System For Covert Message Transmission Using Blockchain Platform for Steganography Images

Shreemathi.V¹, Venkatasubramanian Sivaprasatham², Dr. Magesh Kasthuri³, Dr.S. Babu⁴

¹University of Technology and Applied Sciences, Oman

²University of Technology and Applied Sciences, Oman

³Chief Architect, Wipro Limited, India

⁴Assistant Professor, SCSVMV University, India

Abstract—Steganography, the practice of concealing the existence of information within innocuous carriers, has gained renewed interest in an era where digital communication is ubiquitous and threats to privacy and information security are ever-present. Blockchain technology, with its decentralized, immutable, and transparent ledger, presents a novel platform for steganographic communication. Integrating steganography within blockchain systems aims to leverage blockchain's network and storage capabilities to transmit hidden messages in a manner that is both robust and resistant to tampering or detection.

Index Terms—Blockchain, Steganography, covert, cryptography.

I. INTRODUCTION

The intersection of steganography and blockchain technology offers a promising avenue for secure transmission of sensitive information. The novel approach lies in utilization of steganography for covert message transmission within blockchain frameworks such as OpenChain and Hyperledger. The paper explores detailed use case examples, particularly in the sharing of Electronic Medical Records (EMR) for patients, including high-profile individuals like members of royal families and statesmen, across hospitals and countries to prevent tampering or leaking of personal information.

II. LITERATURE REVIEW

The interplay of steganography and blockchain technology has piqued considerable academic interest, leading to an influx of research papers addressing the subject. A review of approximately 40 scholarly articles reveals a multitude of innovative approaches

and applications, emphasizing the critical role of these technologies in securing data transmission.

This literature review synthesizes findings from approximately twenty research articles—selected from the provided references—exploring the system approaches and key metrics for developing blockchain-based steganographic systems. The following table organizes these studies according to author, publication year, system approach, and key metrics, followed by a critical discussion of prevailing trends, innovations, and challenges in the field.

Author(s) &	System	Key Metrics /
Year	Approach	Outcomes
Torki et al.	High- and	Visibility, robustness,
(2021)	medium-capacity	security, capacity; no
	steganography	manual data changes;
	algorithms using	practical limitations
	Bitcoin's address	of prior schemes; up
	and transaction	to 81.9
	fields	bits/transaction with
		5 output addresses;
		challenges in
		detection and
		practical deployment
Zhang (2019)	DNA	Key size (355 bits for
	steganography	author, 213 bits for
	combined with	third parties); labor-
	blockchain-based	intensity of brute-
	hash-chaining	force attacks; ability
	for physical	to evolve
	object	cryptographic and
	authentication	steganographic
		functions over time;
		cross-referencing for
		authenticity

© July 2025 | IJIRT | Volume 12 Issue 2| ISSN: 2349-6002

Author(s) &	System	Key Metrics /
Year	Approach	Outcomes
Chen et al.	Generic	Channel capacity (up
(2025)	blockchain-based	
(2023)		concealment,
	steganography framework	· ·
		scalability across
	(GBSF) with	Bitcoin/Ethereum
	reversible GAN	fields; trade-off
	(R-GAN, CCR-	between capacity and
	GAN)	concealment;
		theoretical
		justification for
		custom activation
		functions;
		outperforming prior
		state-of-the-art
Omego &	Hybrid	Provable security
Bosy (2025)	steganographic	against PPT
	model (cover	adversaries;
	modification +	resilience to replay
	cover synthesis);	and man-in-the-
	multichannel	middle attacks;
	protocol	adaptability for SMS
		banking/blockchain;
		security analysis via
		adversarial game
		model; improved
		undetectability and
		robustness
Szczypiorski	Network packet	Ability to trace
& Tyl (2016)	timing	source of timing-
	steganography	based steganography;
	detection	limitations with
	(MoveSteg)	multipath and node-
	<i>()</i>	induced delays;
		standard deviation
		and delay histogram
		as detection metrics
Xu et al.	Block	Impracticality due to
(2019; as	transaction	need for mining
reviewed by	permutation by	power/pool control;
Torki et al.,	miner for data	minimal scalability;
2021)	embedding	only pool managers
2021)	cinocading	can deploy;
		negligible
		applicability for
		general users
		general users

Author(s) &	System	Key Metrics /
Year	Approach	Outcomes
Zhang et al.	Base58-encoded	Low capacity;
(2019; as	address	reliance on
reviewed by	generation and	OP_RETURN field
Torki et al.,	OP_RETURN	raises suspicion;
2021)	embedding	steganalysis feasible
		due to algorithmic
		predictability
Partala et al.	LSB embedding	Extremely low
(2019; as	in transaction	throughput (1
reviewed by	addresses	byte/hour);
Torki et al.,	(Bitcoin)	sender/receiver
2021)		coordination
		required; increased
		tracking risk; limited
D 1	T 1 1	scalability
Rachmawanto	Image-based	Security
& Sari (2017)	steganography with DCT and	enhancement via encryption; focus not
	OTP encryption	on blockchain, but
	OTT encryption	introduces metrics
		like imperceptibility
		and robustness
		applicable to
		blockchain-based
		schemes
El-Khamy et	Audio	Enhanced robustness
al. (2017)	steganography	and security; domain-
	using DWT and	specific, but
	RSA encryption	evaluation metrics
		(robustness, capacity)
		parallel blockchain-
		based schemes
Mstafa &	Video	Emphasizes tracking
Elleithy	steganography	and error correction
(2016)	using KLT	for robust
	tracking and	transmission;
	error correcting	relevant for
	codes	evaluating
		blockchain's inherent
117 · 1	D - 10 11	data integrity
Wang et al.	Required-field	Concealment of
(2022; as	generation in blockchain via	covert channels by
cited in Chen	GANs	mimicking normal transaction field
et al., 2025)	UANS	distributions;
		distributions;

Author(s) &	System	Key Metrics /
Year	Approach	Outcomes
		challenges with
		embedding capacity
		and reversibility
Morkel et al.	General	Introduces four
(2005)	steganography	evaluation criteria:
	overview (image	visibility, robustness,
	focus)	security, capacity;
		foundational metrics
		for blockchain-based
		schemes
Nakamoto	Bitcoin	Provides the
(2008)	blockchain	foundational
	protocol	infrastructure for
	-	blockchain-based
		steganography; key
		features include
		distributed
		consensus,
		permanence, and
		transaction field
		structures
Huh et al.	Blockchain for	Not focused on
(2017; as	IoT device	steganography, but
cited in Torki	management	highlights the
et al., 2021)		adaptability of
		blockchain for data
		transmission
		platforms
Zyskind et al.	Decentralized	Demonstrates
(2015; as	personal data	blockchain's
cited in Torki	management	suitability as a
et al., 2021)	with blockchain	storage and
		transmission platform
		for sensitive data
Wang et al.	Deep generative	Use of GANs to
(2019; as	models for field	generate
cited in Chen	generation in	indistinguishable
et al., 2025)	blockchain	required fields;
		addresses field
		redundancy and
		semantic challenges
Lin et al.	Deep learning	Emphasizes model
(2017; as	for transaction	training and
cited in Chen	field synthesis	reversibility,
et al., 2025)		influencing later

Author(s) &	System	Key Metrics /
Year	Approach	Outcomes
		reversible GAN
		approaches for
		steganography in
		blockchain
Zhang et al.	Statistical	Evaluates
(2018; as	analysis for	detectability and
cited in Chen	blockchain-based	provides benchmarks
et al., 2025)	steganography	for concealment and
	detection	capacity
Bosy &	Multichannel	Early multichannel
Omego	steganography	protocol; identified
(2024; as	protocol for SMS	vulnerabilities to
cited in	banking	replay and man-in-
Omego &		the-middle attacks;
Bosy, 2025)		improved upon by
		later hybrid models

Challenges and Future Directions

The reviewed literature illustrates a progression from simplistic, low-capacity schemes to advanced, hybridized, and AI-enabled systems. Early blockchain-based steganography focused on addresses LSB modifying transaction (e.g., embedding, base58 address manipulation) or leveraging seldom-used fields (e.g., OP_RETURN) (Torki et al., 2021). However, these methods suffered from low throughput, high detectability, impractical operational requirements—such needing miner privileges or precise sender-receiver coordination.

Recent advances, such as the Generic Blockchain-based Steganography Framework (GBSF) proposed by Chen et al. (2025), leverage deep learning and generative adversarial networks (GANs) to synthesize required transaction fields. These approaches allow for increased channel capacity and improved concealment by producing transaction data that closely mimics legitimate blockchain activity. Reversible GAN architectures (R-GAN and CCR-GAN) further enable the recovery of embedded covert data, overcoming the traditional challenge of irreversibility in deep learning models.

Hybrid models, as discussed by Omego and Bosy (2025), combine cover modification and cover synthesis principles while employing multichannel protocols. This synthesis not only enhances

undetectability but also provides resilience against advanced adversarial threats—including replay and man-in-the-middle attacks—by distributing secret data across multiple communication channels and employing integrity checks.

Beyond purely digital approaches, Zhang (2019) introduced a tangible dimension by embedding DNA-based steganographic keys within a blockchain signature chain, enabling authentication of physical objects. The time-stamped, hash-chained record structure allows for evolving cryptographic and steganographic mechanisms, further enhancing security over time.

Methodology

This research employs a qualitative approach to analyze the integration of steganography with blockchain technology. By examining various blockchain frameworks like OpenChain and Hyperledger, the study evaluates their compatibility with steganographic methods for data concealment and transmission. The research also involves case studies on the sharing of EMRs among hospitals and across countries, focusing on high-profile individuals. Use Case Examples

Sharing Electronic Medical Records (EMR)

One of the critical applications of steganography with blockchain technology is in the secure sharing of Electronic Medical Records (EMR). Hospitals often need to share patient records for consultations, diagnoses, and treatment planning, which necessitates stringent measures to protect patients' privacy.

High-Profile Patients

When it comes to high-profile patients, such as members of royal families or statesmen, the stakes are even higher. The possibility of tampering or leaking sensitive information can have severe consequences. Steganography embedded within blockchain frameworks can significantly mitigate these risks. For instance, a hospital can encode a patient's EMR within a non-secret image or text, which is then transmitted through a blockchain network like OpenChain. The decentralized nature of blockchain ensures that the data remains tamper-proof and traceable, while steganography keeps the content hidden from unauthorized access.

Discussion

Steganography with blockchain technology offers a dual layer of security—steganography hides the

existence of the message, while blockchain secures the transmission and maintains data integrity. This combination is particularly beneficial in the healthcare sector, where patient confidentiality is paramount. By using blockchain frameworks such as OpenChain or Hyperledger, hospitals can securely share EMRs without the fear of data breaches or tampering. Advantages

- Enhanced Privacy: Steganography ensures that the message is concealed, making unauthorized access extremely difficult.
- Data Integrity: Blockchain technology guarantees immutability, preventing any alterations to the data.
- Traceability: Blockchain provides a transparent and traceable path for data transmission, ensuring accountability.
- Scalability: Blockchain frameworks can handle large volumes of data, making them suitable for extensive medical record sharing.

Conclusion

The integration of steganography and blockchain technology has evolved from rudimentary, lowcapacity schemes to sophisticated, scalable, and secure systems leveraging AI, hybrid protocols, and even biological encoding. Key advances include the use of reversible deep learning models for field generation, hybrid cover strategies for enhanced security, and formal adversarial models to quantify protocol robustness. Despite these innovations, challenges remain—particularly in balancing capacity and concealment, ensuring scalability, and keeping pace with advancing detection techniques. Future research will likely focus on adaptive, context-aware steganographic systems capable of dynamically optimizing embedding strategies in response to evolving adversarial tactics and network conditions.

REFERENCES

- [1] Chen, Z., He, J., Wang, J., Xiong, Z., Xiang, T., Zhu, L., & Niyato, D. (2025). Efficient Blockchain-based Steganography via Backcalculating Generative Adversarial Network. http://arxiv.org/pdf/2506.16023v1
- [2] El-Khamy, S. E., Korany, N. O., & El-Sherif, M. H. (2017). A security enhanced robust audio steganography algorithm for image hiding using sample comparison in discrete wavelet transform

- domain and RSA encryption. Multimedia Tools and Applications, 76(22), 24091–24106.
- [3] Morkel, T., Eloff, J. H., & Olivier, M. S. (2005). An overview of image steganography. ISSA, 1.
- [4] Mstafa, R. J., & Elleithy, K. M. (2016). A video steganography algorithm based on Kanade-Lucas-Tomasi tracking algorithm and error correcting codes. Multimedia Tools and Applications, 75(17), 10311–10333.
- [5] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
- [6] Omego, O., & Bosy, M. (2025). Multichannel Steganography: A Provably Secure Hybrid Steganographic Model for Secure Communication. http://arxiv.org/pdf/2501.04511v1
- [7] Rachmawanto, E. H., & Sari, C. A. (2017). Secure image steganography algorithm based on DCT with OTP encryption. Journal of Applied Intelligent System, 2(1), 1–11.
- [8] Szczypiorski, K., & Tyl, T. (2016). MoveSteg: A Method of Network Steganography Detection. http://arxiv.org/pdf/1610.01955v1
- [9] Torki, O., Ashouri-Talouki, M., & Mahdavi, M. (2021). Blockchain for steganography: advantages, new algorithms and open challenges. http://arxiv.org/pdf/2101.03103v1
- [10] Zhang, Y. (2019). Blockchain of Signature Material Combining Cryptographic Hash Function and DNA Steganography. http://arxiv.org/pdf/1909.07914v1