
© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 181888 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 66

Hydrological Modeling – An Approach with Advanced

Neural Network Models and their Sensitivity to Initial

Solution

Seema Narain1, Ashu Jain2
1Civil Academic Officer, Department of Civil Engineering, College of Military Engineering,

Pune,411001, India
2Professor, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur-208 016,

India

Abstract- This study introduces a novel approach to

hydrological modeling through the application of a

Generalized Neuron (GN), an advanced artificial neuron

architecture. Unlike the conventional McCulloch and

Pitts’ artificial neuron (MPAN) commonly utilized in

artificial neural networks (ANNs), the GN is structured to

handle complex nonlinearities in hydrological systems

using a non-linear discriminant function. This compact

model architecture eliminates the need for specifying

hidden layers and neurons, offering a streamlined

modeling process. Two neural system (NS) models were

developed: (a) a standard multilayer perceptron (MLP)

model trained using the back-propagation (BP)

algorithm, and (b) the GN-based model. Both models were

tested on rainfall and discharge data from the Kentucky

River basin, using ten distinct initial weight

configurations to assess sensitivity. Evaluation was

carried out using multiple performance indicators.

Results show that the GN model not only outperforms the

traditional MLP model in terms of accuracy and training

efficiency but also demonstrates robustness against initial

weight sensitivity. This highlights the potential of GN as a

powerful tool for modeling nonlinear hydrological

processes.

Keywords- hydrological modeling, ANN, Advanced

neural network, water resources engineering, sensitivity

of models

I. INTRODUCTION

Hydrological modeling plays a crucial role in the

planning, design, and management of water resources

systems. Traditionally, hydrologists have relied on two

primary modeling approaches: conceptual models that

incorporate physical processes, and empirical models

that are data-driven and independent of system physics.

In recent decades, the use of artificial neural networks

(ANNs) for modeling hydrological systems has gained

significant traction. These models are capable of

capturing nonlinear relationships in rainfall-runoff

processes without requiring explicit representation of

the watershed’s internal mechanisms.

ANN-based modeling efforts in hydrology range from

relatively simple applications (Minns and Hall, 1996;

Shamseldin et al., 1997; Campolo et al., 1999; Jain and

Indurthy, 2003) to more sophisticated integrations

involving genetic algorithms (Jain and Srinivasulu,

2004), hybrid frameworks (Chen and Adams, 2006),

and data decomposition techniques (Abrahart and See,

2000; Jain and Srinivasulu, 2006). These studies

underscore the growing need for robust, flexible, and

accurate models capable of delivering reliable flow

forecasts. The majority of ANN applications in

hydrology utilize the McCulloch and Pitts artificial

neuron (MPAN), originally introduced in the 1940s.

These conventional networks use a summation-based

aggregation function followed by a nonlinear

transformation. However, this design has several

limitations: extended training time (Shamseldin, 1997),

complexity in determining the optimal network

architecture (Hsu et al., 1995), linear aggregation of

inputs, and susceptibility of the back-propagation (BP)

training algorithm to local minima and flow bias

(Rumelhart et al., 1986).

To address these challenges, several modifications to

the MPAN architecture have been proposed.

Innovations include time-delay differential equations in

neural models (Chunguang et al., 2004), dendritic

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 181888 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 67

computation structures, and spiking neural networks

(Cios et al., 2004; Prete et al., 2004). The present study

builds on this trajectory by exploring the performance

of a novel artificial neuron, the Generalized Neuron

(GN), which incorporates nonlinear discriminant

functions (Chaturvedi et al., 1999; Yadav et al., 2006).

Using rainfall and streamflow data from the Kentucky

River Basin, this research compares a GN-based neural

system with a traditional multi-layer perceptron (MLP)

model trained via BP. Both models are evaluated across

multiple error metrics, with a particular focus on

sensitivity to initial weights—an important factor

affecting model reliability. The findings demonstrate

that the GN model offers significant improvements in

performance and robustness over conventional ANN

architectures.

II. STUDY AREA AND DATA

The models developed in this research were trained and

validated using historical data from the Kentucky River

Basin, a significant watershed located in the state of

Kentucky, USA. This basin spans over 17,820 square

kilometers (approximately 4.4 million acres) and

includes all or parts of 40 counties. The Kentucky River

serves as the primary source of drinking water for

numerous municipalities within the state.

Model development focused on the section of the river

upstream of Lock and Dam 10 (LD10), near

Winchester, Kentucky, which drains an area of around

10,240 km². The watershed has an estimated time of

concentration of two days, reflecting the time required

for water to travel from the furthest point in the basin

to the outlet.

The dataset used for this study comprises daily average

streamflow measurements (in m³/s) from two gauging

stations: LD10 and LD11 (near Heidelberg), as well as

daily rainfall data (in mm) from five strategically

placed rain gauges: Manchester, Hyden, Jackson,

Heidelberg, and Lexington Airport. The available

dataset spans a period of 26 years (1960–1989),

although some gaps are present in the record.

To enable robust model training and validation, the data

were divided into two subsets. The training dataset

includes 13 years of daily rainfall and flow

observations from 1960 to 1972. The testing dataset

comprises data from 1977 to 1989. This temporal

separation helps in objectively evaluating model

generalizability and predictive capability under

different hydrological conditions.

III. MODEL PERFORMANCE

STATISTICS

To objectively assess the predictive accuracy of the

developed neural models, four widely used statistical

performance indicators were employed:

1. Nash–Sutcliffe Efficiency (E)

2. Pearson’s Correlation Coefficient (R)

3. Average Absolute Relative Error (AARE)

4. Threshold Statistics (TS)

The equations to compute these statistics are provided

below.

2

2

()
1

()

XE XO
E

XO XO

−
= −

−




 (1)

2 2

() ()

() ()

XO XO XE XE
R

XO XO XE XE

− −
=

− −



 
 (2)

%100*
)(

)()(1

1


=

−
=

N

i tXO

tXEtXO

N
AARE (3)

100%x
x

n
TS

N
=  (4)

Where XO is the observed value of the variable, XE is

the estimated value of the variable from a model, XO

is the average observed value of the variable, XE is

the average estimated value of the variable, nx is the

number of data points estimated for which the absolute

relative error (ARE) is less than x%, N is the total

number of data points estimated, and all the

summations run from 1 to N. The value of x of 1%,

25%, 50%, and, 100% were considered in this study to

compute threshold statistics. Values of AARE close to

0.0 represent good model performance. The

distribution of errors is very well represented by the

threshold statistics. The TSx may be defined as the

percentage of data points forecasted for which the

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 181888 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 68

absolute relative error is less than x%, therefore higher

value of threshold statistics indicates the better

performance of the model. The TS can range between

0% and 100% with higher values representing good

model performance. Coefficient of correlation can

range between -1.0 and +1.0 with magnitudes close to

1.0 meaning good linear dependence between observed

and modeled outputs. The Values of Nash efficiency

can range between – and +1.0 with values close to 1.0

being very good. The values of E equal to 0.0 means

the model is as good as the mean values. Together,

these statistics provide a comprehensive evaluation of

model fidelity across multiple dimensions — overall

fit, linear correlation, absolute error, and error

distribution.

IV. MODEL DEVELOPMENT

Two types of neural system (NS) models were

constructed for this study: a traditional feed-forward

multilayer perceptron (MLP) model and a model based

on the Generalized Neuron (GN) architecture.

MLP Model

The MLP model was developed using the conventional

McCulloch and Pitts Artificial Neuron (MPAN) as the

fundamental processing unit. The architecture consists

of an input layer, a hidden layer, and an output layer

(see Figure 2). Training was carried out using the back-

propagation (BP) algorithm, enhanced with a

momentum factor to improve convergence stability.

To identify the optimal number of hidden neurons,

various MLP configurations (ranging from 1 to 20

neurons in the hidden layer) were tested using a trial-

and-error approach. Performance was evaluated based

on multiple error metrics. The optimal MLP

architecture was found to be 5-4-1, indicating five input

nodes, four hidden neurons, and one output node.

Model parameters — the learning rate (η) and

momentum correction factor (α) were also tuned using

iterative experimentation.

GN Model

In contrast to the MLP, the GN model utilizes a more

compact structure by integrating both linear and

nonlinear discriminant functions within a single

processing unit. It includes five components: linear and

nonlinear weighted input aggregators, their respective

activation functions (sigmoid in this study), and an

assimilation function that combines the outputs. The

GN model eliminates the need to define hidden layers

or multiple neurons, simplifying the model design.

Both the MLP and GN models used identical input

variables, selected based on cross-correlation and

partial correlation analyses. These inputs include:

• Rainfall values at current and previous time steps

(Pt, Pt−1, Pt−2)

• Historical streamflow at LD10 (Q10t−1, Q10t−2)

The output variable modeled by both systems is the

streamflow at LD10 on day t (Q10t).

The statistical characteristics of the input data sets used

for model training and testing are summarized in Table

1.

Model training for the GN was also based on the

gradient descent method, with the key difference being

that the GN model requires significantly fewer weights

(2n + 3 for n inputs), which reduces both the

computational load and the required training data

volume.

A. Generalized Neuron Model

Traditional artificial neurons typically aggregate

weighted inputs through summation and then apply a

nonlinear activation function. While effective in many

applications, this design becomes computationally

intensive and structurally complex when modeling

intricate, nonlinear systems—particularly due to the

need for multiple hidden layers and extensive training

data (Chunguang et al., 2004; Cios et al., 2004; Prete et

al., 2004).

To overcome these limitations, this study employs a

Generalized Neuron (GN) model, which offers a

simplified yet highly expressive alternative to

conventional neural structures. The GN is constructed

with five key components:

1. Linear Discriminant Function (∑) – aggregates

weighted inputs similar to traditional neurons.

2. Nonlinear Discriminant Function (Π) – multiplies

inputs, enabling nonlinear transformations.

3. Two Independent Activation Functions – process

outputs of the discriminant functions; in this study,

sigmoid functions were used for both.

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 181888 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 69

4. Assimilation Function – combines outputs from

the linear and nonlinear pathways to generate the

final response.

5. Bias Terms – added to both discriminant

components, as in standard ANN designs.

The weighted inputs to the GN are represented as

follows:

_j ij iNetL WL X s bias= + (5)

biaspiXWNLNetNL iijj _×∏= (6)

Where, Xi’s are the inputs. For the (1 and ) part of

the GN model, NetLij is the net input to the GN, WLij’s

are the weights and s_bias is the bias weight. NetNLij is

the net input to the GN, WNLij’s are the weights and

pi_bias is the bias weight for the part (Π1 and ) of the

GN model. The output from the discriminant portions

(1 and Π1) is calculated using the respective activation

functions (), which can be either a sigmoid, a Gaussian,

a Spline, or any other mathematical function satisfying

the conditions of being an activation function in the

traditional ANNs employing MPANs. In this study,

sigmoid activation functions were used to calculate the

outputs from the components of the GN model.

)+1(

1
= -1 jNetL

e
y (7)

)+1(

1
= -2 jNetNL

e
y (8)

The assimilation function  was a linear combination

of the two outputs. The equation to calculate the overall

output from the GN model can be represented as

follows:

1 2(1)pkO w y w y= + − (9)

Where Opk is the overall output from the GN model; w

is the weight corresponding to the linear discriminant

function’s output y1; and y2 is the non- linear

discriminant function’s output from the GN model. The

training of the GN model is carried out in a similar

fashion as a traditional ANN using gradient descent

method. The optimized value of parameters, learning

rate (η) and momentum correction factor (α) were

found by trial and error method. The weight parameter

w is also optimized during training so that the GN

model consists of a total of 2n+3 weight parameters for

n inputs. The overall structure of the GN model

described above provides a very compact ANN model

as compared to the traditional ANN model having

many times more weights due to the number of hidden

neurons involved in them. The details of training of a

GN model are not included here and can be found in

(Chaturvedi et al., 1999 and Chaturvedi et al., 2004).

The generalized neural network has characteristics of

both simple and high order neurons. The non-linearity

present in the system is incorporated with suitable

discriminant and activation functions in GN model. The

proposed model has both linear and non-linear

discriminant functions associated with sigmoid

activation function with weight sharing. The number of

weights in the case of a GN model is equal to twice the

number of inputs plus two, which is very low in

comparison to a multi-layer feed-forward ANN. The

weights are determined through training. Hence, by

reducing the number of unknown weights, training time

as well as the minimum number of patterns required for

training can be reduced. Also, there is no need to select

the number of hidden layers and the number of hidden

neurons. This reduces the complexity and

dimensionality of the overall ANN model. A schematic

of the GN model is presented in Figure 3. The GN

model receives inputs from external source and gives

output to the external source like in an ANN model

built using MPANs. The GN model differs in its

structure that is actually responsible for capturing the

complex input-output relationships.

V. RESULTS AND DISCUSSIONS

The comparative performance of the MLP and GN

models was evaluated using standard error metrics,

with detailed results presented in Tables 2A and 2B.

Both models demonstrated strong predictive

capabilities, with Nash-Sutcliffe efficiency (E) and

Pearson correlation coefficient (R) values exceeding

0.90 during both training and testing phases, indicating

excellent agreement between observed and predicted

flows.

During training, the GN model achieved a lower

Average Absolute Relative Error (AARE) than the

MLP model, reflecting improved accuracy. Testing

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 181888 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 70

results showed comparable AARE values for both

models, though GN maintained a slight edge in overall

predictive consistency. In terms of the Threshold

Statistics (TS), the GN model outperformed the MLP

across all thresholds, particularly at higher thresholds

(e.g., TS50 and TS100), where a larger percentage of

predictions fell within acceptable error margins.

Training time also significantly favored the GN model.

As shown in Table 2A, the GN architecture required

substantially less computational time to converge

compared to the MLP, which underscores its efficiency

and suitability for practical applications. Despite

having only a single neuron, the GN model delivered

performance comparable to or better than a multi-layer

network, highlighting its structural compactness and

efficiency.

Visual comparisons of model outputs against observed

streamflows are presented in Figure 4. The scatter plots

clearly show that the MLP struggled to predict higher-

magnitude flow events accurately, resulting in a

broader scatter around the 1:1 line. In contrast, the GN

model demonstrated a tighter clustering of predicted

values along the ideal line, especially in the higher flow

range—further supporting its superior modeling

capabilities.

In summary, the GN model delivered more accurate

and consistent results, particularly in terms of training

efficiency and its ability to capture nonlinear

hydrological behavior. These findings suggest that GN

offers a valuable alternative to traditional ANN

architectures, especially when simplicity, speed, and

reliability are critical.

VI. SENSITIVITY ANALYSIS

Multilayer perceptron (MLP) models, though widely

used, are often criticized for their sensitivity to initial

weight settings. This sensitivity stems from the

complex error surfaces created by the multiple hidden

layers and neurons, which result in numerous local

optima. The back-propagation (BP) algorithm,

typically used for training, can become trapped in these

local minima, leading to inconsistent model

performance.

To assess this issue, a sensitivity analysis was

conducted for both the MLP and Generalized Neuron

(GN) models. Each model was retrained ten times using

different randomly initialized weight vectors. For each

run, key performance metrics—Nash-Sutcliffe

efficiency (E), correlation coefficient (R), and average

absolute relative error (AARE)—were computed. The

results are summarized in Tables 3A and 3B.

The GN model consistently produced better average

performance across all metrics compared to the MLP

model, during both training and testing phases.

Notably, the standard deviations of the performance

indicators for the GN model were significantly lower.

This indicates that the GN model’s outcomes were

more stable and less affected by the initial weight

configuration.

For the MLP model, larger standard deviations were

observed across all metrics, reflecting high variability

in performance depending on initial weights. This

variability confirms the model’s susceptibility to

getting stuck in suboptimal solutions due to its complex

architecture.

The GN model, by contrast, showed minimal variation

across different runs, especially in AARE and threshold

statistics (TS), where standard deviations were close to

zero in many cases. This stability suggests that the GN

model is more robust and reliable for practical

applications, as it reduces the uncertainty associated

with weight initialization and the risk of suboptimal

convergence.

In essence, the sensitivity analysis underscores a key

advantage of the GN architecture: its reduced

dependence on initial conditions, which enhances

model reliability and simplifies the training process.

This makes it particularly suitable for modeling

complex physical systems where data availability and

computational efficiency are critical concerns.

VII. SUMMARY AND CONCLUSIONS

This study introduced and evaluated the Generalized

Neuron (GN) model as an alternative to conventional

multilayer perceptron (MLP) architectures for

simulating the complex and nonlinear rainfall-runoff

processes inherent in hydrological systems. Using daily

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 181888 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 71

rainfall and streamflow data from the Kentucky River

Basin, both GN and MLP models were developed and

rigorously tested. The GN model demonstrated several

advantages over the MLP framework. It produced

higher or comparable accuracy across standard

performance metrics, required significantly less

training time, and achieved greater robustness to initial

weight conditions. Unlike the MLP, which involves

selecting the number of hidden layers and neurons—a

process typically guided by trial and error—the GN

model’s compact structure simplifies architecture

design and reduces computational effort. Furthermore,

the GN model showed remarkable insensitivity to the

choice of initial weights. Sensitivity analysis confirmed

that the GN model’s performance remained stable

across different initialization scenarios, a critical

strength when modeling nonlinear systems where

traditional ANNs may yield widely varying outcomes

due to local minima in the error surface.

These findings underscore the GN model’s potential as

a reliable and efficient tool for hydrological modeling.

Its compactness, reduced training requirements, and

consistent performance make it a strong candidate for

broader application in water resource studies. The

results also suggest that continued exploration of novel

neuron architectures, such as the GN, could lead to

substantial improvements in the modeling of complex

physical systems.

Future work should aim to validate the GN model

across additional watersheds and under varying

climatic and hydrological conditions. Additionally,

integrating the GN model with advanced training

algorithms beyond standard back-propagation may

further enhance its performance and applicability in

real-world hydrological forecasting and management

scenarios.

REFERENCE

[1] Abrahart, R.J. and See, L. 2000. Comparing Neural

Network and Autoregressive Moving Average

Techniques for the Provision Of Continuous River

Flow Forecasts in Two Contrasting Watersheds,

Hydrol. Processes, 14, 2157-2172.

[2] Campolo, M., Andreussi, P., and Soldati, A. 1999.

River Flood Forecasting with Neural Network

Model. Water Resour. Res., 35(4), 1191-1197.

[3] Chaturvedi, D.K., Malik, O.P., and Kalra, P.K.

2004, Generalised Neuron-Based Adaptive Power

System Stabilizer, IEEE Proc-Genetation,

Transmission and Distribution , 151(2), 213-218.

[4] Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K.

1999. New Neuron Models for Simulating

Rotating Electrical Machines and Load

Forecasting Problems, Elec. Power Sys. Res., 52,

123-131.

[5] Chen, J. and Adams, B.J. 2006. Integration Of

Artificial Neural Networks with Conceptual

Models in Rainfall-Runoff Modeling, J. Hydrol.,

318, 232-249.

[6] Chunguang, L.,a, Guangrong, C., Xiaofeng L., and

Juebang Y. 2004, Hopf Bifurcation and Chaos in

a Single Inertial Neuron Model with Time Delay,

The European Physical Journal, 41, 337–343.

[7] Cios, K.J., Swiercz, W, Jackson, W. 2004,

Networks of Spiking Neurons In Modeling and

Problem Solving, Neurocomputing 61, 99 – 119.

[8] Hsu, K., Gupta., H.V., and Sorooshian, S. 1995,

Artificial Neural Network Modeling of the

Rainfall-Runoff Process, Water Resources

Research, 31(10), 2517-2530.

[9] Jain, A. and Srinivasulu, S. 2004. Development of

Effective And Efficient Rainfall-Runoff Models

Using Integration of Deterministic, Real-Coded

Genetic Algorithms, and Artificial Neural

Network Techniques, Water Resour. Res., 40(4),

W04302, doi:10.1029/2003WR002355.

[10] Jain, A. and Srinivasulu, S. 2006. Integrated

Approach to Modelling Decomposed Flow

Hydrograph using Artificial Neural Network and

Conceptual Techniques, J. Hydrol., 317(3-4), 291-

306.

[11] Jain, A., and Indurthy, S.K.V.P. 2003.

Comparative Analysis of Event Based Rainfall-

Runoff Modeling Techniques-Deterministic,

Statistical, And Artificial Neural Networks, J.

Hydrol. Engg., ASCE, 8(2), 93-98.

[12] Minns, A.W. and Hall, M.J. 1996. Artificial Neural

Networks as Rainfall Runoff Models, Hydrol. Sci.

J., 41(3), 399-417.

[13] Prete, V.D., and Coolen, A.C.C. 2004, Non-

Equilibrium Statistical Mechanics of Recurrent

Networks with Realistic Neurons,

Neurocomputing, 58-60, 239-244.

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 181888 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 72

[14] Rumelhart, D.E., Hinton, G.E. and Williams, R. J.

1986. Learning Representations by Back-

Propagating Errors, Nature, 323, 533-536.

[15] Shamseldin, A. Y., 1997. Application of a Neural

Network Technique to Rainfall-Runoff Modeling,

J. Hydrol., 199, 272-294.

[16] Yadav, R.N., Kalra, P.K., and John, J. 2006.

Neural Network Learning with Generalized Mean

Based Neuron Model, Soft Comput., 10, 257-263.

TABLE 1: Kentucky River Data Statistics

Model Inputs Rainfall Flow

 (mm) (m3/s)

Average

Training 3.24 149.94

Testing 3.16 144.78

Maximum

Training 77.40 2528.69

Testing 81.99 2806.19

Minimum

Training 0.00 3.60

Testing 0.00 3.28

Std. Deviation

Training 6.20 243.30

Testing 6.18 232.81

Skewness

Training 3.49 3.67

Testing 3.94 4.00

Table 2A: Error Statistics of NS Models

Model E R AARE Execution Time

During Training

MLP 0.904 0.954 32.8 00:16:55.21

GN 0.920 0.959 29.7 00:01:52.68

During Testing

MLP 0.823 0.948 27.7

GN 0.916 0.957 29.8

Table 2B: Threshold Error Statistics of NS Models

Model TS1 TS25 TS50 TS100

During Training

MLP 1.9 38.4 52.4 64.7

GN 1.8 46.1 67.6 82.5

During Testing

MLP 1.2 36.4 63.9 74.7

GNC 1.9 46.9 67.5 81.2

Table 3A: Sensitivity Analyses Results with respect to

Initial Solutions

Model E R AARE

Average During Training

MLP 0.905 0.952 28.5

GN 0.921 0.960 29.8

Average During Testing

MLP 0.895 0.946 28.3

GN 0.915 0.957 29.8

Standard Deviation During Training

MLP 0.025 0.013 6.016

GN 0.001 0.001 0.295

Standard Deviation During Testing

MLP 0.022 0.012 6.548

GN 0.002 0.001 0.345

Table 3B: Sensitivity Analyses Results with respect to

Initial Solutions

Model TS1 TS25 TS50 TS100

Average During Training

MLP 2.0 43.5 64.0 75.4

GN 1.8 48.2 70.9 84.2

Average During Testing

MLP 2.0 45.8 64.6 75.3

GN 1.9 48.7 70.3 83.5

Standard Deviation During Training

MLP 0.98 10.40 9.55 10.87

GN 0.08 1.49 2.23 0.74

Standard Deviation During Testing

MLP 0.73 9.07 7.79 9.45

GN 0.10 1.61 1.90 1.37

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 181888 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 73

Figure 1. Kentucky River Basin

Figure 2: MLP Model

Figure 3: Generalized Neuron Model

(a) MLP Model

(b) GN Model

Figure 4: Scatter Plot of Neural System Models during

Testing

