-robin task scheduler consistently

distributed execution across Task1, Task2, and Task3

during all five cycles. As shown in Figure 1 and

Table 1, Task1 consistently completed around 10 ms,

Task2 took approximately 30 ms, and Task3

maintained a middle value near 20 ms. This stable

and repetitive timing across cycles highlights the

suitability of C-based round-robin scheduling for

predictable soft real-time applications. Minimal jitter

was observed, indicating that the scheduler managed

periodic load efficiently.

Task Scheduling Log Table

Cycle Task ExecutionTime(ms)

1 Task1 10

1 Task2 30

1 Task3 20

2 Task1 10

2 Task2 30

2 Task3 20

3 Task1 10

3 Task2 30

3 Task3 20

4 Task1 10

4 Task2 30

4 Task3 20

5 Task1 10

5 Task2 30

5 Task3 20

B. Interrupt Response Time

The system’s signal-handling mechanism was tested

using simulated interrupts via SIGUSR1. As seen in

Table 2, response times ranged between ~1800 ms

and 2200 ms. While these latencies are higher than

typical expectations due to user-space timing

overhead, the response times were relatively

consistent. This suggests that, although not suitable

for hard real-time needs, such interrupt simulation in

C is viable for non-critical events or background alert

handling in soft real-time systems.

Interrupt Response Log Table

Signal ResponseTime(ms)

10 2196

10 1984

10 1833

10 2159

10 1949

10 2063

10 1893

10 1979

10 2102

10 1970

10 1960

10 2062

10 2023

10 1916

10 1977

© June 2025 | IJIRT | Volume 12 Issue 1 | ISSN: 2349-6002

IJIRT 181807 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 5650

C. Deadline Violation

This experiment evaluated the system's ability to

meet a soft deadline of 1000 ms under increasing

computational load. As summarized in Table 3, all

task executions remained well under the threshold,

with execution times ranging from 88 ms to 174 ms.

Despite increased task repetition, no deadline

violations occurred during these 10 cycles. This

indicates that under moderate stress, a C-based real-

time implementation on general-purpose Linux can

still achieve acceptable timing, though this may not

hold under heavier loads or stricter constraints.

Deadline Violation Log Table

Cycle ExecutionTime(ms) Status

1 117 Met

2 174 Met

3 124 Met

4 157 Met

5 131 Met

6 88 Met

7 110 Met

8 158 Met

9 152 Met

10 130 Met

IV. CONCLUSION

This study confirms the effectiveness of the C

programming language for simulating core real-time

system concepts such as task scheduling, signal-

based interrupts, and deadline enforcement in user-

space environments. Our task scheduler consistently

achieved predictable execution times across cycles,

while simulated interrupts exhibited acceptable

latencies for non-critical use. The system reliably met

execution deadlines under soft stress conditions.

While C and POSIX APIs on a standard Linux kernel

can support soft real-time applications, limitations

arise when strict timing guarantees are necessary. For

hard real-time requirements, system extensions like

PREEMPT_RT or deployment on Real-Time

Operating Systems (RTOS) such as FreeRTOS are

recommended.

Future work includes:

⚫ Testing on embedded platforms with actual

hardware timers and GPIO-driven interrupts

⚫ Comparative benchmarking under GPOS vs

RTOS environments

⚫ Implementation of real-time scheduling

algorithms such as Rate Monotonic Scheduling

(RMS) and Earliest Deadline First (EDF) in C

REFERENCES

[1] J. Labrosse, "MicroC/OS-II: The Real-Time

Kernel," CMP Books, 2002.

[2] D. R. Butenhof, "Programming with POSIX

Threads," Addison-Wesley, 1997.

[3] W. Stallings, "Operating Systems: Internals and

Design Principles," 8th Ed., Pearson, 2014.

[4] IEEE, "Standard for a Precision Clock

Synchronization Protocol," IEEE Std 1588-2008.

[5] J. Ganssle, "The Art of Designing Embedded

Systems," Newnes, 2008.

