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Abstract- This study introduces a novel approach to 

hydrological modeling through the application of a 

Generalized Neuron (GN), an advanced artificial neuron 

architecture. Unlike the conventional McCulloch and 

Pitts’ artificial neuron (MPAN) commonly utilized in 

artificial neural networks (ANNs), the GN is structured to 

handle complex nonlinearities in hydrological systems 

using a non-linear discriminant function. This compact 

model architecture eliminates the need for specifying 

hidden layers and neurons, offering a streamlined 

modeling process. Two neural system (NS) models were 

developed: (a) a standard multilayer perceptron (MLP) 

model trained using the back-propagation (BP) 

algorithm, and (b) the GN-based model. Both models were 

tested on rainfall and discharge data from the Kentucky 

River basin, using ten distinct initial weight 

configurations to assess sensitivity. Evaluation was 

carried out using multiple performance indicators. 

Results show that the GN model not only outperforms the 

traditional MLP model in terms of accuracy and training 

efficiency but also demonstrates robustness against initial 

weight sensitivity. This highlights the potential of GN as a 

powerful tool for modeling nonlinear hydrological 

processes. 
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I. INTRODUCTION 

 

Hydrological modeling plays a crucial role in the 

planning, design, and management of water resources 

systems. Traditionally, hydrologists have relied on two 

primary modeling approaches: conceptual models that 

incorporate physical processes, and empirical models 

that are data-driven and independent of system physics. 

In recent decades, the use of artificial neural networks 

(ANNs) for modeling hydrological systems has gained 

significant traction. These models are capable of 

capturing nonlinear relationships in rainfall-runoff 

processes without requiring explicit representation of 

the watershed’s internal mechanisms. 

 

ANN-based modeling efforts in hydrology range from 

relatively simple applications (Minns and Hall, 1996; 

Shamseldin et al., 1997; Campolo et al., 1999; Jain and 

Indurthy, 2003) to more sophisticated integrations 

involving genetic algorithms (Jain and Srinivasulu, 

2004), hybrid frameworks (Chen and Adams, 2006), 

and data decomposition techniques (Abrahart and See, 

2000; Jain and Srinivasulu, 2006). These studies 

underscore the growing need for robust, flexible, and 

accurate models capable of delivering reliable flow 

forecasts. The majority of ANN applications in 

hydrology utilize the McCulloch and Pitts artificial 

neuron (MPAN), originally introduced in the 1940s. 

These conventional networks use a summation-based 

aggregation function followed by a nonlinear 

transformation. However, this design has several 

limitations: extended training time (Shamseldin, 1997), 

complexity in determining the optimal network 

architecture (Hsu et al., 1995), linear aggregation of 

inputs, and susceptibility of the back-propagation (BP) 

training algorithm to local minima and flow bias 

(Rumelhart et al., 1986). 

 

To address these challenges, several modifications to 

the MPAN architecture have been proposed. 

Innovations include time-delay differential equations in 

neural models (Chunguang et al., 2004), dendritic 
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computation structures, and spiking neural networks 

(Cios et al., 2004; Prete et al., 2004). The present study 

builds on this trajectory by exploring the performance 

of a novel artificial neuron, the Generalized Neuron 

(GN), which incorporates nonlinear discriminant 

functions (Chaturvedi et al., 1999; Yadav et al., 2006). 

 

Using rainfall and streamflow data from the Kentucky 

River Basin, this research compares a GN-based neural 

system with a traditional multi-layer perceptron (MLP) 

model trained via BP. Both models are evaluated across 

multiple error metrics, with a particular focus on 

sensitivity to initial weights—an important factor 

affecting model reliability. The findings demonstrate 

that the GN model offers significant improvements in 

performance and robustness over conventional ANN 

architectures. 

 

II. STUDY AREA AND DATA 

 

The models developed in this research were trained and 

validated using historical data from the Kentucky River 

Basin, a significant watershed located in the state of 

Kentucky, USA. This basin spans over 17,820 square 

kilometers (approximately 4.4 million acres) and 

includes all or parts of 40 counties. The Kentucky River 

serves as the primary source of drinking water for 

numerous municipalities within the state. 

Model development focused on the section of the river 

upstream of Lock and Dam 10 (LD10), near 

Winchester, Kentucky, which drains an area of around 

10,240 km². The watershed has an estimated time of 

concentration of two days, reflecting the time required 

for water to travel from the furthest point in the basin 

to the outlet. 

 

The dataset used for this study comprises daily average 

streamflow measurements (in m³/s) from two gauging 

stations: LD10 and LD11 (near Heidelberg), as well as 

daily rainfall data (in mm) from five strategically 

placed rain gauges: Manchester, Hyden, Jackson, 

Heidelberg, and Lexington Airport. The available 

dataset spans a period of 26 years (1960–1989), 

although some gaps are present in the record. 

 

To enable robust model training and validation, the data 

were divided into two subsets. The training dataset 

includes 13 years of daily rainfall and flow 

observations from 1960 to 1972. The testing dataset 

comprises data from 1977 to 1989. This temporal 

separation helps in objectively evaluating model 

generalizability and predictive capability under 

different hydrological conditions. 

 

III. MODEL PERFORMANCE 

STATISTICS 

 

To objectively assess the predictive accuracy of the 

developed neural models, four widely used statistical 

performance indicators were employed: 

1. Nash–Sutcliffe Efficiency (E) 

2. Pearson’s Correlation Coefficient (R) 

3. Average Absolute Relative Error (AARE) 

4. Threshold Statistics (TS) 

 

The equations to compute these statistics are provided 

below. 
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Where XO is the observed value of the variable, XE is 

the estimated value of the variable from a model, XO  

is the average observed value of the variable, XE  is 

the average estimated value of the variable, nx is the 

number of data points estimated for which the absolute 

relative error (ARE) is less than x%, N is the total 

number of data points estimated, and all the 

summations run from 1 to N. The value of x of 1%, 

25%, 50%, and, 100% were considered in this study to 

compute threshold statistics. Values of AARE close to 

0.0 represent good model performance. The 

distribution of errors is very well represented by the 

threshold statistics. The TSx may be defined as the 

percentage of data points forecasted for which the 
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absolute relative error is less than x%, therefore higher 

value of threshold statistics indicates the better 

performance of the model. The TS can range between 

0% and 100% with higher values representing good 

model performance. Coefficient of correlation can 

range between -1.0 and +1.0 with magnitudes close to 

1.0 meaning good linear dependence between observed 

and modeled outputs. The Values of Nash efficiency 

can range between – and +1.0 with values close to 1.0 

being very good. The values of E equal to 0.0 means 

the model is as good as the mean values. Together, 

these statistics provide a comprehensive evaluation of 

model fidelity across multiple dimensions — overall 

fit, linear correlation, absolute error, and error 

distribution. 

 

IV. MODEL DEVELOPMENT 

 

Two types of neural system (NS) models were 

constructed for this study: a traditional feed-forward 

multilayer perceptron (MLP) model and a model based 

on the Generalized Neuron (GN) architecture. 

 

MLP Model 

The MLP model was developed using the conventional 

McCulloch and Pitts Artificial Neuron (MPAN) as the 

fundamental processing unit. The architecture consists 

of an input layer, a hidden layer, and an output layer 

(see Figure 2). Training was carried out using the back-

propagation (BP) algorithm, enhanced with a 

momentum factor to improve convergence stability. 

 

To identify the optimal number of hidden neurons, 

various MLP configurations (ranging from 1 to 20 

neurons in the hidden layer) were tested using a trial-

and-error approach. Performance was evaluated based 

on multiple error metrics. The optimal MLP 

architecture was found to be 5-4-1, indicating five input 

nodes, four hidden neurons, and one output node. 

 

Model parameters — the learning rate (η) and 

momentum correction factor (α)  were also tuned using 

iterative experimentation. 

 

GN Model 

In contrast to the MLP, the GN model utilizes a more 

compact structure by integrating both linear and 

nonlinear discriminant functions within a single 

processing unit. It includes five components: linear and 

nonlinear weighted input aggregators, their respective 

activation functions (sigmoid in this study), and an 

assimilation function that combines the outputs. The 

GN model eliminates the need to define hidden layers 

or multiple neurons, simplifying the model design. 

 

Both the MLP and GN models used identical input 

variables, selected based on cross-correlation and 

partial correlation analyses. These inputs include: 

• Rainfall values at current and previous time steps 

(Pt, Pt−1, Pt−2) 

• Historical streamflow at LD10 (Q10t−1, Q10t−2) 

The output variable modeled by both systems is the 

streamflow at LD10 on day t (Q10t). 

 

The statistical characteristics of the input data sets used 

for model training and testing are summarized in Table 

1. 

 

Model training for the GN was also based on the 

gradient descent method, with the key difference being 

that the GN model requires significantly fewer weights 

(2n + 3 for n inputs), which reduces both the 

computational load and the required training data 

volume. 

 

A.  Generalized Neuron Model 

Traditional artificial neurons typically aggregate 

weighted inputs through summation and then apply a 

nonlinear activation function. While effective in many 

applications, this design becomes computationally 

intensive and structurally complex when modeling 

intricate, nonlinear systems—particularly due to the 

need for multiple hidden layers and extensive training 

data (Chunguang et al., 2004; Cios et al., 2004; Prete et 

al., 2004). 

 

To overcome these limitations, this study employs a 

Generalized Neuron (GN) model, which offers a 

simplified yet highly expressive alternative to 

conventional neural structures. The GN is constructed 

with five key components: 

1. Linear Discriminant Function (∑) – aggregates 

weighted inputs similar to traditional neurons. 

2. Nonlinear Discriminant Function (Π) – multiplies 

inputs, enabling nonlinear transformations. 

3. Two Independent Activation Functions – process 

outputs of the discriminant functions; in this study, 

sigmoid functions were used for both. 
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4. Assimilation Function – combines outputs from 

the linear and nonlinear pathways to generate the 

final response. 

5. Bias Terms – added to both discriminant 

components, as in standard ANN designs. 

The weighted inputs to the GN are represented as 

follows: 

 

_j ij iNetL WL X s bias= +      (5) 

biaspiXWNLNetNL iijj _×∏=          (6) 

 

Where, Xi’s are the inputs. For the (1 and   ) part of 

the GN model, NetLij is the net input to the GN, WLij’s 

are the weights and s_bias is the bias weight. NetNLij is 

the net input to the GN, WNLij’s are the weights and 

pi_bias is the bias weight for the part (Π1 and   ) of the 

GN model. The output from the discriminant portions 

(1 and Π1) is calculated using the respective activation 

functions (), which can be either a sigmoid, a Gaussian, 

a Spline, or any other mathematical function satisfying 

the conditions of being an activation function in the 

traditional ANNs employing MPANs. In this study, 

sigmoid activation functions were used to calculate the 

outputs from the components of the GN model.   
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The assimilation function  was a linear combination 

of the two outputs. The equation to calculate the overall 

output from the GN model can be represented as 

follows: 

 

1 2(1 )pkO w y w y= + −       (9) 

 

Where Opk is the overall output from the GN model; w 

is the weight corresponding to the linear discriminant 

function’s output y1; and y2 is the non- linear 

discriminant function’s output from the GN model. The 

training of the GN model is carried out in a similar 

fashion as a traditional ANN using gradient descent 

method. The optimized value of parameters, learning 

rate (η) and momentum correction factor (α) were 

found by trial and error method. The weight parameter 

w is also optimized during training so that the GN 

model consists of a total of 2n+3 weight parameters for 

n inputs. The overall structure of the GN model 

described above provides a very compact ANN model 

as compared to the traditional ANN model having 

many times more weights due to the number of hidden 

neurons involved in them. The details of training of a 

GN model are not included here and can be found in 

(Chaturvedi et al., 1999 and Chaturvedi et al., 2004). 

The generalized neural network has characteristics of 

both simple and high order neurons. The non-linearity 

present in the system is incorporated with suitable 

discriminant and activation functions in GN model. The 

proposed model has both linear and non-linear 

discriminant functions associated with sigmoid 

activation function with weight sharing. The number of 

weights in the case of a GN model is equal to twice the 

number of inputs plus two, which is very low in 

comparison to a multi-layer feed-forward ANN. The 

weights are determined through training. Hence, by 

reducing the number of unknown weights, training time 

as well as the minimum number of patterns required for 

training can be reduced. Also, there is no need to select 

the number of hidden layers and the number of hidden 

neurons. This reduces the complexity and 

dimensionality of the overall ANN model.  A schematic 

of the GN model is presented in Figure 3. The GN 

model receives inputs from external source and gives 

output to the external source like in an ANN model 

built using MPANs. The GN model differs in its 

structure that is actually responsible for capturing the 

complex input-output relationships.   

 

V. RESULTS AND DISCUSSIONS 

 

The comparative performance of the MLP and GN 

models was evaluated using standard error metrics, 

with detailed results presented in Tables 2A and 2B. 

Both models demonstrated strong predictive 

capabilities, with Nash-Sutcliffe efficiency (E) and 

Pearson correlation coefficient (R) values exceeding 

0.90 during both training and testing phases, indicating 

excellent agreement between observed and predicted 

flows. 

 

During training, the GN model achieved a lower 

Average Absolute Relative Error (AARE) than the 

MLP model, reflecting improved accuracy. Testing 
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results showed comparable AARE values for both 

models, though GN maintained a slight edge in overall 

predictive consistency. In terms of the Threshold 

Statistics (TS), the GN model outperformed the MLP 

across all thresholds, particularly at higher thresholds 

(e.g., TS50 and TS100), where a larger percentage of 

predictions fell within acceptable error margins. 

 

Training time also significantly favored the GN model. 

As shown in Table 2A, the GN architecture required 

substantially less computational time to converge 

compared to the MLP, which underscores its efficiency 

and suitability for practical applications. Despite 

having only a single neuron, the GN model delivered 

performance comparable to or better than a multi-layer 

network, highlighting its structural compactness and 

efficiency. 

 

Visual comparisons of model outputs against observed 

streamflows are presented in Figure 4. The scatter plots 

clearly show that the MLP struggled to predict higher-

magnitude flow events accurately, resulting in a 

broader scatter around the 1:1 line. In contrast, the GN 

model demonstrated a tighter clustering of predicted 

values along the ideal line, especially in the higher flow 

range—further supporting its superior modeling 

capabilities. 

 

In summary, the GN model delivered more accurate 

and consistent results, particularly in terms of training 

efficiency and its ability to capture nonlinear 

hydrological behavior. These findings suggest that GN 

offers a valuable alternative to traditional ANN 

architectures, especially when simplicity, speed, and 

reliability are critical. 

 

VI. SENSITIVITY ANALYSIS 

 

Multilayer perceptron (MLP) models, though widely 

used, are often criticized for their sensitivity to initial 

weight settings. This sensitivity stems from the 

complex error surfaces created by the multiple hidden 

layers and neurons, which result in numerous local 

optima. The back-propagation (BP) algorithm, 

typically used for training, can become trapped in these 

local minima, leading to inconsistent model 

performance. 

 

To assess this issue, a sensitivity analysis was 

conducted for both the MLP and Generalized Neuron 

(GN) models. Each model was retrained ten times using 

different randomly initialized weight vectors. For each 

run, key performance metrics—Nash-Sutcliffe 

efficiency (E), correlation coefficient (R), and average 

absolute relative error (AARE)—were computed. The 

results are summarized in Tables 3A and 3B. 

 

The GN model consistently produced better average 

performance across all metrics compared to the MLP 

model, during both training and testing phases. 

Notably, the standard deviations of the performance 

indicators for the GN model were significantly lower. 

This indicates that the GN model’s outcomes were 

more stable and less affected by the initial weight 

configuration. 

 

For the MLP model, larger standard deviations were 

observed across all metrics, reflecting high variability 

in performance depending on initial weights. This 

variability confirms the model’s susceptibility to 

getting stuck in suboptimal solutions due to its complex 

architecture. 

 

The GN model, by contrast, showed minimal variation 

across different runs, especially in AARE and threshold 

statistics (TS), where standard deviations were close to 

zero in many cases. This stability suggests that the GN 

model is more robust and reliable for practical 

applications, as it reduces the uncertainty associated 

with weight initialization and the risk of suboptimal 

convergence. 

 

In essence, the sensitivity analysis underscores a key 

advantage of the GN architecture: its reduced 

dependence on initial conditions, which enhances 

model reliability and simplifies the training process. 

This makes it particularly suitable for modeling 

complex physical systems where data availability and 

computational efficiency are critical concerns. 

 

VII. SUMMARY AND CONCLUSIONS 

 

This study introduced and evaluated the Generalized 

Neuron (GN) model as an alternative to conventional 

multilayer perceptron (MLP) architectures for 

simulating the complex and nonlinear rainfall-runoff 

processes inherent in hydrological systems. Using daily 
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rainfall and streamflow data from the Kentucky River 

Basin, both GN and MLP models were developed and 

rigorously tested. The GN model demonstrated several 

advantages over the MLP framework. It produced 

higher or comparable accuracy across standard 

performance metrics, required significantly less 

training time, and achieved greater robustness to initial 

weight conditions. Unlike the MLP, which involves 

selecting the number of hidden layers and neurons—a 

process typically guided by trial and error—the GN 

model’s compact structure simplifies architecture 

design and reduces computational effort. Furthermore, 

the GN model showed remarkable insensitivity to the 

choice of initial weights. Sensitivity analysis confirmed 

that the GN model’s performance remained stable 

across different initialization scenarios, a critical 

strength when modeling nonlinear systems where 

traditional ANNs may yield widely varying outcomes 

due to local minima in the error surface. 

 

These findings underscore the GN model’s potential as 

a reliable and efficient tool for hydrological modeling. 

Its compactness, reduced training requirements, and 

consistent performance make it a strong candidate for 

broader application in water resource studies. The 

results also suggest that continued exploration of novel 

neuron architectures, such as the GN, could lead to 

substantial improvements in the modeling of complex 

physical systems. 

 

Future work should aim to validate the GN model 

across additional watersheds and under varying 

climatic and hydrological conditions. Additionally, 

integrating the GN model with advanced training 

algorithms beyond standard back-propagation may 

further enhance its performance and applicability in 

real-world hydrological forecasting and management 

scenarios.   
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TABLE 1: Kentucky River Data Statistics 

Model Inputs Rainfall        Flow  

                              (mm)          (m3/s) 

Average  

Training            3.24         149.94 

Testing            3.16        144.78 

Maximum 

Training           77.40       2528.69 

Testing            81.99       2806.19 

Minimum 

Training            0.00        3.60 

Testing             0.00        3.28 

Std. Deviation 

Training             6.20        243.30 

Testing            6.18         232.81 

Skewness 

Training             3.49         3.67 

Testing             3.94         4.00 

 

Table 2A: Error Statistics of NS Models 

Model    E        R       AARE   Execution Time 

During Training  

MLP     0.904    0.954    32.8     00:16:55.21 

GN        0.920    0.959    29.7     00:01:52.68 

 

During Testing 

MLP      0.823     0.948    27.7             

GN      0.916     0.957   29.8     

Table 2B: Threshold Error Statistics of NS Models 

Model   TS1     TS25     TS50     TS100   

During Training  

MLP       1.9       38.4       52.4       64.7     

GN          1.8       46.1       67.6       82.5    

 

During Testing 

MLP       1.2       36.4      63.9       74.7         

GNC       1.9       46.9      67.5       81.2  

 

Table 3A: Sensitivity Analyses Results with respect to 

Initial Solutions 

Model       E               R              AARE   

Average During Training 

MLP          0.905         0.952 28.5   

GN             0.921         0.960 29.8  

              

Average During Testing 

MLP     0.895         0.946  28.3  

GN     0.915         0.957  29.8  

               

Standard Deviation During Training 

MLP         0.025        0.013 6.016 

GN    0.001        0.001 0.295 

 

Standard Deviation During Testing 

MLP    0.022        0.012 6.548 

GN    0.002        0.001 0.345 

 

Table 3B: Sensitivity Analyses Results with respect to 

Initial Solutions 

Model    TS1       TS25      TS50      TS100     

Average During Training 

MLP    2.0   43.5        64.0        75.4  

GN    1.8   48.2        70.9        84.2  

 

Average During Testing 

MLP    2.0 45.8   64.6   75.3    

GN    1.9 48.7   70.3   83.5 

  

Standard Deviation During Training 

MLP   0.98 10.40   9.55      10.87 

GN   0.08 1.49   2.23   0.74 

 

Standard Deviation During Testing 

MLP  0.73 9.07  7.79        9.45 

GN  0.10 1.61  1.90        1.37 
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Figure 1.  Kentucky River Basin 

 
Figure 2: MLP Model 

 

 
Figure 3: Generalized Neuron Model 

 
(a) MLP Model 

 
(b) GN Model 

Figure 4: Scatter Plot of Neural System Models during 

Testing 


