
© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 293 

Software Testing Techniques 
 

 

KM. Ananya Koushik1, Mr.Nitin Kumar2, Dr.Varun Bansal3 

1Research Scholar, Department of Computer Science and Engineering, Shobhit University Gangoh 
2Assistant Professor, Department of Computer Science and Engineering, Shobhit University Gangoh 

3Professor, Department of Computer Science and Engineering, Shobhit University Gangoh 

 

INTRODUCTION 

 

Computer testing has been a foundational component 

of advanced computing since its beginning. It plays a 

vital part in assessing the quality of computer program 

frameworks. Regularly, testing devours 40 50% of the 

full advancement effort an indeed more noteworthy 

share for frameworks requiring tall reliabilityâmaking 

it a critical perspective of computer program building. 

With the rise of Fourth Era Dialects (4GLs), which 

quicken usage, the relative exertion required for 

testing has as it were expanded. As upkeep and updates 

of existing frameworks ended up more visit, broad 

testing is basic to guarantee framework keenness after 

changes are connected [12]. 

Despite headways in formal strategies and 

confirmation methods, testing remains vital. It 

proceeds to be the foremost viable way to approve the 

quality of complex computer program frameworks 

[13]. However, it also remains one of the foremost 

complex and slightest caught on regions within the 

teach of computer program designing [19]. As 

program frameworks develop in scale and affect, 

testing is balanced to gotten to be indeed more crucial 

inside the field of computer science. 

This paper presents a review on fifty a long time of 

investigate in computer program testing methods, 

centering on the advancement and development of the 

field. It highlights key inquire about commitments that 

have formed this space and looks at how inquire about 

ideal models have moved over time. The innovation 

development show proposed by Redwine and Enigma 

[15] serves as the system for understanding how 

testing procedures have progressed from beginning 

thoughts to down to earth, broadly adopted solutions. 

Furthermore, Shows investigate worldview show [17], 

which categorizes investigate settings, approaches, 

strategies, and approval methodologies, is utilized to 

assess the inquire about strategies talked about all 

through this paper. The Taxonomy of Testing 

Techniques 

Software testing is a very broad area, which involves 

many other technical and non-technical areas, such as 

specification, design and implementation, 

maintenance, process and management issues in 

software engineering. Our study focuses on the state 

of the art in testing techniques, as well as the latest 

techniques which representing the future direction of 

this area. Before stepping into any detail of the 

maturation study of these techniques, let us have a 

brief look at some technical concepts that are relative 

to our research. 

 

1.1 The Goal of Testing 

In different publications, the definition of testing 

varies according to the purpose, process, and level of 

testing described. Miller gives a good description of 

testing in [13]: 

The general aim of testing is to affirm the quality of 

software systems by systematically exercising the 

software in carefully controlled circumstances. 

Miller’s description of testing views most software 

quality assurances activities as testing. He contends 

that testing should have the major intent of finding 

errors. A good test is one that has a high probability of 

finding an as yet undiscovered error, and a successful 

test is one that uncovers an as yet undiscovered error. 

This general category of software testing activities can 

be further divided.   

The primary goal of software testing is to ensure the 

quality and reliability of software systems by 

identifying defects before the software is released. 

Testing aims to: 

● Detect errors and faults in software during 

development. 

● Verify that the software behaves as expected 

under specified conditions. 

● Validate that the software meets user 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 294 

requirements and business objectives. 

● Improve confidence in the software's 

performance, especially in critical systems. 

● Prevent future defects by ensuring that new 

changes do not introduce new issues (regression 

testing). 

● Support decision-making regarding the readiness 

of software for release. 

As stated by Miller [13], “The general aim of testing 

is to affirm the quality of software systems by 

systematically exercising the software in carefully 

controlled circumstances.” A successful test is one 

that uncovers a previously unknown defect—making 

testing a proactive effort to improve software quality, 

not merely to confirm correctness. 

 
testing is the dynamic analysis of a piece of software, 

requiring execution of the system to produce results, 

which are then compared to expected outputs. 

 

1.2 The Testing Spectrum 

Testing is involved in every stage of software life 

cycle, but the testing done at each level of software 

development is different in nature and has different 

objectives. 

 

Unit Testing is done at the lowest level. It tests the 

basic unit of software, which is the smallest testable 

piece of software, and is often called “unit”, “module”, 

or “component” interchangeably. 

 

Integration Testing is performed when two or more 

tested units are combined into a larger structure. The 

test is often done on both the interfaces between the 

components and the larger structure being constructed, 

if its quality property cannot be assessed from its 

components. 

 

System Testing tends to affirm the end-to-end quality 

of the entire system. System test is often based on the 

functional/requirement specification of the system. 

Non-functional quality attributes, such as reliability, 

security, and maintainability, are also checked. 

 

Acceptance Testing is done when the completed 

system is handed over from the developers to the 

customers or users. The purpose of acceptance testing 

is rather to give confidence that the system is working 

than to find errors. 

 

1.3 Static Analysis and Dynamic Analysis 

Based on whether the actual execution of software 

under evaluation is needed or not, there are two major 

categories of quality assurance activities: 

Static Analysis focuses on the range of methods that 

are used to determine or estimate software quality 

without reference to actual executions.  Techniques in 

this area include code inspection, program analysis, 

symbolic analysis, and model checking. 

Dynamic Analysis deals with specific methods for 

ascertaining and/or approximating software quality 

through actual executions, i.e., with real data and 

under real (or simulated) circumstances. Techniques in 

this area include synthesis of inputs, the use of 

structurally dictated testing procedures, and the 

automation of testing environment generation. 

Generally the static and dynamic methods are 

sometimes inseparable, but can almost always 

discussed separately. In this paper, we mean dynamic 

analysis when we say testing, since most of the testing 

activities (thus all the techniques studied in this paper) 

require the execution of the software. 

 

1.4 Functional Technique and Structural Technique 

The information flow of testing is shown in Figure 1. 

As we can see, testing involves the configuration of 

proper inputs, execution of the software over the input, 

and the analysis of the output. The “Software 

Configuration” includes requirements specification, 

design specification, source code, and so on. The “Test 

Configuration” includes test cases, test plan and 

procedures, and testing tools. 

Based on the testing information flow, a testing 

technique specifies the strategy used in testing to 

select input test cases and analyze test results. 

Different techniques reveal different quality aspects of 

a software system, and there are two major categories 

of testing techniques, functional and structural. 

Functional Testing: the software program or system 

under test is viewed as a “black box”. The selection of 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 295 

test cases for functional testing is based on the 

requirement or design specification of the software 

entity under test.  Examples of expected results, some 

times are called test oracles, include 

requirement/design specifications, hand calculated 

values, and simulated results. Functional testing 

emphasizes on the external behavior of the software 

entity. 

Structural Testing: the software entity is viewed as a “ 

white box”. The selection of test cases is based on the 

implementation of the software entity. The goal of 

selecting such test cases is to cause the execution of 

specific spots in the software entity, such as specific 

statements, program branches or paths. The expected 

results are evaluated on a set of coverage criteria. 

Examples of coverage criteria include path coverage, 

branch coverage, and data-flow coverage. Structural 

testing emphasizes the internal structure of the 

software entity. 

 

 
Figure 1. Testing Information Flow 

 

2 SCOPE OF THE STUDY 

 

2.1 Technical Scope 

In this paper, we focus on the technology maturation 

of testing techniques, including these functional and 

structural techniques that have been influential in the 

academic world and widely used in practice. We are 

going to examine the growth and propagation of the 

most established strategy and methodology used to 

select test cases and analyze test results. Research in 

software testing techniques can be roughly divided 

into two branches: theoretical and methodological, and 

the growth in both branches push the growth of testing 

technology together. Inhibitors of maturation, which 

explains why the in-depth research hasn’t brought 

revolutionary advantage in industry testing practice, 

are also within our scope of interest. 

There are many other interesting areas in software 

testing. We limit the scope of our study within the 

range of testing techniques, although some of the areas 

may be inseparable from our study. Specifically, we 

are not going to discuss: 

● How testing is involved in the software 

development cycle 

● How different levels of testing are performed 

● Testing process models 

● Testing policy and management responsibilities, 

and 

● Stop criteria of testing and software testability 

 

2.2 Goal and standard of progress 

The ultimate goal of software testing is to help 

designers, developers, and managers construct 

systems with high quality. Thus research and 

development on testing aim at efficiently performing 

effective testing – to find more errors in requirement, 

design and implementation, and to increase confidence 

that the software has various qualities. Testing 

technique research leads to the destination of practical 

testing methods and tools. Progress toward this 

destination requires fundamental research, and the 

creation, refinement, extension, and popularization of 

better methods. 

 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 296 

The standard of progress for the research of testing 

techniques include: 

● Degree of acceptance of the technology inside and 

outside the research community 

● Degree of dependability on other areas of 

software engineering 

● Change of research paradigms in response to the 

maturation of software development technologies 

● Feasibility of techniques being used in a 

widespread practical scope, and 

● Spread of technology – classes, trainings, 

management attention 

 

3. THE HISTORY OF TESTING TECHNIQUES 
 

3.1 Concept Evolution 

Software has been tested as early as software has been 

written. The concept of testing itself evolved with 

time. The evolution of definition and targets of 

software testing has directed the research on testing 

techniques. Let’s briefly review the concept evolution 

of testing using the testing process model proposed by 

Gelperin and Hetzel [6] before we begin study the 

history of testing techniques. 

 

Phase I. Before 1956: The Debugging-Oriented Period  

Testing was not separated from debugging 

In 1950, Turing wrote the famous article that is 

considered to be the first on program testing. The 

article addresses the question “How would we know 

that a program exhibits intelligence?” Stated in 

another way, if the requirement is to build such a 

program, then this question is a special case of “How 

would we know that a program satisfies its 

requirements?” The operational test Turing defined 

required the behavior of the program and a reference 

system (a human) to be indistinguishable to an 

interrogator (tester). This could be considered the 

embryonic form of functional testing. The concepts of 

program checkout, debugging and testing were not 

clearly differentiated by that time. 

 

Phase II. 1957~78: The Demonstration-Oriented 

Period 

– Testing to make sure that the software satisfies its 

specification 

It was not until 1957 was testing, which was called 

program checkout by that time, distinguished from 

debugging. In 1957, Charles Baker pointed out that 

“program checkout” was seen to have two goals: 

“Make sure the program runs” and “Make sure the 

program solves the problem.” The latter goal was 

viewed as the focus of testing, since “make sure” was 

often translated into the testing goal of satisfying 

requirements. As we’ve seen in Figure 1, debugging 

and testing are actually two different phases. The 

distinction between testing and debugging rested on 

the definition of success. During this period 

definitions stress the purpose of testing is to 

demonstrate correctness: “An ideal test, therefore, 

succeeds only when a program contains no errors.” [5] 

The 1970s also saw the widespread idea that software 

could be tested exhaustively. This led to a series of 

research emphasis on path coverage testing. As is said 

in Goodenough and Gerhart’s 1975 paper “exhaustive 

testing defined either in terms of program paths or a 

program’s input domain.” [5] 

 

Phase III. 1979~82: The Destruction-Oriented Period 

– Testing to detect implementation faults 

In 1979, Myers wrote the book The Art of Software 

Testing, which provided the foundation for more 

effective test technique design. For the first time 

software testing was described as “the process of 

executing a program with the intent of finding errors.” 

The important point was made that the value of test 

cases is much greater if an error is found. As in the 

demonstration-oriented period, one might 

unconsciously select test data that has a low 

probability of causing program failures. If testing 

intends to show that a program has faults, then the test 

cases selected will have a higher probability of 

detecting them and the testing is more successful. This 

shift in emphasis led to early association of testing and 

other verification/validation activities. 

 

Phase IV. 1983~87: The Evaluation-Oriented Period 

– Testing to detect faults in requirements and design 

as well as in implementation 

The Institute for Computer Sciences and Technology 

of the National Bureau of Standards published 

Guidelines for Lifecycle Validation, Verification, and 

Testing of Computer Software in 1983, in which a 

methodology that integrates analysis, review, and test 

activities to provide product evaluation during the 

software lifecycle was described. The guideline gives 

the belief that a carefully chosen set of VV&T 

techniques can help to ensure the development and 

maintenance of quality software. 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 297 

Phase V. Since 1988: The Prevention-Oriented Period 

– Testing to prevent faults in requirements, design, 

and implementation 

In the significant book Software Testing Techniques 

[2], which contains the most complete catalog of 

testing techniques, Beizer stated that “the act of 

designing tests is one of the most effective bug 

preventers known,” which extended the definition of 

testing to error prevention as well as error detection 

activities. This led to a classic insight into the power 

of early testing. 

In 1991, Hetzel gave the definition that “Testing is 

planning, designing, building, maintaining and 

executing tests and test environments.” A year before 

this, Beizer gave four stages of thinking about testing: 

1. to make software work, 2, to break the software, 3, 

to reduce risk, and 4, a state of mind, i.e. a total life-

cycle concern with testability. These ideas led 

software testing to emphasize the importance of early 

test design throughout the software life cycle. 

The prevention-oriented period is distinguished from 

the evaluation-oriented by the mechanism, although 

both focus on software requirements and design in 

order to avoid implementation errors. The prevention 

model sees test planning, test analysis, and test design 

activities playing a major role, while the evaluation 

model mainly relies on analysis and reviewing 

techniques other than testing. 

 

3.2 Major Technical Contributions 

In general, the research on testing techniques can be 

roughly divided into two categories: theoretical and 

methodological. Software testing techniques are based 

in an amalgam of methods drawn from graph theory, 

programming language, reliability assessment, 

reliable-testing theory, etc. In this paper, we focus on 

those significant theoretical research results, such as 

test data adequacy and testing criteria, which provide 

a sound basis for creating and refining methodologies 

in a rational and effective manner. Given a solid 

theoretical basis, a systematic methodology seeks to 

employ rational techniques to force sequences of 

actions that, in aggregate, accomplish some desired 

testing-oriented effect. 

We are going to start with the major technical 

contributions of theoretical research as well as 

milestone methodologies of testing techniques. In the 

next section, the Redwine/Riddle maturity model will 

be used to illustrate how testing techniques have 

matured from an intuitive, ad hoc collection of 

methods into an integrated, systematic discipline. 

Figure 2 shows the concept formation of testing, 

milestone technical contributions on testing 

techniques, including the most influential theoretical 

and method research. Note that the principle for paper 

selection is significant. A research is chosen and its 

idea shown in Figure 2 because it defines, influences, 

or changes the technology fundamentally in its period. 

It does not necessarily have to be the first published 

paper on similar topics. 

Before the year 1975, although software testing was 

widely performed as an important part of software 

development, it remained an intuitive, somehow ad 

hoc collection of methods. People used principle 

functional and structural techniques in their testing 

practices, but there was little systematic research on 

methods or theories of these techniques. 

In 1975, Goodenough and Gerhart gave the 

fundamental theorem of testing in their paper Toward 

a Theory of Test Data Selection [5]. This is the first 

published research attempting to provide a theoretical 

foundation for testing, which characterizes that a test 

data selection strategy is completely effective if it is 

guaranteed to discover any error in a program. As is 

mentioned in section 2, this gave testing a direction to 

uncover errors instead of not finding them. The 

limitation of the ideas in this paper is also analyzed in 

previous section. Their research led to a series of 

successive research on the theory of testing 

techniques. 

In the same year, Huang pointed out that the common 

test data selection criterion – having each and every 

statement in the program executed at least once during 

the test – leaves some important classes of errors 

undetected [10]. As a refinement of statement testing 

criterion, edge strategy, was given. The main idea for 

this strategy is to exercise every edge in the program 

diagraph at least once. Probe insertion, a very useful 

testing technique in later testing practices was also 

given in this research. 

Another significant test selection strategy, the path 

testing approach, appeared in 1976. In his research, 

Howden gave the strategy that test data is selected so 

that each path through a program is traversed at least 

once [8]. Since the set of program paths is always 

infinite, in practice, only a subset of the possibly 

infinite set of program paths can be tested. Studies of 

the reliability of path testing are interesting since they 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 298 

provide an upper bound on the reliability of strategies 

that call for the testing of a subset of a program’s paths. 

The year 1980 saw two important theoretical studies 

for testing techniques, one on functional testing and 

one on structural. 

Although functional testing had been widely used and 

found useful in academic and industry practices, there 

was little theoretical research on functional testing. 

The first theoretical approach towards how systematic 

design methods can be used to construct functional 

tests was given in 1980 [9]. Howden discussed the idea 

of design functions, which often correspond to 

sections of code documented by comments, which 

describe the effect of the function. The paper indicates 

how systematic design methods, such as structured 

design methodology, can be used to construct 

functional tests. 

The other 1980 research was on structural testing. If a 

subset of a program’s input domain causes the 

program to follow an incorrect path, the error is called 

a domain error. Domain errors can be caused by 

incorrect predicates in branching statements or by 

incorrect computations that affect variables in branch 

statement predicates. White and Cohen proposed a set 

of constraints under which to select test data to find 

domain errors [18]. The paper also provides useful 

insight into why testing succeeds or fails and indicates 

directions for continued research. 

The dawn of data flow analysis for structural testing 

was in 1985. Rapps and Weyuker gave a family of test 

data selection criteria based on data flow analysis [16]. 

They contend the defect of path selection criteria is 

that some program errors can go undetected. A family 

of path selection criteria is introduced followed by a 

discussion of the interrelationships between these 

criteria. This paper also addresses the problem of 

appropriate test data selection. This paper founded the 

theoretical basis for data-flow based program testing 

techniques. 

In 1989, Richardson and colleagues proposed one of 

the earliest approaches focusing on utilizing 

specifications in selecting test cases [14]. In traditional 

specification-based functional testing, test cases are 

selected by hand based on a requirement specification, 

thus makes functional testing consist merely heuristic 

criteria. Structural testing, on the other hand, has the 

advantage of that the applications can be automated 

and the satisfaction determined. The authors extended 

implementation-based techniques to be applicable 

with formal specification languages and to provide a 

testing methodology that combines specification-

based and implementation-based techniques.  This 

research appeared to be the first to combine the idea of 

structural testing, functional testing, and formal 

specifications. 

Another research towards specification-based testing 

appeared in 1990. Boolean algebra is the most basic of 

all logic systems and many logical analysis tools 

incorporate methods to simplify, transform, and check 

specifications. Consistency and completeness can be 

analyzed by using Boolean algebra, which can also be 

used as a basis for test design. The functional 

requirements of many programs can be specified by 

decision tables, which provide a useful basis for 

program and test design. Boolean algebra is trivialized 

by using Karnaugh-Veitch charts. Beizer described the 

method of using decision tables and Karnaugh-Veitch 

charts to specify functional requirements in his book 

[2]. This was among the earliest approaches to select 

test based on existing, well-known Boolean algebra 

logic in test data selection. 

In the early 1990s, there was an increasing interest in 

estimating and predicting the reliability of software 

systems. Before Jalote and colleagues’ study in 1994 

[11], many existing reliability models employed 

functional testing techniques and predicted the 

reliability based on the failure data observed during 

testing. The application of these models requires a fair 

amount of data collection, computation, and expertise 

and computation for interpreting the results. The 

authors propose a new approach based on the coverage 

history of the program, by which a software system is 

modeled as a graph, and the reliability of a node is 

assumed to be a function of the number of times it gets 

executed during testing-the larger the number of times 

a node gets executed, the higher its reliability. The 

reliability of the software system is then computed 

through simulation by using the reliabilities of the 

individual nodes. With such a model, coverage 

analysis tools can easily be extended to compute the 

reliability also, thereby fully automating reliability 

estimation. 

The year 1997 saw good results in both functional and 

structural testing techniques. In this year a framework 

for probabilistic functional testing was proposed. 

Bernot and colleagues introduce the formulation of the 

testing activity, which guarantees a certain level of 

confidence into the correctness of the system under 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 299 

test, and gives estimate of the reliability [1].  They also 

explain how one can generate appropriate distributions 

for data domains including most common domains 

such as intervals of integers, unions, Cartesian 

products, and inductively defined sets. 

Another interesting research in 1997 used formal 

architectural description for rigorous, automatable 

method for integration test of complex systems [4]. In 

this paper the authors propose to use the formal 

specification language CHAM to model the behavior 

of interest of the systems. Graph of all the possible 

behaviors of the system in terms of the interactions 

between its components is derived and further 

reduced. A suitable set of reduced graphs highlights 

specific architectural properties of the system, and can 

be used for the generation of integration tests 

according to a coverage strategy, analogous to the 

control and data flow graphs in structural testing. This 

research is among the trend of using formal methods 

in testing techniques since later 1980s. 

From late 1990s, Commercial Off The Shelf (COTS) 

software and Unified Modeling Language (UML) 

UML have been used by increasing number of 

software developers. This trend in development 

therefore calls the corresponding testing techniques 

for the UML components. In their 2000 paper [7], 

Hartmann and colleagues at Siemens addressed the 

issue of testing components by integrating test 

generation and test execution technology with 

commercial UML modeling tools such as Rational 

Rose. The authors present their approach to modeling 

components and interactions, describe how test cases 

are derived from these component models and then 

executed to verify their conformant behavior. The TnT 

environment of Siemens is used to evaluate the 

approach by examples. Test cases are derived from 

annotated Statecharts. 

Another most recent research is also an approach to 

test component-based software. In 2001, Beydeda and 

colleagues proposed a graphical representation of 

component-based software flow graph [3]. Testing is 

made complicated with features, such as the absence 

of component source code, that are specific to 

component-based software. The paper proposes a 

technique combining both black-box and white-box 

strategies. A graphical representation of component 

software, called component-based software flow 

graph (CBSFG), which visualizes information 

gathered from both specification and implementation, 

is described. It can then be used for test case 

identification based on well-known structural 

techniques.  Traditional structural testing techniques 

can be applied to this graphical representation to 

identify test cases, using data flow criterion. The main 

components are still tested with functional techniques. 

 

4 TECHNOLOGY MATURATION 

 

The maturation process of how the testing techniques 

for software have evolved from an ad hoc, intuitive 

process, to an organized, systematic technology 

discipline is shown in Figure 3. Three models are used 

to help analyzing and understanding the maturation 

process of testing techniques. A brief introduction on 

these models followed. 

 

4.1 Redwine/Riddle software technology maturation 

model 

The Redwine/Riddle is the backbone of this 

maturation study. In 1985, Redwine and Riddle 

viewed the growth and propagation of a variety of 

software technologies in an attempt to discover natural 

characteristics of the process as well as principles and 

techniques useful in transitioning modern software 

technology into widespread use. They looked at the 

technology maturation process by which a piece of 

technology is first conceived, then shaped into 

something usable, and finally “marketed” to the point 

that it is found in the repertoire of a majority of 

professionals. Six phases are described in 

Redwine/Riddles model: 

 

Phase 1: Basic research. 

Investigate basic ideas and concepts, put initial 

structure on the problem, frame critical research 

questions. 

For testing techniques, the basic research phase ended 

in the mid to late 1950s, when the targets of testing 

were set to make sure the software satisfies its 

specification. Initial researches began to try to 

formulate the basic principles for testing. 

 

Phase 2: Concept formulation. 

Circulate ideas informally, develop a research 

community, converge on a compatible set of ideas, 

publish solutions to specific subproblems. 

The concept formulation process of testing focused 

between late 1950s and mid 1970s, when the 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 300 

arguments of the real target of testing came to an end 

and theoretical researches began. The milestone of the 

end of this phase is the publication of Goodenough and 

Gerhart’s paper on testing data selection. 

 

Phase 3: Development and extension. 

Make preliminary use of the technology, clarify 

underlying ideas, and generalize the approach. 

The years between mid 1970s and late 1980s are the 

development and extension phase of testing 

techniques. Various testing strategies are proposed and 

evaluated for both functional and structural testing 

during this period. Principles of testing techniques 

were built up gradually during this period. 

 

Phase 4: Internal enhancement and exploration. 

Extend approach to another domain, use technology 

for real problems, stabilize technology, develop 

training materials, show value in results. 

Starting from late 1980s, researches on software 

testing techniques entered the internal exploration 

stage. The principles defined during the last period 

were accepted widely and used in larger scales of real 

problems, technologies began to stabilize and expand. 

People can now hire testing specialists or companies 

to do the testing job for them. More and more courses 

and training programs are given in universities and 

companies. 

 

Phase 5: External enhancement and exploration. 

Similar to internal, but involving a broader community 

of people who weren’t developers, show substantial 

evidence of value and applicability. 

Testing techniques started their prosperity in mid 

1990s. Along with the advance of programming 

languages, development methods, abstraction 

granularity and specification power, testing became 

better facilitated and challenged with more complex 

situations and requirements of different kinds of 

systems. Effective specification and development 

methods are borrowed employed during testing. 

 

Phase 6: Popularization. 

Develop production-quality, supported versions of the 

technology, commercialize and market technology, 

expand user community. 

Although the testing activities have been carried out 

everywhere and all the time, we don’t think research 

on testing techniques have entered its popularization 

period. Testing techniques vary with different systems 

and development methods. Even if specialist 

companies can be hired to do testing job, there lacks a 

common basis for the industry to share and utilize 

academic research result, as well as to use good 

practices from other enterprises. We are going to 

discuss this in future sections. 

 

4.2 Brief History of Software Engineering 

The evolution of software testing cannot be separated 

with activities in other areas of software engineering, 

such as programming language, formal specification, 

and software architecture. In her paper, Shaw 

summarizes the significant shift in research attention 

of software engineering, which can be viewed as a 

brief history of this broad area [12]. Starting from mid 

1950s, the change of software engineering research 

paradigms can be described as shown in Table 1. 

 

Table 1. Significant shifts in research attention of software engineering 

 

1960 ± 5 

Programming-any-which-way 

Mnemonics, precise use of prose 

Emphasis on small programs 

Representing structure, symbolic information Elementary understanding 

of control flow 

 

1970 ± 5 

Programming-in-the -small 

Simple input-output specifications 

Emphasis on algorithms Data structures and types 

Programs execute once and terminate 

 

1980 ± 5 

Programming-in-the -large 

Systems with complex specifications 

Emphasis on system integration, management Long-lived databases 

Program assemblies execute continually 

 

1990 ± 5 

Programming-in-the -world 

Software integrated with hardware 

Emphasis on management process improvement, system structure 

Abstractions for system design (client-server, object…) 

Heavily interactive systems, multimedia 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 301 

4.3 Testing Process Models 

The third reference model is the major testing goals 

model given by Gelperin and Hetzel in [6]. We have 

discussed this in detail in our previous section of 

testing concept evolution. Understanding how the 

goals of testing has changed helps us a lot to 

understand the intellectual history of testing technique 

research, how new ideas are based on old ideas from 

the same area or on the studies from other areas. 

The Redwine/Riddle model provides benchmarks for 

judging where a research stands in the maturation 

process, and how a process can migrate to the next one. 

Shaw’s model sets up the global background where 

studies of technology maturation can be put into and 

compared with the rest of the world of software 

engineering. Gelperin and Hetzel’s model is specific 

in testing so that the objectives of a testing technique 

research are made clear. Each model assists us to 

understand the problem from a different point of view, 

but none of them alone fully explains the unique 

phenomena in the technology history of test 

techniques. We put our study in the framework built 

with these models, and give our own viewpoints. 

 

4.4 The Major Stages of Research & Development 

Trends 

Generally, we see three major stages of the research 

and development of testing techniques, each with a 

different trend. By trend we mean the how mainstream 

of research and development activities find the 

problems to solve, and how they solve the problems. 

As is shown in the column of “Technology Evolution” 

in Figure 3, testing technique technologies, thus the 

ways of selecting test data have developed from ad 

hoc, experienced implementation-based phase, and is 

focusing on specification-based now. 

 

1950 – 1970: Ad Hoc 

From Figure 3 we can see that between the years 1950 

and 1970, there were few research results on testing 

techniques except for the conceptual ideas of testing 

goals. It’s possible that research results before 1970 

are too old to be in the reach of current bibliography 

collections. To avoid being influenced by this factor, 

we looked at many testing survey papers in the 1980s, 

which should have had the “ancient” studies in hand 

by the time they performed their study. We suppose 

their surveys at least addressed the most important 

technical contributes before their time, and we can 

build our research for the decades before 1970 on 

theirs. 

Based on above assumption, we define the period 

between 1950 and 1970 as being ad hoc. During this 

period, major research interest focuses on the goal of 

testing, and there are quite a few discussions on how 

to evaluate if a test is good. Meanwhile, testing had 

become gradually independent from part of debugging 

activities, to a necessary way to demonstrate that a 

program satisfies its requirements, as is seen in the 

GH88 model. At the same time, if we look from 

Shaw’s view, we can see that the whole world of 

software engineering was in its programming-in-any-

which-way stage. It’s very natural that testing stayed 

in its ad hoc stage, where test data is selected randomly 

and in an unorganized, undirected way. 

 

1971 – 1985: Emphasize on Implementation and 

Single Program 

Beginning from the mid 1960s to the mid 1980s, the 

whole software engineering research community 

shifted it paradigms to the program-in-the-small stage, 

and then started the program-in-the-large stage. The 

main changes this migration brought to software 

development were that the characteristic problems 

changed from small programs, to larger programs and 

algorithms, and were on the way to developing more 

complex problems. In response to this significant 

change, researches on testing techniques began their 

prosperity. 

On the structural side, in 1975, 1976, 1980, and 1985, 

four significant papers were published, each proposing 

a very important structural testing strategy, and all of 

which were adopted as the classic criteria for later 

researches followed them.  From Figure 3 we can see 

that almost all the important theoretical structural 

testing researches appeared in this period. Although 

the whole software engineering community was facing 

the challenge of switching the gear of developing from 

comparably simple programs to complex large 

systems, it took time for testing community to react to 

the change, specifically, in approximately 5 years. 

From the figure we also find that only one significant 

result for functional testing appeared in this period. 

The reason is obvious. Functional testing is based on 

requirements and has consisted merely of heuristic 

criteria. It is difficult to determine when and if such 

criteria are satisfied without being able to express the 

requirements in an efficient, rigorous, unambiguous 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 302 

way. This was in part the motivation for developing 

implementation-based testing techniques; they have 

the advantage that their application can be automated 

and their satisfaction determined. Fortunately the 

research appeared during this period set up a very good 

tone of successive researches, since it moved emphasis 

from the simple input/output specifications that testers 

often used in this period to a higher level – the design 

of the system. 

In this period, how to test a “program”, instead of a 

“system”, still drew the attention of researchers and 

practitioners. However the whole software 

engineering had begun to get ready for moving from 

the stage of programming-in-the-large to a higher 

level. 

 

1986 – current: Emphasize on Specification and 

System 

As software become more and more pervasive, the 

engineering for this area experienced the shift from 

programming-in-the-large to programming-in-the-

world, starting from the mid 1980s. The characteristic 

problems changed from algorithms, to system 

structures, and component interfaces. Systems have 

been specified in more complex ways.  Studies in 

software architecture and formal methods have 

brought a lot of facilities as well as inspiration to the 

way people specifying their systems. Based on these 

studies, software system now can be specified in more 

rigorous, understandable, automatable ways, which 

has brought great chances to improve functional 

testing techniques. Meanwhile, software development 

is no longer limited to standalone systems, in reality, 

there have been more and more needs to develop 

distributed, object-oriented, and component based 

systems. The researchers in testing community have 

responded this trend and move their emphasis 

accordingly. 

Starting from the late 1980s, many researches have 

made use of the achievements of formal methods and 

logical analysis. There is still limitation in the 

specification capabilities so that researchers have been 

calling for better specification methods to improve 

their results. Both functional and structural testing 

techniques have benefited from the enhancement of 

software specification technologies. 

The widespread developing and using of object-

oriented technologies, COTS software and 

component- based systems has brought a great density 

of testing researches on these kinds of systems. The 

earliest OO testing studies appeared in the early 1990s. 

Most of them use traditional functional and/or 

structural techniques on the components, i.e. classes 

and so on.  Researchers have proposed new problems 

and solutions on testing the connections and 

inheritances among components. Both structural and 

functional techniques are hired in their approaches, 

and it has proven to be an effective method to integrate 

the two techniques for testing complex systems. 

 

4.5 The Test Gap 

In present, testing techniques have gradually involved 

from the practice of single programmers or small 

development teams into a systematic, managed 

engineering discipline. Not only have there been 

numerous researches on testing techniques, but also 

more and more considerable industry practices. There 

are testing classes taught in universities. There have 

been special testing teams, test managers, and tester 

job positions open to professional testers; there have 

been training programs and complete procedures for 

testing in large enterprises; and there are increasing 

number of companies and vendors doing testing work 

for other companies. However, despite the numerous 

research results (quite a lot of them are really sound) 

testing remains an awkward, time -consuming, cost-

ineffective chunk of work that is always not very 

satisfying in most industry practices. Only a small 

number of the research results have been utilized 

successfully in industry practices so that the test 

process can be greatly improved or automated. The 

most common testing exercises in industry are static 

analysis including code inspections, peer reviews, 

walkthroughs. Not enough testing tools can be applied 

directly on industry projects and products without 

being largely modified and even re-developed. Test 

plans are still written by hand, while test environment 

remained simple and crude. It is always the case that 

testing ends up being a must-end activity because the 

project runs out of budget and is beyond deadline. This 

inconsistency of testing research and practice has been 

called the “testing gap.” 

 

Provided many other issues involved in the testing 

gap, such as process and management, further 

researches in testing technique are among the most 

significant solutions that will work for the problem. 

Fundamental researches in techniques need to: 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 303 

● Demonstrate effectiveness of existing techniques 

● Address the need in new areas 

● Create new adaptive techniques 

● Facilitate transferring technology to industry 

4.6 Research Strategies for Testing Techniques 

We have studied the research strategies of twelve 

influential papers since the year 1975 and tried to find 

out the common form and successful examples of 

research settings that offer concrete guidance for 

future research work. The results are listed in Table 2. 

It’s not hard to find out that most of researches on 

testing techniques are motivated by questioning if 

there is a better method of doing something. The 

question is answered by inventing, implementing, 

combining, refining, evaluating, alternating or 

proposing new ways to do this task, and the result gets 

analyzed through analysis most of the times.  

Combined with the test gap mentioned in last section, 

we contend that fundamental researches should 

address the challenges testing techniques are facing in 

the real world, generalize them, and pursue practical 

solutions for them. Research should be carried out 

with industry partners on real world problems, instead 

of simple toy systems. Researchers in academic 

community and in industry should talk often to address 

the need for each other. 

 

Table 2. Paradigms of testing technique researches 

Paper Ref. Year Age Idea Research Paradigm 

Question Result Validation 

GG75 1975 26 Fundamental theorem Evaluation Analytic Model Analysis 

Huang75 1975 26 Edge approach, probe insertion Method/Means Technique Analysis 

Howden76 1976 25 Path approach and its reliability Characterization Technique Analysis 

WC80 1980 21 Domain testing strategy Method/Means Technique Analysis 

Howden80 1980 21 Functional design abstraction Method/Means Technique Persuasion 

RW85 1985 16 Data flow strategy Method/Means Technique Analysis 

ROT89 1989 12 Integrate spec. and impl. testing Method/Means Technique Analysis 

JM94 1994 7 Coverage reliability estimation Method/Means Technique Analysis 

BBL97 1997 4 Probabilistic functional testing Method/Means Technique Analysis 

BIMR97 1997 4 Testing based on architectural Method/Means Technique Persuasion 

HIM00 2000 1 UML based testing Method/Means Technique Experience 

BG01 2001 0 Component based testing Method/Means Technique Analysis 

 

5 CONCLUSION 
 

Testing has been widely used as a way to help 

engineers develop high-quality systems, and the 

techniques for testing have evolved from an ad hoc 

activities means of small group of programmers to an 

organized discipline in software engineering. 

However, the maturation of testing techniques has 

been fruitful, but not adequate. Pressure to produce 

higher-quality software at lower cost is increasing and 

existing techniques used in practice are not sufficient 

for this purpose.  Fundamental research that addresses 

the challenging problems, development of methods 

and tools, and empirical studies should be carried out 

so that we can expect significant improvement in the 

way we test software. Researchers should demonstrate 

the effectiveness of many existing techniques for large 

industrial software, thus facilitating transfer of these 

techniques to practice.  The successful use of these 

techniques in industrial software development will 

validate the results of the research and drive future 

research.  The pervasive use of software and the 

increased cost of validating it will motivate the 

creation of partnerships between industry and 

researchers to develop new techniques and facilitate 

their transfer to practice. Development of efficient 

testing techniques and tools that will assist in the 

creation of high-quality software will become one of 

the most important research areas in the near future. 

 

6 ANNOTATED BIBLIOGRAPHY 

 

[1] G. Bernet, L. Bouaziz, and P. LeGall, “A Theory 

of Probabilistic Functional Testing,” Proceedings of 

the 1997 International Conference on Software 

Engineering, 1997, pp. 216 –226 

[BBL97] A framework for probabilistic functional 

testing is proposed in this paper. The authors introduce 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 304 

the formulation of the testing activity, which 

guarantees a certain level of confidence into the 

correctness of the system under test. They also explain 

how one can generate appropriate distributions for 

data domains including most common domains such 

as intervals of integers, unions, Cartesian products, 

and inductively defined sets. A tool assisting test case 

generation according to this theory is proposed. The 

method is illustrated on a small formal specification. 

Question: Method/Means  

Result: Technique  

Validation: Analysis 
 

[2] B. Beizer, “Software Testing Techniques,” Second 

Edition, Van Nostrand Reinhold Company 

Limited, 1990, ISBN 0-442-20672-0 

[Beizer90] This book gives a fairly comprehensive 

overview of software testing that emphasizes formal 

models for testing. The author gives a general 

overview of the testing process and the reasons and 

goals for testing. In the second chapter of this book, 

the author classifies the different types of bugs that 

could arise in program development. The notion of 

path testing, transaction flowgraphs, data-flow testing, 

domain testing, and logic-based testing are introduced 

in detail in the chapters followed. The author also 

introduces several attempts to quantify program 

complexity, and more abstract discussion involving 

paths, regular expression, and syntax testing. How to 

implement software testing based on the strategies is 

also discussed in the book. 
 

[3] S. Beydeda and V. Gruhn, “An integrated 

testing technique for component-based software,” 

ACS/IEEE International Conference on Computer 

Systems and Applications, June 2001, pp 328 – 334 

[BG01] Testing is made complicated with features, 

such as the absence of component source code, that are 

specific to component-based software. The paper 

proposes a technique combining both black-box and 

white-box strategies. A graphical representation of 

component software, called component-based 

software flow graph (CBSFG), which visualizes 

information gathered from both specification and 

implementation, is described. It can then be used for 

test case identification based on well-known structural 

techniques. 

Question: Method/Means  

Result: Technique  

Validation: Analysis 

 

[4] A. Bertolino, P. Inverardi, H. Muccini, and A. 

Rosetti, “An approach to integration testing based on 

architectural descriptions,” Proceedings of the IEEE 

ICECCS- 97, pp. 77-84 

[BIMR97] In this paper the authors propose to use 

formal architectural descriptions (CHAM) to model 

the behavior of interest of the systems.  Graph of all 

the possible behaviors of the system in terms of the 

interactions between its components is derived and 

further reduced. A suitable set of reduced graphs 

highlights specific architectural properties of the 

system, and can be used for the generation of 

integration tests according to a coverage strategy, 

analogous to the control and data flow graphs in 

structural testing. 

Question: Method/Means  

Result: Technique  

Validation: Persuasion 

 

[5] J.B. Good Enough and S. L. Gerhart, “Toward 

a Theory of Test Data Selection,” IEEE Transactions 

on Software Engineering, June 1975, pp. 156-173 

[GG75] This paper is the first published paper, which 

attempted to provide a theoretical foundation for 

testing. The “fundamental theorem of testing” brought 

up by the authors characterizes the properties of a 

completely effective test selection strategy. The 

authors think a test selection strategy is completely 

effective if it is guaranteed to discover any error in a 

program. As an example, the effectiveness of branch 

and path testing in discovering errors is compared. The 

use of decision table (a mixture of requirements and 

design-based functional testing) as an alternative 

method is also proposed. 

Question: Evaluation  

Result: Analytic Model  

Validation: Analysis 

 

[6] D. Gelperin and B. Hetzel, “The Growth of 

Software Testing”, Communications of the ACM, 

Volume 31 Issue 6, June 1988, pp. 687-695 

[GH88] In this article, the evolution of software test 

engineering is traced by examining changes in the 

testing process model and the level of professionalism 

over the years. Two phase models, the demonstration 

and destruction models, and two life cycle models, the 

evolution and prevention models are given to 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 305 

characterize the growth of software testing with time. 

Based on the models a prevention oriented testing 

technology is introduced and analyzed in detail. 

Question: Characterization  

Result: Descriptive Model  

Validation: Persuasion 

 

[7] J. Hartmann, C. Imoberdorf, and 

M.Meisinger, “UML-Based Integration Testing,” 

Proceedings of the International Symposium on 

Software Testing and Analysis, ACM SIGSOFT 

Software Engineering Notes, August 2000 

[HIM00] Unified Modeling Language (UML) is 

widely used for the design and implementation of 

distributed, component-based applications. In this 

paper, the issue of testing components by integrating 

test generation and test execution technology with 

commercial UML modeling tools such as Rational 

Rose is addressed. The authors present their approach 

to modeling components and interactions, describe 

how test cases are derived from these component 

models and then executed to verify their conformant 

behavior. The TnT environment of Siemens is used to 

evaluate the approach by examples 

Question: Method/Means  

Result: Technique  

Validation: Experience 

 

[8] W. E. Howden, “Reliability of the Path 

Analysis Testing Strategy”, IEEE Transactions on 

Software Testing, September 1976, pp. 208-215 

[Howden76] The reliability of path testing provides an 

upper bound for the testing of a subset of a program’s 

paths, which is always the case in reality. This paper 

begins by showing the impossibility of constructing a 

test strategy that is guaranteed to discover all errors in 

a program. Three commonly occurring classes of 

errors, computations, domain, and subcase, are 

characterized. The reliability properties associated 

with these errors affect how path testing is defined. 

Question: Characterization  

Result: Technique  

Validation: Analysis 

 

[9] W. E. Howden, “Functional Testing and Design 

Abstractions,” The Journal of System and 

Software, Volume 1, 1980, pp. 307-313 

[Howden80] The usual practice of functional testing is 

to identify functions that are implemented by a system 

or program from requirements specifications. In this 

paper, the necessity of testing design as well as 

requirement functions is discussed. The paper 

indicates how systematic design methods, such as 

Structured design and the Jackson design can be used 

to construct functional tests. Structured design can be 

used to identify the design functions that must be 

tested in the code, while the Jackson method can be 

used to identify the types of data which should be used 

to construct tests for those functions. 

Question: Method/Means  

Result: Technique  

Validation: Persuasion 

 

[10] J. C. Huang, “An Approach to Program 

Testing,” ACM Computing Surveys, September 1975, 

pp.113- 128 

[Huang75] This paper introduces the basic notions of 

dynamic testing based on detailed path analysis in 

which full knowledge of the contents of the source 

program being tested is used during the testing 

process. Instead of the common test criteria by which 

to have every statement in the program executed at 

least once, the author suggested and demonstrated by 

an example, that a better criterion is to require that 

every edge in the program diagraph be exercised at 

least once. The process of manipulating a program by 

inserting probes along each segment in the program is 

suggested in this paper. 

Question: Method/Means  

Result: Technique  

Validation: Analysis 

 

[11] P. Jalote and Y. R. Muralidhara, “A 

coverage based model for software reliability 

estimation,” Proceedings of First International 

Conference on Software Testing, Reliability and 

Quality Assurance, 1994, pp. 6 – 10 (IEEE) 

[JM94] There exist many models for estimating and 

predicting the reliability of software systems, most of 

which consider a software system as a black box and 

predict the reliability based on the failure data 

observed during testing. In this paper a reliability 

model based on the software structure is proposed. The 

model uses the number of times a particular module is 

executed as the main input. A software system is 

modeled as a graph, and the reliability of a node is 

assumed to be a function of the number of times it gets 

executed during testing – the larger the number of 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 306 

times a node gets executed, the higher its reliability. 

The reliability of the software system is then computed 

through simulation by using the reliabilities of the 

individual nodes. 

Question: Method/Means  

Result: Technique  

Validation: Analysis 

 

[12] J. J. Marciniak, “Encyclopedia of software 

engineering”, Volume 2, New York, NY: Wiley, 1994, 

pp. 1327-1358 

[Marciniak94] A book intended for software 

engineers, this books gives introductions, overviews, 

and technical outlines of the major areas in software 

engineering. A review in to test generators is given 

where the major types of test case generators are given 

and their intended purpose and principles are 

discussed. A review on the testing process is given 

where the entire process of testing is discussed from 

planning to execution to achieving to maintenance 

retesting. All the common terms and ideas are 

discussed. A review of testing tools is given where the 

testing tools for each purpose is discussed and a couple 

for state of the art systems are given. 

 

[13] E. F. Miller, “Introduction to Software 

Testing Technology,” Tutorial: Software Testing & 

Validation Techniques, Second Edition, IEEE Catalog 

No. EHO 180-0, pp. 4-16 

[Miller81] This article serves as the one of the 

introductory sections of the book Tutorial: Software 

Testing & Validation Techniques. A cross section of 

program testing technology before and around the year 

1980 is provided in this book, including the theoretical 

foundations of testing, tools and techniques for static 

analysis and dynamic analysis, effectiveness 

assessment, management and planning, and research 

and development of soft ware testing and validation. 

The article briefly summarizes each of the major 

sections. The article also gives good view of the 

motivation forces, the philosophy and principles of 

testing, and the relation of testing to software 

engineering. 

 

[14] D. Richardson, O. O’Malley and C. Tittle, 

“Approaches to specification-based testing”, ACM 

SIGSOFT Software Engineering Notes, Volume 14 , 

Issue 9, 1989, pp. 86 – 96 

[ROT89] This paper proposes one of the earliest 

approaches focusing on utilizing specifications in 

selecting test cases. In traditional specification-based 

functional testing, test cases are selected by hand 

based on a requirement specification, thus makes 

functional testing consist merely heuristic criteria. 

Structural testing has the advantage of that the 

applications can be automated and the satisfaction 

determined.  The authors propose approaches to 

specification-based testing by extending a wide 

variety of implementation-based testing techniques to 

be applicable to formal specification languages, and 

demonstrate these approaches for the Anna and Larch 

specification languages. 

Question: Method/Means  

Result: Technique  

Validation: Analysis 

 

[15] S. Redwine & W. Riddle, “Software 

technology maturation,” Proceedings of the Eighth 

International Conference on Software Engineering, 

May 1985, pp. 189-200 

[RR85] In this paper, a variety of software 

technologies are reviewed. The technology maturation 

process by which a piece of technology first gets the 

idea formulated and preliminarily used, then is 

developed and extended into a broader solution, and 

finally is enhanced to product-quality applications and 

marketed to the public. The time required for a piece 

of technology to mature is studied, and the actions that 

can accelerate the maturation process are addressed. 

This paper serves as a very good framework for 

technology maturation study. 

Question: Characterization  

Result: Empirical Model  

Validation: Analysis 

 

[16] S. Rapps and E. J. Weyuker, “Selecting 

Software Test Data Using Data Flow Information,” 

IEEE Transactions on Software Engineering  ̧ April 

1985, pp. 367-375 

[RW85] A family of test data selection criteria based 

on data flow analysis is defined in this paper. The 

authors contend that data flow criteria are superior to 

currently path selection criteria being used in that 

using the latter strategy program errors can go 

undetected. Definition/use graph is introduced and 

compared with a program graph based on the same 

program. The interrelationships between these data 

flow criteria are also discussed. 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 181989     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 307 

Question: Method/Means  

Result: Technique  

Validation: Analysis 

 

[17] M. Shaw, “Prospects for an engineering 

discipline of software,” IEEE Software, November 

1990, pp. 15-24 

[Shaw90] Software engineering is still on its way of 

being a true engineering discipline. This article studies 

the model for the evolution of an engineering 

discipline and applies it to software technology. Five 

basic steps are suggested to the software profession to 

take towards a true engineering discipline: to 

understand the nature of expertise, to recognize 

different ways to get information, to encourage routine 

practice, to expect professional specializations, and to 

improve the coupling between science and 

commercial practice. The significant shifts in research 

attention of software engineering since the 1960s are 

also given in this article. 

Question: Characterization  

Result: Descriptive Model  

Validation: Persuasion 

 

[18] L. J. White and E. I. Cohen, “A Domain 

Strategy for Computer Program Testing,” IEEE 

Transactions on Software Engineering, May 1980, pp. 

247-257 

[WC80] Domain errors are in the subset of the 

program input domain, and can be caused by incorrect 

predicates in branching statements or incorrect 

computations that affect variables in branching 

statements. In this paper a set of constraints under 

which it’s possible to reliably detect domain errors is 

introduced. The paper develops the idea of linearly 

bounded domains. The practical limitations of the 

approach are also discussed, of which the most severe 

is that of generating and then developing test points for 

all boundary segments of all domains of all program 

paths. 

Question: Method/Means  

Result: Technique  

Validation: Analysis 

 

[19] J. A. Whittaker, “What is Software Testing? And 

Why Is It So Hard?” IEEE Software, January 

2000, pp. 70-79 

[Whit00] Being a practical tutorial article, the paper 

answers questions from developers how bugs escape 

from testing. Undetected bugs come from executing 

untested code, difference of the order of executing, 

combination of untested input values, and untested 

operating environment. A four-phase approach is 

described in answering to the questions.  By carefully 

modeling the software’s environment, selecting test 

scenarios, running and evaluating test scenarios, and 

measuring testing progress, the author offers testers a 

structure of the problems they want to solve during 

each phase. 

Question:  Characterization 

Result:  Qualitative & Descriptive Model 

Validation:  Persuasion 


