
© July 2025 | IJIRT | Volume 12 Issue 2| ISSN: 2349-6002 

IJIRT 181882 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 209 

River Discharge Modeling Using Generalized Artificial 

Neuron Model 
 

 

Seema Narain1 and Ashu Jain2 
1Civil Academic Officer, College of Military Engineering, Pune, India 

2Professor, Indian Institute of Technology Kanpur, India 

 
Abstract—Most applications of neural networks in 

hydrology employ the McCulloch and Pitts’ Artificial 

Neuron (MPAN) that was proposed in early 1940s.  This 

paper presents the results of a preliminary investigation 

of the use of a new artificial neuron called Generalized 

Neuron (GN) for hydrological modeling.  The GN model 

offers many advantages over the traditional MPAN 

including but not limited to: (a) capability to model the 

non-linearity in a physical system through non-linear 

discriminant function, and (b) there is no need to 

determine the number of hidden layers and 

consequently the number of hidden neurons as a single 

GN is capable of modeling a complex physical system.  

Two neural network models are presented here: (a) a 

traditional feed-forward neural network model trained 

using back-propagation algorithm, and (b) a GN model.  

The rainfall and flow data from Kentucky River 

catchment were employed to develop the neural 

network models.  A wide range of performance statistics 

was used to evaluate the ANN model performance.  The 

results of the study present here indicate that the GN 

model has tremendous potential for application in 

hydrological modeling.  

 
I. INTRODUCTION 

 

Hydrological modeling is important in planning, 

design, and operation of water resources systems.  

The physical processes describing a hydrological 

system are very complex, dynamic, and non-linear in 

nature that are difficult to understand and model.  

Historically, hydrologists have employed conceptual 

methods that incorporate the physics of the system in 

modeling, or empirical approaches that do not 

consider the underlying physics while modeling.  

There has been a tremendous growth in the use of 

artificial neural networks (ANNs) for the modeling 

hydrological systems in the last fifteen years or so.  

The ANN solutions have been found promising in 

modeling the complex hydrological systems as 

compared to the traditional conceptual or empirical 

approaches.  The ANN applications to hydrological 

modeling range from simple application of ANNs 

(Mins and Hall, 1996; Shamseldin et al, 1997; 

Campolo et al., 1999; Jain and Indurthy, 2003) to 

complex ANN models involving specialized efforts 

such as the use of genetic algorithms for training of 

neural networks (Jain and Srinivasulu, 2004); 

developing hybrid neural networks (Chen and 

Adams, 2006); and data-decomposition and 

integration of techniques (Abrahart and See, 2000; 

and Jain and Srinivasulu, 2006).  Some recent studies 

in hydrology focusing on the integration of 

conceptual and ANN methods or using different 

training methods (viz. genetic algorithms) emphasize 

the need of developing more robust and efficient 

hydrological models capable of producing more 

accurate flow forecasts. 

 

Most of the ANN applications to hydrology employ 

the McCulloch and Pitts’ Artificial Neuron (MPAN) 

that was proposed in early 1940s.  Although the 

MPAN has been found to function very well in most 

engineering applications, the increased demands on 

the more and more accurate estimations of future 

variables requires the researchers to possibly look 

beyond MPAN in the search of more efficient 

hydrological neural network models.  The 

conventional neural networks using MPANs as 

building blocks suffer from several short-comings: 

(a) the training time for the conventional neural 

network is too long, which results in the slower 

response of the system, (b) the number of hidden 

layers and hidden neurons make the model too 

complex apart from being determined through a trial 

and error basis, (c) the existing ANN models perform 

only the operation of summation of its weighted 

inputs leading to linear discriminant functions, and 

(d) the training methods employed, usually back-

propagation (BP) algorithm due to Rumelhart et al. 

(1986), are slow, vulnerable of getting stuck in local 

minima, and can be biased towards a particular 

magnitude (low, medium, or high flows).  This paper 

presents the results of a preliminary investigation of 

the use of a new artificial neuron called Generalized 
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Neuron (GN).  The GN differs from the traditional 

MPAN in many ways including its capability to have 

non-linear discriminant function.  An ANN model 

based on GN is developed using the rainfall and flow 

data derived from the Kentucky River Basin in USA.  

A feed-forward type neural network model trained 

using BP method is also developed.  The 

performance of the GN model is compared with the 

traditional ANN model developed using MPANs as 

building blocks in terms of a variety of error 

statistics. 

 

II. STUDY AREA AND PERFORMANCE 

STATISTICS 

 

Study Area and Data 

The data derived from the Kentucky River Basin 

were employed to train and test all the models 

developed in this study.  The Kentucky River Basin 

(see Figure 1), encompasses over 4.4 million acres 

(17,820 km2) of the state of Kentucky.  Forty separate 

counties lie either completely or partially within the 

boundaries of the catchment.  The Kentucky River is 

the sole source for the several water supply 

companies of the state.  The drainage area of the 

Kentucky River at Lock and Dam 10 (LD10) near 

Winchester, Kentucky is approximately 10,240 km2 

and the time of concentration of the catchment is 

approximately two days.  The data used in this study 

include the average daily streamflow (m3/s) from 

Kentucky River at LD10 and LD11 (near 

Heidelberg), and the daily average rainfall (mm) 

from the five rain gauges (Manchester, Hyden, 

Jackson, Heidelberg, and Lexington Airport) 

scattered throughout the Kentucky River catchment.  

A total length of the data of 26-years (1960-1989 

with data in some years missing) was available.  The 

data were divided into two sets: a training data set 

consisting of the daily rainfall and flow data for 

thirteen years (1960-1972), and a testing data set 

consisting of the daily rainfall and flow data of 

thirteen years (1977-1989). 

 
Figure 1:  Kentucky River Basin 

 

Model Performance 

The performance of all the models developed in this 

study was evaluated using eight different standard 

statistical measures.  These are summing square error 

(SSE), Nash-Sutcliffe efficiency (E), Pearson 

coefficient of correlation (R), average absolute 

relative error (AARE) and threshold statistic (TS). 

The equations to compute these statistics are 

provided below. Where XO is the observed value of 

the variable, XE is the estimated value of the variable 

from a model, XO  is the average observed value of 

the variable, XE  is the average estimated value of 

the variable, nx is the number of data points estimated 

for which the absolute relative  
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error (ARE) is less than x%, N is the total number of 

data points estimated, and all the summations run 

from 1 to N.  The value of x of 1%, 10%, 50%, and, 

100% were considered in this study to compute 

threshold statistics.  Values of SSE and AARE close 

to 0.0 represent good model performance.  The TS 

can range between 0% and 100% with higher values 

representing good model performance.  Coefficient of 

correlation can range between -1.0 and +1.0 with 

magnitudes close to 1.0 meaning good linear 

dependence between observed and modeled outputs.  

The Values of Nash efficiency can range between – 

and +1.0 with values close to 1.0 being very good.  

The values of E equal to 0.0 means the model is as 

good as the mean values. 

 

III. MODEL DEVELOPMENT 

 

Two types of neural network models are developed.  

The first is the feed-forward type neural network 

model trained using BP algorithm.  It consists of 

three layers: an input layer, a hidden layer, and an 

output layer (see Figure 2).  The inputs to the ANN 

are average rainfall at various time steps (Pt, Pt-1, and 

Pt-2); flow in Kentucky River at LD10 in the past 

(Q10t-1, and Q10t-2); and flow in Kentucky River at 

an upstream gauging station LD11 at various time 

steps (Q11t, Q11t-1, and Q11t-2).  The ANN model 

thus developed would require forecasts of two key 

inputs Pt, and Q11t.  The output from the ANN is 

Q10t being modeled. 

   

                  Input Layer      Hidden Layer  Output Layer   
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            X2                                                                                                                Y 

   

 

 

 

            X3 

 
 

Figure 2:  Structure of a feed-forward ANN 

 

The number of neurons in the hidden layer was 

determined using a trial-and-error procedure.  The BP 

method with momentum factor was used to train 

various ANN architectures (with hidden neurons 

varying from 1 to 20) and the best ANN architecture 

in terms of various error statistics during training was 

selected.  Based on this method, the ANN 

architecture 8-5-1 was found suitable for the 

modeling of daily flow in Kentucky River at LD10. 

The results in terms of various error statistics during 

training and testing are presented in Table 1. 

 

Generalized Neuron Model 

The ANN model presented above uses MPAN as a 

building block.  The ANN models using MPAN 

model suffers from certain weaknesses described 

earlier.  In this paper, a new generalized neuron 

model is proposed, which overcomes some of the 

drawbacks of conventional neural network employing 

MPAN.  The GN model incorporates non-linearities 

present in the system through the non-linear 

discriminant function.  Also, there is no need of the 

selection of number of hidden layers and the number 

of hidden neurons.  This reduces the complexity and 

dimensionality of the overall ANN model.  A 

schematic of the GN model is presented in Figure 3. 

 

The GN model receives inputs from external source 

and gives output to the external source like in an 

ANN model built using MPANs.  The GN model 

differs in its structure that is actually responsible for 

capturing the complex input-output relationships.  

The GN model consists of five distinct components: 

an aggregation of weighted inputs (1) that is similar 

to MPAN (linear discriminant function), a product of 

weighted inputs (non-linear discriminant function, 

), the corresponding outputs computed using 

independent activation functions ( and , 

respectively), and an assimilation function (2) that 

provides output to the external source. 
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Figure 3:  Generalized Neuron model 

 

The bias terms are added to both linear and non-

linear discriminant functions like in MPANs.   The 

weighted inputs to the GN are represented as follows: 

 

_j ij iNetL WL X s bias= +            (6) 

  

 * _j ij iNetNL WNL X pi bias= (7) 

 

Where NetLij is the net input to the GN for the linear 

part; WLij’s are the weights for the linear 

discriminant function; Xi’s are the inputs, s_bias is 

the bias weight corresponding to the linear part; 

NetNLij is the net input to the GN for the non-linear 

part; WNLij’s are the weights corresponding to non-

linear discriminant function, and pi_bias is the bias 

weight corresponding to the non-linear discriminant 

input.  The output from the linear and non-linear 

discriminant portions is calculated using the 

respective activation functions ( and ), which can 

be either a sigmoid, a Gaussian, a Spline, or any other 

mathematical function satisfying the conditions of 

being an activation function in the traditional ANNs 

employing MPANs.  In this study, sigmoid and 

Gaussian activation functions were used to calculate 

the outputs from the linear and non-linear 

components of the GN model.  The assimilation 

function was a linear combination of the two outputs.  

The equation to calculate the overall output from the 

GN model can be represented as follows: 

 

1 2(1 )pkO w y w y= + −          (8) 

 

Where Opk is the overall output from the GN model; 

w is the weight corresponding to the linear output y1; 

and y2 is the non-linear output from the GN model. 

The training of the GN model is carried out in a 

similar fashion as a traditional ANN using gradient 

descent method.  The weight parameter w is also 

optimized during training so that the GN model 

consists of a total of 2n+3 weight parameters for n 

inputs.  The overall structure of the GN model 

described above provides a very compact ANN 

model as compared to the traditional ANN model 

having many times more weights due to the number 

of hidden neurons involved in them.  The details of 

training of a GN model are not included here and can 

be found in Chaturvedi et al. (1999) and Yadav et al. 

(2006). 

 

IV. RESULTS AND DISCUSSIONS 

 

The results in terms of various statistical parameters 

from the two ANN models are presented in Table 1.  

The values of E and R in excess of 0.95 from both 8-

5-1 and GN models both during training and testing 

indicate an excellent performance.  The 8-5-1 ANN 

model achieved a slightly better SSE both during 

training and testing; however, the GN model obtained 

a slightly better AARE value during testing.  The 

performance of the two models was comparable in 

terms of all the threshold statistics.  The comparable 

performance of the two models indicates that the GN 

model has tremendous potential in hydrology.  Also, 

it provided a very compact ANN structure consisting 

of a single artificial neuron.  Looking at the overall 

results from Table 1, the GN model may be preferred 

over the 8-5-1 ANN model due to its comparable 

performance and based on the principle of 

parsimony.  The results in terms of scatter plots from 

the two models are provided in Figures 4 and 5, 

respectively.  Figure 4 indicates the 8-5-1 ANN 

model’s inability of estimating flows greater than 

2000 m3/s.  This problem is overcome by the GN 

model (see Figure 5).  Also, the GN model appears to 

estimate the lower magnitude flows (up to 1000 m3/s) 

much better than those from the 8-5-1 ANN model. 

 

Table 1: Error Statistics of ANN Models 

___________________________________________

____________________________ 
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Model     SSE        E R  AARE  TSAD TS1 TS1 

TS50  TS100 

___________________________________________

_____________________________ 

During Training 

8-5-1     0.33     0.969     0.985      3.98       

29.38        15.82      94.10  99.95    99.99 

GN     0.46     0.958     0.979      4.17       

32.63        13.54      92.28  99.96    99.98 

 

During Testing 

8-5-1     0.44     0.956     0.978 4.25 32.05 15.82

 92.73    99.95    99.99 

GN     0.50     0.950     0.975        4.13       

32.47      16.16 91.50    99.96    100.0 

___________________________________________

_____________________________ 
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Figure 4:  Scatter plot from 8-5-1 ANN model 
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Figure 5:  Scatter plot from GN model 

 

 

V. CONCLUSION 

 

In this study, the rainfall-runoff process has been 

modeled using two different ANN techniques: Three 

layered Feed forward Neural Network using MPAN 

and Generalized neural network using single 

generalized neuron. 

This paper presents the findings of a study aimed at 

developing Generalized Neuron model for river flow 

forecasting.  The results from the GN model are 

compared with a traditional feed-forward ANN 

trained with back-propagation with momentum 

factor.  The daily rainfall and flow data for a 26-year 

period from Kentucky River, USA were employed.  

The performances of the two models were evaluated 

using five different types of error statistics capable of 

assessing ANN model performance comprehensively. 

 

The results obtained in this study indicate that a 

compact ANN model consisting of a single artificial 

generalized neuron is capable of modeling the 

complex, dynamic, and non-linear rainfall-runoff 

process in a large catchment.  The GN model was 

able to achieve similar performance as compared to a 

fully connected feed-forward ANN developed on the 

same data set.  The GN model overcomes some of the 

problems associated with traditional ANNs 

developed using MPAN as a building block.  It offers 

a flexible structure wherein various alternative 

discriminant, activation, and assimilation functions 

can be used to model the specific nature inherent in 
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different types of problems.  The GN model has 

tremendous potential for solving a variety of 

problems in hydrology.  It is hoped that future efforts 

will focus on the use of GN model in hydrology to 

exploit their strengths to advantage in hydrological 

modeling. 
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