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Abstract—Crop yield prediction using machine learning 

enhances decision-making in agriculture by providing 

accurate and timely forecasts. This study utilized 

datasets including climate data, soil properties, satellite 

imagery, and historical yields. Four models were 

evaluated: Random Forest, XGBoost, Decision Tree, and 

Linear Regression. Random Forest Regression achieved 

the best performance with an R² of 0.97, MAE of 5,412, 

and RMSE of 12,450. XGBoost followed with an R² of 

0.87, showing potential for improvement through 

hyperparameter tuning. Decision Tree Regression 

showed overfitting, with perfect training R² but a slightly 

lower test R² of 0.95. Linear Regression underperformed 

with an R² of 0.67, failing to capture complex patterns. 

Remote sensing and advanced analytics enhanced 

prediction accuracy and real-time monitoring. All 

models faced issues with infinite MAPE due to zero-yield 

values, highlighting the need for data cleaning. Random 

Forest proved to be the most reliable model, promoting 

efficient and sustainable agricultural practices. 

 

Index Terms—Machine learning, XGBoost,Mean 

Absolute Percentage Error, Regression  

 

I. INTRODUCTION 

 

The global population is projected to grow from 7.9 

billion in 2023 to 9.7 billion by 2050, increasing food 

demand by 44%. Rising incomes will shift diets 

toward more calorie- and protein-rich foods, 

especially meats and dairy, intensifying pressure on 

agriculture. 

While technology offers promising solutions, 

challenges such as climate change, limited resources, 

and food insecurity persist. There's a growing push 

toward sustainable practices and healthier food 

systems, but faster progress is needed. 

Accurate crop yield prediction is critical for efficient 

food production and economic stability, especially in 

the face of climate uncertainty. It enables informed 

decision-making by farmers and policymakers, 

helping manage resources and reduce waste. 

Machine learning, remote sensing, and crop growth 

models improve prediction accuracy by analysing 

large, complex datasets including weather, soil, and 

satellite imagery. Deep learning, in particular, 

uncovers patterns that traditional models may miss, 

enhancing forecasting precision. 

These technologies support real-time monitoring and 

early warnings for pests, weather events, and soil 

issues, reducing risks and enabling timely 

interventions. Yield prediction also aids in resource 

optimization—such as irrigation, fertilizers, and 

pesticides—promoting sustainability. 

From a market perspective, accurate forecasts help 

balance supply and demand, reduce food waste, and 

stabilize prices. They also support financial planning, 

insurance, and investment decisions in agriculture. 

At a policy level, governments can use predictive data 

for targeted subsidies, disaster relief, food security 

planning, and infrastructure development. 

In conclusion, crop yield prediction is a transformative 

tool for improving agricultural efficiency, economic 

viability, and environmental sustainability. It supports 

a resilient food system by leveraging data and AI 

technologies. 

 

II. RELATED WORK 

 

Håkon Måløy a, et al in the research “Multimodal 

performers for genomic selection and crop yield 

prediction” introduces a promising deep learning 

framework for crop yield prediction, combining 

genomic data and weather patterns through the 

innovative Performer architecture. The results show 

that the Performer-based model significantly improves 

prediction accuracy over traditional methods, which 

can have a major impact on agricultural research, crop 
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breeding, and potentially other areas like animal 

breeding. The use of self-attention further enhances 

the model's interpretability, making it not only 

effective but also insightful for decision-making in 

breeding programs. [2] 

Leelavathi Kandasamy Subramaniam a, *, 

Rajasenathipathi Marimuthu b “Crop yield prediction 

using effective deep learning and dimensionality 

reduction approaches for Indian regional crops”the 

paper proposes an advanced method for crop yield 

prediction (CYP) in southern India using deep learning 

(DL) and dimensionality reduction (DR) techniques. 

The approach is divided into three phases: 

preprocessing, where the agricultural data is cleaned 

and normalized; dimensionality reduction using 

Squared Exponential Kernel-based Principal 

Component Analysis (SEKPCA) to reduce data 

complexity; and crop yield prediction through a 

weight-tuned deep convolutional neural network 

(WTDCNN). The proposed method achieves an 

impressive accuracy of 98.96%, outperforming 

existing models. Its novelty lies in combining DL, DR, 

and WTDCNN to provide more precise and efficient 

predictions, benefiting agricultural planning and 

supporting improved farmer incomes [3] 

Saeed Khaki1*, Lizhi Wang1 and Sotirios V. 

Archontoulis “A CNN-RNN Framework for Crop 

Yield Prediction Preprocessing “Crop yield prediction 

is a complex task due to its reliance on various factors 

such as crop genotype, environmental conditions, and 

management practices. This paper introduces a deep 

learning framework combining convolutional neural 

networks (CNNs) and recurrent neural networks 

(RNNs) to predict crop yields based on environmental 

and management data. The CNN-RNN model was 

tested alongside other popular methods, including 

random forest (RF), deep fully connected neural 

networks (DFNN), and LASSO, to forecast corn and 

soybean yields across the U.S. Corn Belt for the years 

2016, 2017, and 2018. The CNN-RNN model 

significantly outperformed all other methods, 

achieving a root-mean-square-error (RMSE) of 9% 

and 8% of the respective average yields. Key features 

of the model include its ability to capture time 

dependencies of environmental factors and genetic 

improvements of seeds, generalize predictions to 

untested environments, and offer insights into how 

weather conditions, soil quality, and management 

practices impact crop yields. These advantages make 

the CNN-RNN model a promising tool for accurate 

crop yield prediction and agricultural decision-

making.[5] 

Priti Prakash Jorvekar1*, Sharmila Kishor Wagh2, 

Jayashree Rajesh Prasad3 “Predictive modeling of 

crop yields: a comparative analysis of regression 

techniques for agricultural yield prediction “this paper 

presents a comparative study on the performance of 

various regression models for crop yield prediction 

using a comprehensive dataset that includes historical 

crop yields, weather parameters, and pesticide data. 

The study evaluated multiple models, including Linear 

Regression, K-Nearest Neighbor Regression, Support 

Vector Regression, Decision Tree Regression, 

Random Forest Regression, Gradient Boosting 

Regression, and others, based on performance metrics 

such as R² score, RMSE, and computational time. The 

results showed that Random Forest Regression 

performed the best in terms of R², followed by K-

Nearest Neighbor and Decision Tree Regression. 

However, the choice of the most suitable model also 

depends on factors like interpretability and 

computational efficiency. The findings provide 

valuable insights for farmers, policymakers, and 

researchers in selecting appropriate regression models 

for crop yield prediction. The study also suggests 

exploring the combination of regression models or 

integrating other machine learning techniques for 

improved prediction accuracy.[6] 

 

Anikó Nyéki * and Miklós Neményi “Crop Yield 

Prediction in Precision Agriculture” predicting crop 

yields is a complex yet essential task in agriculture, 

influencing decision-making at various levels. It 

involves using factors like soil conditions, weather 

data, environmental influences, and crop parameters. 

Precision agriculture technologies, including sensors, 

management systems, and variable rate technologies, 

play a key role in enhancing crop yield and quality 

while minimizing environmental impact. Simulating 

crop yield helps understand the effects of deficiencies, 

pests, and diseases during the growing season. The 

integration of IoT and big data allows for more 

accurate yield predictions, with artificial intelligence 

further improving forecasting capabilities by 

analyzing vast amounts of agricultural data over time 

and space.[8] 

Yuhan Wang 1,2, Qian Zhang 2, Feng Yu 2, *, Na 

Zhang 1,3, Xining Zhang 2, Yuchen Li 1, Ming Wang 
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2 and Jinmeng Zhang 2 “Progress in Research on Deep 

Learning-Based Crop Yield Prediction” crop yield 

prediction has become a key area of research in 

agricultural science, playing a vital role in economic 

development and policy formulation. Accurate 

predictions are essential for understanding the impact 

of factors like crop growth cycles, soil changes, and 

rainfall distribution. Traditional machine learning 

methods, while useful, often lack accuracy and show 

significant deviations from actual yields. This paper 

reviews the development of crop yield prediction, 

focusing on deep learning approaches. It analyzes 

various prediction models, their application to 

different crops, and offers suggestions for improving 

deep learning methods to enhance crop yield 

prediction in the future.[9] 

 

III. SYSTEM DESIGN AND 

METHODOLOGY FOR CROP YIELD 

PREDICTION 

 

Designing an effective crop yield prediction system 

involves a multi-layered architecture integrating data 

acquisition, preprocessing, machine learning model 

development, and deployment. The system begins 

with a Data Collection Module that aggregates 

information from diverse sources, including weather 

APIs, satellite imagery, soil sensors, and historical 

agricultural records. This is followed by a Data 

Preprocessing Module that cleans the dataset, handles 

missing values, encodes categorical variables, and 

scales numerical features using techniques such as 

Min-Max or Standard Scaling. The Feature Selection 

and Engineering Module identifies key variables—

such as temperature, rainfall, soil nutrients, and crop 

types—and may generate additional features like 

Growing Degree Days (GDD) or Soil Moisture Index. 

The core of the system is the Machine Learning 

Module, which trains models such as Linear 

Regression, Random Forest, Support Vector Machines 

(SVM), XGBoost, or Long Short-Term Memory 

(LSTM) networks, depending on data characteristics. 

Model Evaluation and Optimization follows, using 

metrics like RMSE, MAE, and R², alongside 

hyperparameter tuning and cross-validation to 

improve performance. Once trained, the Prediction 

Module delivers yield forecasts based on input 

parameters, and results are presented through 

Visualization and Reporting tools such as interactive 

dashboards and plots to aid interpretation by farmers 

and policymakers. The system is deployed using 

platforms like Flask, Streamlit, or cloud services 

(AWS, Azure, GCP) for real-time, user-accessible 

predictions. 

 

The system workflow begins with collecting 

environmental and agronomic data—such as average 

rainfall, temperature, and pesticide usage—followed 

by data cleaning and transformation. Feature 

engineering is used to extract meaningful patterns, 

which are then fed into various machine learning 

algorithms for training and evaluation. The best-

performing model is selected based on cross-

validation and error metrics. Predictions are generated 

and visualized, providing actionable insights for 

stakeholders. The dataset used includes 28,242 records 

spanning from 1990 to 2013, with five main variables: 

year, crop yield (hg/ha), average annual rainfall (mm), 

pesticide usage (tonnes), and average temperature 

(°C). The average yield is 77,053.33 hg/ha, but with a 

high standard deviation of 84,956.61 hg/ha, indicating 

substantial variability across regions and time periods. 

Rainfall averages 1,149.06 mm per year (SD: 709.81 

mm), while pesticide use averages 1,149.06 tonnes 

with an extremely high SD of 59,958.78 tonnes, 

suggesting the presence of significant outliers. 

Average temperature is 20.54°C with a range from 

1.3°C to 30.65°C. Due to the dataset’s wide variance 

and extreme values, preprocessing steps like outlier 

detection and feature scaling are critical for ensuring 

balanced model input and robust predictive 

performance. 

 

Overall, this system design emphasizes the integration 

of diverse data sources, robust data processing, and 

advanced modeling techniques to deliver accurate and 

scalable crop yield predictions that support precision 

agriculture and policy planning. 

 
Figure:1  
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The dataset used for crop yield prediction contains 

56,717 records and 12 columns, including essential 

attributes such as crop type (Item), region (Area), year, 

and yield (hg/ha_yield). To enhance clarity, the 

original Value column was renamed to hg/ha_yield, 

accurately reflecting crop yield in hectograms per 

hectare. Unnecessary columns such as codes and 

metadata were removed, leaving a cleaner dataset 

focused on the key variables for trend analysis. Yield 

values ranged from 0 to 1,000,000 hg/ha, with an 

average of over 62,000 and a high standard deviation, 

suggesting the presence of both outliers and missing 

data. Zero values could indicate missing entries, while 

extremely high values may reflect either outliers or 

exceptionally productive regions. 

A refined dataset with 28,242 entries also included 

environmental features like annual rainfall, pesticide 

use, and average temperature, spanning the years 1990 

to 2013. The crop yield in this subset showed even 

greater variability, averaging 77,053.33 hg/ha, ranging 

from just 50 to over 500,000 hg/ha. Rainfall ranged 

widely from 51 mm to 3,240 mm annually, while 

pesticide usage varied from 0.04 to 367,778 tonnes, 

indicating potential outliers requiring further 

inspection. Average temperatures ranged from 1.3°C 

to 30.65°C, reflecting diverse climatic zones. Given 

this variability, data scaling is essential to ensure 

balanced input to machine learning models. 

Good data quality, including completeness and 

accurate pairing of environmental variables with yield, 

is crucial for reliable modeling. Several machine 

learning models are used for crop yield prediction, 

including Linear Regression, DecisionTreeRegressor, 

RandomForestRegressor, and XGBRegressor. Linear 

Regression, while simple and interpretable, struggles 

with complex, non-linear data and outliers. Decision 

Trees are flexible but prone to overfitting, whereas 

Random Forests combine multiple trees to reduce 

variance and improve generalization. XGBRegressor 

offers scalability and robustness, making it suitable for 

large, diverse datasets. Model performance is assessed 

using evaluation metrics such as MAE, MSE, RMSE, 

R², EVS, and MAPE, which help measure prediction 

accuracy, variance explained, and sensitivity to 

outliers. These metrics guide model selection and 

optimization for achieving better generalization and 

predictive accuracy in crop yield forecasting. 

 

 

IV. RESULT ANALYSIS 

 

linear regression model shows decent generalization, 

with an R² of ~0.67 for both training and test sets, 

meaning it explains 67% of variance in the target 

variable. However, the high MAE (~26,500) and 

RMSE (~39,000) indicate significant absolute 

prediction errors. The MAPE is infinite, likely due to 

division by zero, which can be addressed using 

SMAPE or filtering zero values. While the model isn’t 

overfitting, performance could be improved through 

feature engineering, target transformation (e.g., log), 

trying advanced models (Random Forest, Gradient 

Boosting), or handling outliers. 

 

 
Graph :1 

 

Decision Tree Regression model exhibits perfect 

performance on the training set (R² = 1, errors = 0), 

indicating overfitting. While the test set performance 

is much better than linear regression (R² = 0.95, RMSE 

= 15,428, MAE = 6,349), the large gap between 

training and test metrics confirms overfitting. The 

MAPE is still infinite, likely due to zero values in the 

target variable. To improve generalization, consider 

pruning the tree, setting a max depth, or trying 

ensemble methods like Random Forest or Gradient 

Boosting to balance bias and variance. 

 

 
Graph :2 
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Random Forest Regression model significantly 

reduces overfitting compared to the Decision Tree, 

with R² = 0.99 on training and 0.97 on test, showing 

strong predictive power. The MAE (5,412) and RMSE 

(12,450) on the test set indicate much lower errors than 

both Linear Regression and Decision Tree. However, 

the MAPE remains infinite, likely due to zero values 

in the target variable. To further optimize, consider 

reducing tree depth, increasing estimators, or tuning 

hyperparameters to improve generalization while 

maintaining accuracy. Among the four models, 

Random Forest Regression performs the best, 

achieving the highest test R² (0.97) and the lowest test 

MAE (5,412) and RMSE (12,450), making it the most 

lanced in terms of accuracy and generalization. 

  

 
Graph :4 

 

XGBoost Regression model delivers a significant 

improvement over Linear Regression, achieving R² = 

0.88 (train) and 0.87 (test), meaning it explains about 

87% of variance while maintaining good 

generalization. The MAE (~15,000) and RMSE 

(~24,000) are lower than Linear Regression but higher 

than Random Forest, suggesting room for further 

optimization. The MAPE remains infinite, likely due 

to zero values in the target variable. To further refine 

performance, consider hyperparameter tuning 

(learning rate, max depth, boosting rounds), feature 

selection, or handling outliers. 

 
Graph :3 

XGBoost follows closely with an R² of 0.87 but 

slightly higher errors, indicating room for 

improvement through hyperparameter tuning. 

Decision Tree Regression completely overfits (R² = 1 

on training) but still generalizes well (R² = 0.95 on 

test), though it may be unstable without pruning. 

Linear Regression performs the worst (R² = 0.67) with 

significantly higher errors, suggesting it struggles to 

capture complex relationships in the data. A common 

issue across all models is infinite MAPE, likely due to 

zero values in the target variable, which should be 

addressed separately. Overall, Random Forest is the 

most reliable choice, but XGBoost could be further 

optimized for better performance 

 

R² Score Comparison: Higher is better. Random Forest 

and Decision Tree perform best on the test set, while 

Linear Regression is the weakest. 

MAE Comparison: Lower is better. Random Forest 

has the lowest test MAE, meaning it makes the least 

absolute errors. 

RMSE Comparison: Lower is better. Again, Random 

Forest has the lowest RMSE, indicating better 

generalization. 

From these visualizations, Random Forest is the best 

overall model, while Linear Regression struggles with 

high errors. 

Metric 

Linear 

Regress
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Decisio

n Tree 
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m 

Forest 

XGB

oost 

Trainin

g R² 

0.6667 1.0000 

(Overfit

) 

0.9949 0.878

6 

Test R² 0.6702 0.9485 0.9664 0.872

2 

Trainin

g 

RMSE 

39,148 0 

(Overfit

) 

4,834 23,62

7 

Test 

RMSE 

39,021 15,428 12,450 24,28

8 

Trainin

g MAE 

26,660 0 

(Overfit

) 

1,953 14,74

0 

Test 

MAE 

26,524 6,349 5,412 15,18

1 

MAPE inf inf inf inf 
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Figure:2 

 

REFERENCES 

 

[1] Thomas van Klompenburga, Ayalew Kassahuna, 

Cagatay Catalb “Crop yield prediction using 

machine learning: A systematic literature review” 

Computers and Electronics in Agriculture, 

Volume 177, October 2020, 105709. 

[2] Håkon Måløy a, ∗, Susanne Windju b, Stein 

Bergersen b, Muath Alsheikh b, c, Keith L. 

Downing “Multimodal performers for genomic 

selection and crop yield prediction”Smart 

Agricultural Technology 1 (2021) 100017. 

[3] Leelavathi Kandasamy Subramaniam a, *, 

Rajasenathipathi Marimuthu “Crop yield 

prediction using effective deep learning and 

dimensionality reduction approaches for Indian 

regional crops”e-Prime - Advances in Electrical 

Engineering, Electronics and Energy 8 (2024) 

100611 

[4] R. Ghadge, J. Kulkarni, P. More, S. Nene and R. 

L. Priya, "Prediction of crop yield using machine 

learning", Int. Res. J. Eng. Technolgy, vol. 5, 

2018. 

[5] F. H. Tseng, H. H. Cho and H. T. Wu, "Applying 

big data for intelligent agriculture-based crop 

selection analysis", IEEE Access, vol. 7, pp. 

116965-116974, 2019 

[6] M. Alagurajan and C. Vijayakumaran, "ML 

Methods for Crop Yield Prediction and 

Estimation: An Exploration", International 

Journal of Engineering and Advanced 

Technology, vol. 9, no. 3, 2020 

[7] K. A. Shastry and H. A. Sanjay, "Hybrid 

prediction strategy to predict agricultural 

information", Applied Soft Computing, vol. 98, 

pp. 106811, 2021. 

[8] T. Senthil Kumar, "Data Mining Based Marketing 

Decision Support System Using Hybrid Machine 

Learning Algorithm", Journal of Artificial 

Intelligence, vol. 2, no. 03, pp. 185-193, 2020. 


