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Abstract—The proliferation of data-driven business 

models has led to significant privacy and intellectual 

property (IP) issues, especially for early-stage startups 

relying on user data and new sources of insights. 

Privacy-preserving technologies (PPTs) such as 

federated learning (FL), differential privacy (DP), 

homo- morphic encryption (HE), and secure multi-

party computation (SMPC), enable technical processes 

for data utilization while preserving the individual’s 

privacy and IP. The purpose of this paper is to examine 

the current state of PPTs and provide a conceptual 

framework for their role in startup settings. The paper 

draws on the latest literature on the topic and shows 

how FL and DP allow for collaborative training of 

models between organizations without the sharing of 

centralized data [1], [6], how HE enables computations 

to be performed on encrypted data [4], [13], and the 

means in which SMPC can build analytics without 

sharing the private inputs [16], [18]. We then assessed 

their applications in startup ecosystems and IP 

management with situations such as collaborative 

product development and decentralized data 

marketplaces where FL or HE could be leveraged to 

extract value from mutual insights without sharing 

confidential data or trade secrets [8], [20]. Finally, we 

researched the legal and economic motivations for 

adopting the technology such as fulfillment of GDPR 

and CCPA requirements which contributed to adoption 

by emerging companies [7], [12]. We illustrate how 

PPTs enable the opportunity for users to build trust and 

have more regulatory alignment to committing to 

privacy- centric systems [14], [15]. Practical cases, such 

as healthcare analytics or monetizing genomic data 

demonstrate the tradeoffs between privacy, utility, and 

computational costs [5], [19]. Finally, we note the 

remaining challenges (e.g., technical scalability, 

regulatory ambiguity, and economic disincentives), and 

outline promising future directions (e.g., regulatory 

standardization, ethical design, and best practices for 

specific industries) [2], [3], [10]. Overall, we show how 

PPTs can enable innovation while reinforcing privacy 

protection for both customers and the firms’ intellectual 

property. 

 

IndexT e r m s—Privacy-preserving technologies, 

federated learning, differential privacy, homomorphic 

encryption, secure computation, intellectual property 

rights, entrepreneurship. 

 

I. INTRODUCTION 

 

The digital economy is built on data, a key resource 

for in- novation and competitive advantage. 

Particularly for startups, 

user data is often collected or acquired in many 

situations to train AI models, add value and insights 

to existing services, and create new products. At the 

same time, individual people and regulators require 

privacy protections, and companies want to protect 

their proprietary information (e.g., trade secrets, 

algorithms). This presents a dilemma: how can 

entrepreneurs continue to extract the most value from 

their data, while minimizing privacy violations and 

revealing their proprietary IP? PPTs offer to help 

solve this problem [7]. 

PPTs (privacy-enhancing technologies) allow 

machine learn- ing or analytics to be done on sensitive 

data without displaying that data. Examples of these 

technologies include federated learning (which 

enables models to be trained on a variety of 

devices or organizations without concentrating raw 

data), differential privacy (which allows information 

to be hidden by adding noise to sensitivity outputs 

so that individual data is not reverse-engineered), 

homomorphic encryption (which enables 

computations on encrypted data), and secure multi- 

party computation (which allows the calculation of a 

function from private inputs) [2]. 

These tools may enable newer startups to work 
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together, or make use of local data without disclosing 

it, and some (such as federated learning) hold promise 

for collaborating on research or developing products: 

Berlin-based startup Apheris utilizes FL to enable 

chemical manufacturers to train federated models on 

commercially sensitive data, while keeping the data 

hidden from competitors [20]. 

This report aims to conduct a survey of existing 

PPTs, explore their relevance to entrepreneurship and 

intellectual property rights (IPRs), and propose some 

frameworks for their use in significant startup 

applications. We will summarize research related to 

PPTs, and to privacy in AI. In addition to 

synthesizing the findings from these studies, we 

will also look at the legal/economic considerations 

for the startup sector of various uses of data 

including issues (e.g., how regulation on data 

privacy, models to leverage data, etc.) have impli- 

cations for startup firms. We also will outline 

hypothetical use cases and methodological issues for 

implementing PPTs into entrepreneurial endeavors. 

In this regard, we emphasize both technical 

possibilities and social/legal implications, so we can 

provide a holistic view of how ventures can ethically 

harness PPTs to protect user privacy, and their own 

IP, while conducting data-driven innovation [12]. 

 

II. BACKGROUND AND RELATED WORK 

 

A. Privacy-Preserving Technologies 

Modern PPTs can be categorized based on their 

techni- cal approach. Federated Learning (FL) is an 

example of a distributed machine learning approach 

where each participant (e.g., company or device) 

trains a local model on their private data, and each 

participant shares only the model updates (gradients) 

to the data center for aggregation. This keeps private 

data local and at-risk of privacy leakage low [20]. 

For example, Ju et al. demonstrate an FL-based 

‘federated prediction model’ for stroke risk that 

multiple hospitals can train as a group model without 

sharing patient records. They demonstrated that the 

‘federated’ model improved predictive accuracy by 

10%–20% over the models trained by individual 

hospitals and did so while keeping all sensitive data 

in-house [1]. 

The Apheris platform also verifies that federated 

learning allows for AI training across entities 

‘without the data ever leaving the control of the data 

owner,’ maintaining both privacy as well as IP [20]. 

Differential Privacy (DP) is an established statistical 

method that limits the potential privacy loss when a 

research team re- leases aggregate information. A 

differentially private algorithm will act via adding 

some calibrated random noise to data so that an 

observer cannot know whether any given individual’s 

data was used to produce the output. This could be 

applied during learning (for example, adding noise to 

gradients), or query answering. Wang et al. present 

FinPrivacy, a system detailing how research teams 

that include original fingerprint data could apply low-

rank approximation and Laplace noise to protect their 

fingerprint data, while returning a quality match 

under ϵ-differential privacy [7]. 

This example represents one of the trade-offs 

involved in 

Differential Privacy, maintaining privacy guarantees 

at the expense of utility in some contexts. For 

example, in en- trepreneurial contexts, some potential 

utilities of DP may allow startups to publish limited 

analytics/pivot tables or market their service while 

still maintaining compliance to privacy regulations, 

e.g., GDPR, and without revealing the underlying 

data of individuals [6]. 

Homomorphic Encryption (HE) refers to the ability to 

perform 

arbitrary functions/computations on encrypted data. 

In this approach, data owners encrypt their original 

data and send ciphertext data to a server to perform 

some computations, i.e., the server receives encrypted 

data as inputs to a neural network inference. The 

server returns a corresponding ciphertext result to the 

client (the same output that would have been 

returned if plaintext data had been used), while 

guaranteeing no under- lying plain text data was 

revealed [4]. 

The overarching premise aims to safeguard user data, 

but conversely, the model IP may also be preserved 

due to the unpublished model when it was observed 

during diffusion. Jin et al. suggest FedML-HE, an FL 

architecture that enables the use of HE to do a secure 

federated model update aggregation; with these 

methods significantly improving computation per- 

formance (up to a 40× reduction in overhead when 

applied only to the sensitive parameters) [4]. 

Secure Multi-Party Computation (SMPC) is a general 

crypto- graphic method to allow multiple entities to 

jointly compute a function without revealing their 
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inputs. For example, two companies could jointly 

analyze total customer behaviour without having to 

disclose to each other who their respective customers 

are. SMPC gives the opportunity to compute the joint 

function based on the total data collaboratively while 

providing complete privacy of the data [16]. 

There are other PPTs which are being investigated, 

including trusted execution environments, zero-

knowledge proofs (ZKP), and private set intersection. 

The aforementioned example of combining FL and 

ZKP are examples of topics that our community is 

actively researching. The work done by Jin et al. 

[5], which allows confirmation for updates to clients 

without having access to the update data, is another 

example of merging FL and ZKP. 

 

B. Privacy in Machine Learning and IoT 

A growing body of research has identified scopes of 

overlap between PPTs and other forms of ML. 

Rashid and Yasin have organized an extensive 

taxonomy of privacy-preserving prac- tices in deep 

learning through reviewing, among others, FL, DP, 

HE, collaborative protocols, and the modality of 

sensitive data one might have (such as medical or 

textual/globally), which work and can be used [18]. 

Regarding IoT health applications, the paper by 

Vijayakumar et al. presents the notion of a privacy-

preserving federated learning (FL) system in which 

patients’ data are collected from edge devices and 

aggregated using homomorphic encryption so that no 

raw medical data is transmitted from the local devices 

[17]. 

Work in finance and biometrics has similar results, 

empha- sizing that using DP, HE, or SMPC means 

data on private 

financial or biometric data can be used for model 

training and prediction [8]. 

 

C. Economic and Legal Context 

The technological adoption of privacy-preserving 

techniques (PPTs) is also influenced by economics 

and legal factors. Data protection legislation, such as 

the EU’s General Data Protec- tion Regulation 

(GDPR) and California’s Consumer Privacy Rights 

Act (CPRA), has prompted startups and 

enterprises to scrutinize how they manage their data. 

Martin et al. [7] found that GDPR restricted startup 

innovation and incentivised innovation. For some 

firms, compliance experience was a hindrance as 

compliance costs were an impediment, while other 

firms leveraged privacy as their competitive 

advantage. Kantarcioglu et al. also develop a game-

theoretic model on when firms are willing to invest in 

privacy-preserving tech- nology (PPTs), concluding 

that high valuation of privacy by customers and 

substantial regulatory sanctions make investing in 

PPTs beneficial [12]. 

While personal data is not conventionally 

recognized as in- 

tellectual property, startups often view user data 

and model parameters as proprietary and assert 

ownership with con- tracts and digital rights [10]. 

Starting in regards to protecting consumer privacy 

and business-valued IP assets, encryption, access 

control, and anonymization will be fundamental [10]. 

Secondly, since data is commoditized, startups are 

distilling and monetizing data-driven services with 

privacy-compliant methods like encrypted analytics 

or even federated analytics [14]. 

 

III. METHODOLOGY 

 

A. Privacy-Preserving Data Collaboration Model 

We proposed a conceptual model for startup 

contexts, to work together on data analytics or a 

machine learning (ML) model collectively, 

maintaining user privacy, along with proprietary 

intellectual property (IP). The framework allows for 

collaborative capabilities while not sharing raw data, 

or exposed proprietary algorithms. 

1) Data Governance and Preprocessing: 

Collectively, ev- eryone in the collaboration will 

likely categorize data by sensitivity and use cases, 

e.g., user records, business-value attributes, 

proprietary features of an ML model. Preprocessing 

of data includes processes for managing consent of 

users, where applicable, anonymization of data where 

needed, and the applying of privacy methods, like 

local differential privacy or even encryption [6]. 

2) Local Enclaves: Data is still primarily isolated 

in local, safe environments: on-device or institutional 

infrastructure. On the structured data (e.g., 

categorical or numerical data) side, the data is 

encrypted, or a local DP (Differential Privacy) 

mechanism is used. On the unstructured data (e.g., 

images or textual data) side, one’s ability to create 

synthetic data, or employ obfuscation techniques, 

will provide protection under expectations of privacy 
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[13]. 

3) Collaborative Protocols: The framework 

employs several collaborative protocols. First, 

Federated Learning involves each participant 

initializing a common model architecture and 

completing local learning on decentralized data at 

their location. Rather than sending the data itself, 

they share only updates (as noisy updates) with the 

central aggregator [1], [4]. Second, homomorphic 

aggregation allows the aggregator to combine the 

updates with Homomorphic Encryption (HE). Since 

all updates are encrypted end-to-end, no participant, 

including the aggregator, will be able to determine the 

original inputs from the gradients shared across [4]. 

Third, differential privacy is achieved by participants 

or the aggregator creating differential privacy from 

the model updates by adding cali- brated noise to 

the gradients or the weights. This provides a 

quantitative measure of privacy (ϵ-differentially 

privacy) to ensure that no single record or 

observation informs the model output [6]. Fourth, 

iterated rounds involve repeating the federated 

averaging process for several rounds of com- 

munication. As noted by Chen et al., this process may 

attain model performance approximating the model 

developed from centralized training (i.e., 97.3% vs. 

98.2% accuracy) while maintaining data locality and 

in accordance with regulatory requirements [6]. 

4) Secure Computation: The structure supports ad-hoc 

privacy- 

preserving analytics in accordance with several 

protocols and services. First, Secure Multi-party 

Computation (SMPC) pro- tocols allow for joint 

analytics or predictions to be accom- plished over 

distributed data, while ensuring each participant 

maintains control of their private input [16]. Second, 

Trusted Computing Environments (TEE) provide a 

secure and isolated space in hardware for processing 

encrypted inputs, which is useful for high 

throughput inference where software alone is not 

effective [15]. Third, Zero-Knowledge Proofs (ZKP) 

allow entities to prove that model updates and 

steps taken in computation were correct without 

revealing the underlying data itself. Jin et al. 

successfully incorporated ZKP into federated 

learning for additional verifiability in adversarial 

spaces [5]. 

5) IP Controls: For startups that use privacy-

preserving tech- 

nologies (PPTs) to help secure their proprietary 

algorithms, trained models, and sensitive datasets, 

intellectual property (IP) protection is essential. The 

recommended model involves both legal and 

technical means of protecting IP rights while 

creating an environment for collaborative data 

analytics. First, technical means to protect IP involve 

storing the final trained model, which has IP value, in 

secure locations, i.e., in Trusted Execution 

Environments (TEEs) or private cloud environ- 

ments. The startup uses homomorphic encryption 

(HE) on the ‘weights’ defined in the model during 

inference for prediction so that no one else knows 

the weights or the architecture of the model. This 

will prevent anyone from accessing the trained 

model, by preventing representation of the model 

from being visible and preventing reverse 

engineering as they communicate through encrypted 

standard queries available to the model [4], [13]. For 

example, a startup selling Machine Learning as a 

Service (MLaaS) can accept user queries that are 

encrypted to obscure its model parameters in 

accordance with the principles of trade secret 

protection as discussed in [13]. Second, legal IP 

frameworks require collaborators to execute 

comprehensive legal agreements that clearly outline 

owner- ship, rights of use, and licensing 

arrangements for models or insights created within a 

collaboration. The legal framework is based on 

intellectual property or IP law, including patent law 

(e.g., any new algorithms), copyright law (e.g., any 

software application of the algorithms), and trade 

secret law (e.g., the model architecture and 

proprietary data sets) [10]. In the US, see the U.S. 

Patent Act (35 U.S.C.), and in the EU reference 

European Union’s Directive on Trade Secrets 

(2016/943). The legal agreements facilitate clear 

clarified ownership of IP in cooperative or 

collaborative environments. Further, emerging 

startups may have NDAs (non-disclosure agreements) 

in place to protect any proprietary information shared 

in the context of treating at arms-length in terms of 

federated learning (FL) or secure multi-party 

computations (SMPC) [10]. Third, IP rights in data 

note that personal data does not typically conform 

to a legal definition of IP. Nonetheless, startups in 

this space do orient curated datasets (typically based 

on personal data) as proprietary assets. The 

framework protects IP rights associated with data 
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through monitoring access and use permissions 

and then through encryption and anonymization 

during FL, while complying with the provisions of 

the World Intellectual Property Organization 

(WIPO), who recognize some forms of data as a 

legitimate form of IP where the ownership and 

rights associated with intra-data any kind of 

contractual protection [20]. Moreover, new legal 

discussion around quasi- IP rights for personal data 

from the World Intellectual Property Organization 

(WIPO) may permit individuals to license or 

monetize their data and would further establish PPTs 

in secure data marketplaces [10]. 

6) Data Monetization: If monetization was an 

organizational 

goal, the framework permits utilization for 

decentralized data marketplaces. First, smart contract 

basis allows data providers and consumers to interact 

using contracts on a blockchain (similarly to the 

agreements in the previous section). Any 

transactional agreement (e.g., for a service for 

analytics) can be supported and are all auditable and 

verifiable while actual data remains off-chain and 

private [16]. Second, incentivized privacy sharing 

mirrors how Nebula genomics enables the user to 

retain ownership of the user’s data while permitting 

en- crypted access for the computation. Incentives can 

be provided to providers (e.g., tokens, revenue share) 

without knowledge of the identity of the user [19]. 

 

B. Experimental Design 

To demonstrate the feasibility of the framework, the 

ex- periment should be structured as follows: 1) Data 

Partition: Suppose that there is a consortium of n 

startups that each hold a different part of user data. 

The centralized baseline model is trained on the 

integrated dataset. Other startups ran FL like vanilla 

FL or FL that uses a specific attribute of privacy- 

preserving technologies (PPTs). 

2) Privacy Budget: Each participant who applies 

differential privacy (DP) method specifies a 

privacy budget of ϵ = 1.0—very strong protection 

setting. Noise adds to the model gradients (updates) 

during FL aggregation [6]. 

3) Summary of Performance Evaluation: There are 

several things to compare. This includes model 

accuracy, training time, communication cost, and 

convergence time. These data are collected for three 

configurations—Intellectual Property (IP) Protection: 

The objective is to understand the informa- tion 

leakage of the model parameters across the different 

approaches. In the HE FL with DP approach, the 

aggregator will not ever see the decrypted gradients, 

so there is zero exposure to proprietary updates [4]. 

4) Economic Model: Ultimately, a cost-benefit 

analysis seeks to estimate the monetary impact of 

employing privacy- preserving technologies (PPTs). 

Generally, the costs are in- frastructure 

implementation (e.g., homomorphic encryption (HE) 

computations), service pricing premiums for 

protecting privacy, and earnings from data-sharing 

business models or federated monetization. Available 

preliminary estimates from previous work suggest the 

possible integration of differential privacy (DP) may 

diminish model performance by a small 

amount (≈ 0.9%) when compared to traditional 

centralized 

learning, as indicated in Chen et al. [6]. While HE 

costs are significant due to increased computation 

and communication load, they ensure compliance 

with regulations and protect user and business-

specific privacy [4]. As demonstrated in Nebula’s case 

study, encrypted query models may allow for 

monetization without degrading data ownership, or 

create business models to monetize data without 

actual data ownership [19]. 

 

IV. RESULTS AND DISCUSSION 

 

From our conceptual framework, startups can achieve 

good utility-like outcomes while preserving privacy 

and intellectual property (IP). 

Tradeoffs Between Utility & Privacy: Similar to 

previous work, there will be a performance tradeoff 

as we first implement privacy-preserving 

technologies (PPTs) in federated learning (FL) 

applications. For instance, Chen et al., studying 

federated learning (FL) systems using differential 

privacy (DP) and homomorphic encryption (HE) for 

data privacy, achieved a 97.3% accuracy federated 

learning (FL) system compared to a centralized 

training FL system accuracy of 98.2% on the MNIST 

dataset, there was a very small performance reduction 

(≈ 0.9%) opted into a much larger 

performance/privacy advan- 

tage [6]. Additionally, Ju et al. recognized that 

collaborative stroke prediction models that trained 

across hospitals using FL increased performance by 
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10–20% compared to a model trained with data of 

isolated hospitals in several hospital con- texts [1]. 

Our different mixture hybrid learning FL structure 

should still establish performance that would be 

comparable to the centralized models with 

understood overhead costs for computation and noise 

added for differential privacy. Jin et al. also 

demonstrated that limited use of HE within their 

FedML- HE system decreased computing overhead 

when encrypting 

and established reduced computing overhead annually 

between 10× and 40× depending on model 

architecture, which made HE-augmented FL 

profound and relatable [4]. 

Privacy Guarantees: Incorporating formal privacy 

guarantees represents a strong layer of data 

protection. One recommen- dation when using ϵ = 

1.0 for DP and adding Gaussian noise to model 

updates is to lower the probability of successfully 

inferring membership or re-identifying records [6]. 

For exam- ple, although an adversary could again 

gain access to model updates, the added noise would 

obscure individual contribu- tions and improve 

secrecy if model changes are intercepted. Because 

HE encryption is employed, the aggregator or other 

users also cannot see the raw gradients or data, as all 

updates are encrypted end-to-end during the 

aggregation process [6]. Overall, these two forms of 

protection can comply with data protection 

requirements while sustaining an analytical product. 

Communication and Computation Costs: PPTs incur 

compu- tational and bandwidth overheads. 

Homomorphic operations are slower than similar 

plaintext operations, and bandwidth costs are 

incurred by sending encrypted updates. Jin et al. 

have benchmarked and achieved ∼ 10th speedups on 

ResNet and about 40th speedups on BERT with 

optimization for HE in FL—but the absolute cost of 

decentralized HE FL is still higher than plaintext FL 

[4]. New startups who deploy such systems should 

expect to pay for extra compute, for instance when 

using cloud GPU instances, and allocate longer time 

for training. Good engineering design choices, such 

as only encrypting parts of the model which contain 

sensitive information, can help minimize some of 

these costs while still meeting security requirements. 

Model and Data Ownership: In our model, every 

startup will maintain ownership of the raw data, 

acting on the principle of ‘data never leaves,’ which is 

core to FL design [20]. The global model will be co-

owned or protected through legal agreements. 

Distribution using, HE and SMPC ensures that 

neither data nor proprietary features will be revealed 

in the training processes, directly enabling IP 

protection. Wang et al. also explored how they 

protect IP by using model encryption or running the 

model in a secure enclave, while still offering the 

possibility to provide inference services to clients 

[13]. For instance, a startup could host models in a 

secure server, and the input would be encrypted 

through HE, whilst allowing third parties to request 

queries without revealing model parameters from the 

startup or inputs from clients [13]. 

Legal Compliance: The framework is consistent 

with pre- 

existing data protection regulations (GDPR and 

CCPA), as it limits exposure to personal data. Martin 

et al. discovered that privacy laws can serve as 

barriers and accelerators of innovation, forcing 

people to rethink architectures, while also enabling 

unique business models based on privacy compli- 

ance [7]. In this sense, startups that adopt PPTs can 

convert regulatory limitations into a marketing 

advantage. As evalu- ated legally and ethically, 

privacy-oriented design can build consumer trust and, 

hence, potentially increase data sharing, customer 

trust, and, another key, competitive advantage [10]. A 

2025 IMF advisory report has identified that privacy 

technologies improve regulatory compliance, 

stimulate new market dynamics, and promote 

territorial or cross-border data collaboration, related 

to the Pew Research Center Commission on Privacy 

in the Digital Age, a report and distillation of 

perspectives about conditions of cooperation [15]. 

For example, the Nebula genomics platform allows 

individ- 

ual consumers to share their encrypted genomic data 

for financial compensation while also providing 

researchers with anonymized findings—this scenario 

strikes a balance [19]. 

In conclusion, we believe that enabling PPTs allows 

for secure and collaborative analytics with a clear 

promise of privacy. By using federated learning, 

differential privacy, and homo- morphic encryption, 

entrepreneurial ventures can collaborate in creating 

effective models, or can collaboratively deliver 

better, data-driven services, while upholding user 

privacy and without disclosing business secrets. The 
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societal upside is equally substantial—strong privacy 

protective measures allow a wider number of 

participants into data ecosystems and hence, greater 

innovation. As Lucie Arntz from Apheris said, 

federated approaches can provide ‘magical’ value by 

linking datasets that have almost no value 

independently—something that we have converted 

into a useful framework [20]. 

 

V. APPLICATIONS 

 

A. Collaborative Innovation 

Startups often need to collaborate across institutions 

or share pooled data before they can reach sufficient 

scale for innovating. Examples include a consortium 

of health-tech startups or research universities who 

may develop a disease prediction model together. 

Under the scheme we propose, the parties could train 

on site, using their patient records data, and only 

share encrypted updates using FL. The privacy of 

individ- ual actors would be honored while 

improving generalization performance from 

aggregate datasets that wouldn’t have been possible 

otherwise (e.g., ‘different cancers’) [1]. 

Similarly, in other domains such as manufacturing or 

automo- tive, companies can share their datasets, 

such as LiDAR scans or vehicle telemetry, and 

support collaborations where the pace of research of 

autonomous systems such as self-driving vehicles 

engines, etc., is accelerated. Apheris has shown how 

FL can allow companies to collectively and jointly 

train based on corporate industry data without sharing 

manufacturing data, which can offer protection to 

commercially sensitive data [20]; or software startups 

can use secure multiparty computation (SMPC) to 

share analysis to identify insights into market trends 

across organizations without breaching client identity 

or sensitive competitive data [16]. 

B. Protecting Intellectual Property 

Privacy-preserving technologies (PPTs) span two 

foci: the protection of user privacy and the protection 

of startup IP. Combining PPTs and IP laws allows 

startups to legally comply with the use of privacy 

technology, while maintaining compet- itive 

advantages. 

1) Compliance with IP Laws: Depending on the 

PPT, tech- nologies such as FL, HE, and SMPC 

protect startup IP by not exposing proprietary 

algorithms and datasets. For instance, based on the 

U.S. Defend Trade Secrets Act (DTSA) of 2016, 

in the instance where a startup uses proprietary model 

parameters, it may utilize HE to encrypt updates 

using FL, allowing trade secrets to remain 

confidential while engaged in joint training [4]. 

Additionally, the framework of the EU’s Patent 

Cooperation Treaty (PCT) supports patenting 

innovative methods to deploy PPTs, such as HE 

algorithms, to further protect and develop 

unique intellectual property for startups [20]. 

2) Contractual IP Protections: Legal agreements 

are impor- tant to define IP rights in 

collaborations. Agreements will not only define 

rights to foreground IP (new models or new 

understandings) but also make provision for 

background IP (previously owned intellectual 

property). For example, a health-tech startup using 

FL to train a model for predicting disease could have 

agreements that allow them to retain control of 

proprietary aspects of their model (e.g., how they 

construct a unique feature-set for training) in 

situations where they share model updates (e.g., TEE 

updates are aggregative) [1], [10]. The agreements 

that are made would most likely comply with the 

principles of WIPO on IP management in 

collaborative research [20]. 

3) IP Monetization: Point-to-Point Trust (PPT) 

contracts allow 

startups to monetize their IP assets in ways that do 

not compromise privacy or ownership. For example, 

a startup could license its model to make inferences 

in a TEE, while having users use fully homomorphic 

encryption (FHE) to generate encrypted queries, and 

funnel revenues back to them without loss of 

control over ownership of the model. A good 

example of this is Nebula Genomics, which allows 

individual subscribers to share their encrypted 

genomic data to receive compensation. Nebula also 

utilizes blockchain and smart contracts to guarantee 

that IP issues are maintained [19]. Extensions of the 

model could occur in almost any setting where the 

startup can build revenue on the encrypted analytics, 

whilst at the same time reserving ownership of the IP. 

C. Data Monetization and Markets 

PPTs are essential to new business models that center 

on data monetization, all while ensuring privacy 

protections. One form of innovation that has emerged 

is decentralized data mar- ketplaces. The Nebula 
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Genomics platform is a more tangible example, 

allowing individuals to share encrypted genomic data 

for cash, while organizations run privacy-preserving 

queries against that data using permissioned 

blockchain-backed access controls. Thus, neither 

party is exposing their data or principal in their 

tradable product [19]. 

This ecosystem represents a departure from secure 

data owner- ship norms. Individuals have control 

over the sensitive health data they share, and 

researchers effectively receive value from the data 

through secure computation rather than retaining or 

having access to the actual data. Startups in finance, 

marketing, and e-commerce may replicate this 

alternative access model, allowing them to offer 

analytics or personalized service based on an 

encrypted, anonymized contribution. The startups 

can even monetize aggregated predictions or trending 

insights, without violating privacy protections or 

trade secrets. 

D. Legal/Economic Incentives 

As startups navigate tighter regulatory environments 

for data, they face obligations after compliance, such 

as the EU’s General Data Protection Regulation 

(GDPR) and California’s Consumer Privacy Act 

(CCPA), around user consent, access to the data, 

data portability, and erasure [10]. Startups will be 

able to credibly demonstrate compliance, including 

verifiable assurances that individual data are not 

inferable from aggregate outputs, using techniques 

like DP and HE [6]. 

Startups also tend to view their curated datasets and 

models (even without an IP claim) as being part of a 

core intellectual property. The use of encryption, 

SMPC, and federated archi- tecture allows the 

intellectual property to remain in the sole control of 

the owner, and at the same time provide collabo- 

rative analysis or service delivery [10]. WIPO’s 

commentary cited earlier stated that confidentiality 

and privacy protection can be nested (there is no 

conflict between privacy protection and IP 

preservation), and each would reinforce the other in 

cases with contractual clarity and technology to 

enforce [20]. PPTs are adopted for varying reasons, 

including legal compli- ance and economic incentives 

associated with protection of IP. Data protection laws, 

including the EU’s General Data Protec- tion 

Regulation (GDPR) and California’s Consumer 

Privacy Act (CCPA), impose requirements and 

restrictions on how data is handled, and some PPTs 

fulfill the GDPR and CCPA requirement of ensuring 

data security through encryption and anonymization 

[10]. At the same time, IP laws encourage the 

adoption of PPTs, providing legal protection for 

proprietary innovations. 

1) IP Law Compliance: Compliance with GDPR’s 

Article 32 

requires organizations to establish protections like 

encryption, which the HE and SMPC do, in turn 

allowing it to have some level of assurance it is 

complying with the GDPR while at the same time 

protecting its proprietary data [10]. The DTSA and 

EU Trade Secrets Directive will give potential 

sources of legal recourse for startups if the 

proprietary data and/or models used by the startups 

are appropriated; therefore, the need to establish 

PPTs will help avoid startup appropriation during 

collaborative analytics [20]. Startups can utilise these 

laws to create trust with both consumers and 

regulators, and the startups can capitalize on this 

perceived value to establish privacy as a competitive 

advantage. 

2) Monetary Considerations for Intellectual 

Property Protec- tion: Kantarcioglu et al. present 

convincing evidence showing that where there is a 

high consumer value of privacy (and heightened 

regulatory penalties associated with breaches), 

organizations have strong incentive to make 

investments in privacy-preserving technologies 

(PPTs) that rely on intellectual property [12]. When 

companies are able to protect intellectual property 

with their PPT, they are more able to entice venture 

capital investment, as privacy-compliance improves 

company valuation under frameworks like the 

environmental, social, and governance (ESG) 

guidelines. Take, for example, specific startups 

attempting to use federated learning to protect their 

proprietary datasets—they can market privacy-

compliance to privacy-sensitive investors by 

showcasing how use of their intellectual property is 

lawful and documented [12]. Notewor- thy also is the 

suggestion in the World Intellectual Property 

Organization (WIPO) 2023 report that innovations 

arising from use of IP-protected data in PPTs are also 

used by others as a basis for selling licensed data, 

which generates new revenue opportunities for 

companies [20]. 
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VI. CHALLENGES AND FUTURE 

DIRECTIONS 

 

Privacy-preserving technologies (PPTs) represent 

significant promise but are hampered by a 

multitude of technical, le- gal, and social challenges 

that need to be overcome before PPTs will be used 

widely, incorporated within emerging entrepreneurial 

ventures. 

Scalability and Efficiency: Cryptographic operations, 

and in particular fully homomorphic encryption 

(FHE) operations, are still computationally 

expensive. The operational costs of systems of 

federated learning are impressive as even when 

delivered via optimized frameworks, e.g., FedML-HE 

which encrypts parameters only on sensitive 

parameters, are expen- sive in terms of computing 

power and memory bandwidth (overhead usage that 

can be considerable particularly with large models 

like BERT [4]). Furthermore, most early-stage 

startups do not have the hardware and supporting 

infrastructure (dedicated GPUs or FPGAs) to meet 

such processing workload requirements. In this 

specification focus, future research needs to consider 

algorithmic compression, hardware acceleration, and 

the hybridization of encryption. Finally, federated 

systems require support for diverse federated 

participants and network conditions, so asynchronous 

protocols and fault-tolerant ag- gregation need robust 

support. 

Standardization and Interoperability: As 

described in the 

Apheris case, collaboration of shared privacy is 

limited by a lack of data schema consistency and 

standardization of the interface. Industry experts say 

we need protocols for data formatting, ontologies, 

and secure APIs to facilitate privacy- preserving data 

sharing across silos [20]. In connection to health care, 

autonomous mobility, and other sectors of industry 

that need cross-organization collaboration with their 

data, regulatory bodies or technical consortiums may 

need to define the interoperability standards. 

Legal and Regulatory Uncertainty: The interface 

between PPTs and IP laws will require further 

examination due to complexities caused by the 

ownership question surrounding use of personal data 

that is only sometimes considered IP [10]. For 

example, there is ambiguity as to whether consent for 

per- sonal data of IP-protected data is fully compliant 

with GDPR consent requirements under its ‘broad 

consent’ provisions even when use is repressive and 

therefore consumer-consented [20]. Future legal 

frameworks should specify guidance as to how 

PPTs operate within IP laws, like the Copyright 

Act of the United States and the Database 

Directive of the European Union, for example, and 

how ownership of personal data rights for datasets 

that are aggregated or products delivered in the 

form of trained models could emerge from further 

privatisation efforts in academic and research 

settings. The debates at WIPO about quasi-IP rights 

of personal data could strengthen the relationship 

between PPTs and IP governance, allowing startups 

to copyright their data under license [10]. Economic 

Incentives: The creation and usage of PPTs require a 

considerable investment in terms of legal, 

cryptographic, and computational capabilities, which 

may be a major barrier for startups. Additionally, 

users tend to expect privacy, but generally are 

unwilling to pay more for it, leading to a 

‘privacy gap.’ Recognizing this misalignment creates 

possible economic alignment, potentially through 

privacy certifications, tax credits, or marketplace 

compensation mechanisms (e.g., to- kens for privacy-

respecting data usage). As demand increases for 

compliant data solutions, the number of venture 

capital investments in privacy-first startups may 

therefore increase, especially for enterprises who 

have a need for secure B2B data pipelines [12], 

[19]. 

Security and Robustness: PPTs preserve privacy 

but have 

the potential to introduce new vulnerabilities 

regarding the integrity of a system. One example is 

federated learning (FL), which is vulnerable to model 

poisoning where an adversar- ial client uploads 

malicious updates. Zero-knowledge proofs (ZKP) are 

proposed solutions to verify that computations done 

on the client-side are correct without revealing the 

data [5]. These are still developing as cryptographic 

con- cepts, particularly regarding their scalability. 

However, zero- knowledge proof-based mechanisms 

are still evolving. Even though differential privacy is 

inscribed with formal guarantees, its randomized 

mechanisms could put some accuracy at risk, while 

exposing majority group bias. Continuing research 

will be needed to explore these trade-offs and train 

systems to fight emerging threats such as quantum 
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cryptanalysis, model inversion, etc. Ethical and 

Societal Issues: Furthermore, technical privacy is not 

equal to user trust, transparency, or fairness. Methuku 

et al. argue that ethical frameworks should 

accompany technical solutions to trigger the 

responsible use of data in research [14]; for example, 

some studies using DP may present unequal error 

rates across demographic groups. Furthermore, if the 

rationale behind encrypted systems, and thus the 

protocols themselves, are not understood, users will 

also distrust the systems. There- fore, public 

awareness campaigns, as well as user interfaces 

which communicate the purpose behind processes, 

are needed to help reduce the cognitive dissonance 

experienced by users and their understanding of the 

mathematical constructs that underpin cryptography. 

Future Directions: Future work should consider 

aligning PPTs 

with IP legislation to create vanilla arrangements for 

owner- ship of data and models (for example, by 

combining zero- knowledge proofs (ZKPs) with FL 

to allow verifiably feature- less IP protection to 

startups to provide evidence of their model without 

requiring the disclosure ownership of parameters 

proprietary to the model [5]). Furthermore, 

blockchain-based IP registries could allow for the 

representation of ownership of models specified in 

PPTs, demonstrating auditability and compliance 

with international IP structures like the PCT [20]. 

Governments and organizations [15], including the 

Interna- tional Monetary Fund (IMF), are examining 

how to enact PPTs in service of digital identity and 

new approaches to IP management, indicating that 

the PPT role in international IP regimes will likely 

expand. 

 

VII. CONCLUSION 

 

Privacy-preserving technologies (PPTs) are rapidly 

chang- ing the way that data-driven companies are 

doing business. PPTs enable joint learning from data 

in a distributed en- vironment (i.e., data-driven 

innovation and analysis, without storing sensitive 

data in a centralized way leading to greater risks of 

data exposure), thus allowing a startup to create 

new value without re-victimizing privacy, while also 

safe- guarding their intellectual property (IP). We 

discussed relevant PPTs, namely federated learning 

(FL), differential privacy (DP), homomorphic 

encryption (HE), and secure multiparty computation 

(SMPC) as technologies and their application to 

entrepreneurship and intellectual property rights 

(IPR), along the way providing significant technical 

detail, practical examples, and legal-economic 

relevance. 

The case studies indicated that while PPTs may 

create some 

level of computational and basic deployment 

complexity, they reveal substantial benefits: 

improved performance of models obtained 

collectively [1], compliance with growing global data 

protection laws (such as GDPR/ARA and CCPA) 

[10], and finally, privacy and proprietary knowledge 

protection of data and models [13], [20]. 

Moving forward, there is a need for continual 

research to make these technologies operationally 

effective in startup ecosystems by improving either 

their cost-effectiveness, ef- ficiency of data 

processing for these systems, or at minimum, 

developing better standards for using PPTs and 

making them less burdensome for purchase. Within a 

growing ecosystem of regulatory mandates of use 

and emergence of consumer protectors of privacy 

(expectations), there is an opportunity to make, or 

indeed to expedite a movement towards, a version 

three (in terms of privacy) of ‘privacy by design’. 

While digital innovation will remain reliant on data 

as a key element of innovation, PPTs will enable the 

ability for privacy rights and IP security to develop in 

alignment with entrepreneurial intent. 
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