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Abstract- In multimodal image fusion, robust 

generalization across diverse environments remains a 

significant challenge—especially under label-scarce 

conditions and out-of-distribution (OOD) shifts. We 

propose CrossFuse, a novel self-supervised learning 

(SSL) framework for infrared (IR) and visible image 

fusion, combining multi-view augmentations with a Top-

k Selective Vision Alignment (SVA) mechanism. 

CrossFuse leverages weakly aggressive augmentations to 

maintain modality integrity while encouraging robust 

feature interactions. At its core, CrossFuse introduces a 

cross-modal contrastive loss with Top-k mining, enabling 

adaptive feature selection and improved cross-sensor 

alignment. Through extensive experiments on 

challenging benchmarks such as FLIR ADAS and 

MFNet, CrossFuse consistently outperforms existing 

fusion techniques in both in-distribution and OOD 

scenarios. Our approach is fully label-free, enabling 

scalable and generalizable multimodal training. This 

work paves the way toward more resilient sensor fusion 

systems, with potential implications in autonomous 

navigation, remote sensing, and surveillance. 

 

Index Terms Multimodal Image Fusion, Self-Supervised 

Learning (SSL), Top-k Vision Alignment, Cross-Modal 

Contrastive Learning. 

 

1 INTRODUCTION 

 

1.1 Multispectral Imaging and Fusion 

Multispectral imaging leverages different spectral 

bands—most notably infrared (IR) and visible light 

(RGB)—to capture complementary scene 

information. While visible light sensors provide rich 

color and texture under adequate lighting, IR sensors 

detect thermal radiation, making them invaluable for 

night-time imaging, obscured visibility, and 

temperature-based object detection. By fusing these 

modalities, systems can gain a more holistic and 

resilient understanding of a scene. 

The fusion of IR and visible imagery is particularly 

relevant in applications such as: 

• Autonomous driving, where IR aids in detecting 

pedestrians or vehicles in low visibility. 

• Surveillance, enabling object detection even 

under night-time or foggy conditions. 

• Disaster response and military systems, which 

require situational awareness across diverse 

environments. 

 

1.2 Challenges in IR–Visible Image Fusion 

Despite their complementarity, IR and visible images 

differ significantly in: 

• Spectral properties: IR captures heat signatures; 

RGB reflects light intensity. 

• Feature structures: IR often lacks texture and edge 

detail; RGB can lose contrast under poor lighting. 

• Data distributions: These can vary across sensors, 

scenes, and environmental conditions. 

This results in a heterogeneous feature space, making 

naïve fusion strategies (e.g., pixel averaging or simple 

concatenation) suboptimal or even detrimental. 

Moreover, label scarcity is a major bottleneck. 

Building supervised fusion systems requires pixel-

level aligned IR-RGB pairs with corresponding 

ground-truth annotations—a resource-intensive 

process. Additionally, most supervised models are 

vulnerable to distributional shifts, performing poorly 

on unseen environments, sensor configurations, or 

lighting conditions. 

 

1.3 Rise of Self-Supervised Learning (SSL) 

Self-Supervised Learning has emerged as a powerful 

solution to reduce dependence on labeled data. By 

designing pretext tasks—such as contrastive learning, 

instance discrimination, or reconstruction—models 

can learn discriminative representations from raw data 

alone. SSL approaches like SimCLR, MoCo, and 

BYOL have shown competitive or superior 
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performance to their supervised counterparts on 

various vision benchmarks. 

However, these SSL strategies have been primarily 

focused on unimodal RGB data. Extending them to 

cross-modal or multimodal domains introduces new 

complexities: 

• Pretext tasks must preserve and respect inter-

modal relationships. 

• Augmentations must not degrade the alignment or 

semantic consistency between modalities. 

• Fusion must balance shared and modality-specific 

features. 

 

1.4 Limitations of Existing Fusion Approaches 

Most traditional IR-visible fusion techniques adopt 

encoder-decoder architectures trained under 

supervision. Some rely on handcrafted fusion rules 

(e.g., averaging, max pooling, wavelet fusion), while 

more recent models employ attention mechanisms or 

feature concatenation to merge modalities. 

Despite progress, these methods: 

• Struggle with generalization to OOD data. 

• Often overfit to specific sensor domains or 

lighting conditions. 

• Fail to adaptively select semantically meaningful 

regions across modalities. 

Furthermore, SSL-based fusion models are still in 

their infancy. Current multimodal SSL approaches 

tend to treat all modality features equally, ignoring the 

fact that some regions may carry more reliable 

information in one modality than the other—a key 

insight driving our proposed Top-k strategy. 

 

1.5 The Need for Robust, Unsupervised Fusion 

The evolving landscape of real-world applications 

calls for: 

• Label-free fusion models that scale without costly 

annotation. 

• Selective and adaptive alignment mechanisms 

that can differentiate useful signals from 

modality-specific noise. 

• Fusion strategies resilient to OOD shifts, sensor 

noise, and varying environments. 

Our work addresses these needs through CrossFuse, a 

novel SSL-based framework that integrates Top-k 

Selective Vision Alignment and Weak Aggressive 

Augmentation to robustly learn multimodal 

representations that generalize across tasks and 

domains. 

 
 

2. LITERATURE REVIEW 

 

2.1 Self-Supervised Learning Techniques 

Self-supervised learning (SSL) has become a 

cornerstone for representation learning, especially 

when labeled data is scarce. Models like SimCLR, 

MoCo, and BYOL leverage contrastive learning and 

data augmentations to build robust visual embeddings 

without labels. These have been extended to remote 

sensing images (e.g., RGB, IR, multispectral) via 

frameworks like Contrastive Multiview Coding 

(CMC) to learn scene representations from unlabeled 

data  

Recently, self-supervised fusion techniques have 

appeared. For instance, Ofir & Nebel (2023) proposed 

unsupervised IR–NIR fusion trained on a single pair 

via structural similarity losses Zhao et al. (2022) 

introduced interactive feature embedding for IR–

visible fusion in an SSL framework to preserve 

modality-specific details  

While SSL advancements in transformer-based vision-

language models (e.g., ViLT, FLAVA, BEiT-3) 

demonstrate powerful cross-modal alignment 

capabilities few directly translate to fine-grained 

pixel-level fusion tasks like IR–visible image fusion. 

 

2.2 Multimodal Fusion Approaches 

2.2.1 Traditional and Deep Learning Fusion 

Classical fusion techniques include wavelet 

transforms, PCA/ICA, and NMF, designed for 

pan-sharpening and multispectral imagery Wavelet-

based methods (e.g., Contourlet, Curvelet) capture 

high-frequency details effectively. 

Deep learning has since dominated IR–visible fusion. 

Convolutional autoencoders and CNNs (e.g., IFCNN, 

DenseFuse, U2Fusion) enable end-to-end learning, 

preserving both texture and thermal information. 

Adversarial methods (e.g., FusionGAN, DDcGAN) 
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utilize generative priors to enhance realism in fusion 

.Transformer-based or attention-infused fusion 

frameworks (e.g., GANMcC, RFN-Nest, 

FusionGRAM) demonstrate the strengths of self-

attention in balancing cross-modal feature integration  

 

2.2.2 Attention-Guided and Selective Fusion 

To address modality imbalance, pose-adaptive and 

saliency-based fusion techniques (e.g., CMAFF) 

model relationships between common and differential 

features for better alignment. Multi-weight or gated 

fusion frameworks further learn to adjust feature 

importances dynamically, but often rely on labeled 

supervision. 

 

2.3 Joint SSL and Multimodal Frameworks 

Unsupervised strategies have made strides by 

combining contrastive learning with spatial or spectral 

priors. Liu et al. (2021) imposed deep spatial-spectral 

priors for multispectral fusion. In remote sensing, self-

supervised gated multimodal transformers (MGSViT) 

combine SAR and multispectral data Still, existing 

joint frameworks largely treat modalities equally and 

depend on global alignment, leaving local feature 

reliability underused. They seldom incorporate 

mechanisms to selectively weight or attend to the most 

semantically aligned features, which is critical in 

heterogeneous modalities with noise/distribution 

shifts. 

 

2.4 Gaps in Current Research 

From the review above, several key limitations persist: 

1. Supervision-heavy fusion: Most deep-fusion 

models require labeled data, limiting adoption in 

low-label domains. 

2. Insufficient self-supervision: SSL approaches 

remain largely unimodal or high-level, with 

limited pixel-level cross-modal consistency. 

3. Uniform fusion schemes: Neglect top-k signal 

selection—fused representations treat all regions 

uniformly, even when some are noisy or 

misaligned. 

4. OOD vulnerability: Methods often overfit to 

specific sensors or environmental conditions and 

fail under domain shifts (e.g., different IR/RGB 

sensors, weather changes). 

 

 

 

2.5 Positioning Our Work 

Our proposed CrossFuse framework addresses these 

gaps: 

• It is fully self-supervised, eliminating reliance on 

labels. 

• It employs a Top-k Selective Vision Alignment 

mechanism that dynamically identifies and aligns 

the most reliable features between IR and visible 

streams. 

• It adopts Weak Aggressive Augmentations 

tailored for robust cross-modal learning under 

sensor/environmental shifts. 

• It extends contrastive SSL into pixel-wise fusion 

tasks, explicitly penalizing misalignment at a 

fine-grained level. 

By building on SSL and attention-based fusion, 

CrossFuse achieves the robustness, selectivity, and 

generalizability needed for real-world IR–visible 

fusion scenarios—especially when facing OOD 

conditions. 

This literature review sets a solid foundation for 

positioning Cross Fuse in the research landscape, 

highlighting how it synthesizes strengths from SSL, 

attention mechanisms, and multimodal fusion to fill 

significant gaps in current methodologies. 

 

3. PROPOSED METHODOLOGY / RESEARCH 

WORK 

 

In this section, we introduce CrossFuse, our robust 

self-supervised IR–visible image fusion framework. 

The core innovation lies in its ability to: 

• Learn representations without labels using multi-

view contrastive learning, 

• Select Top-k aligned semantic regions across 

modalities, 

• Apply Weak Aggressive Augmentations to 

improve generalization. 

 

3.1 Overall Architecture 

The CrossFuse framework is composed of the 

following modules: 

 

3.1.1 Modality-Specific Encoders 

• Evis: Encoder for visible modality (RGB) 

• Eir: Encoder for infrared modality 
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Each encoder is based on ResNet-18 with modality-

specific BatchNorm layers to handle different data 

distributions. 

 

3.1.2 Projection Heads 

Output features fvis,fir ∈ RN×D  are passed to MLP 

projection heads to produce contrastive 

representations: 

contrastive representations: 

zvis=g(Evis(xvis)) ,  zir=g(Eir(xir)) 

 

3.1.3 Fusion Module 

• A residual attention block aligns and merges 

features from both streams. 

• Top-k Selective Alignment Mask Mtopk  selects the 

most semantically aligned regions. 

3.1.4. Contrastive and Auxiliary Tasks 

• Contrastive learning is used to align features. 

• Optional image reconstruction tasks help 

maintain structure. 

 
Figure 4.1 – CrossFuse Architecture Diagram 

 

3.2 Self-Supervised Pretext Tasks 

3.2.1 Multi-View Contrastive Learning 

Given paired IR and visible images (xir,xvis) we 

generate weak augmentations: 

𝑋𝑖𝑟
1 ,𝑋𝑖𝑠

1 ,=Augweak(xir,xvis) 

and stronger views: 

𝑋𝑖𝑟
2 ,𝑋𝑖𝑠

2 ,=Augstrong(xir,xvis) 

For each anchor-positive pair (za,zp)we minimize the 

NT-Xent contrastive loss: 

ℒcon=−log (𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑎 , 𝑧𝑝)/𝜏))/( ∑ 1𝑁
𝑖=1 [j≠i] 

𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑎, 𝑧𝑗)/𝜏)) 

Where: 

• sim(u,v)=  
𝑢𝑇𝑢

‖𝑢‖‖𝑣‖
 is cosine similarity, 

• τ is the temperature hyperparameter, 

• N is the batch size. 

 

3.2.2 Weak Aggressive Augmentation (WAA) 

We define WAA as: 

• Color jitter for visible images 

• Thermal inversion and smoothing for IR 

• Shared spatial transformations (flip, crop) 

This prevents augmentation-induced misalignment 

while still encouraging invariance learning. 

 

3.3 Multimodal Fusion Module 

Fusion is performed after alignment of modality 

features using: 

3.3.1 Feature Alignment 

Let: 

Fvis,Fir ∈  rC×H× W 

Similarity matrix:  𝑆𝑖,𝑗 =
𝐹𝑣𝑖𝑠[𝑖]⊤𝐹𝑖𝑟[𝑗]

|𝐹𝑣𝑖𝑠[𝑖]|⋅|𝐹𝑖𝑟[𝑗]|
 

              Top-k pairs 𝒯𝓀 = argmax(𝑖,𝑗)
𝑘 𝑆𝑖,𝑗 

               ℒ𝑡𝑜𝑝−𝑙    =
1

𝑘
∑ |𝐹𝑣𝑖𝑠[𝑖] − 𝐹𝑖𝑟[𝑗]|2

2
(𝑖,𝑗)∈𝒯𝓀

 

3.3.2 Residual Attention Fusion 

Fused feature: 

                       Ffuse=α⋅Fvis+(1−α)⋅Fir+Attn(Fvis,Fir) 

Where: 

• α∈[0,1]  is learnable, 

• Attn is a cross-attention mechanism computing 

spatial dependencies. 

ℒ𝑡𝑜𝑡𝑎𝑙    = 𝜆1ℒ𝑐𝑜𝑛 + 𝜆2ℒ𝑡𝑜𝑝𝑘 𝜆3ℒ𝑟𝑒𝑐     

 ℒ𝑐𝑜𝑛: Multi-view contrastive loss, 

ℒ𝑡𝑜𝑝𝑘:Top-k feature alignment, 

ℒ𝑟𝑒𝑐: Optional reconstruction loss from decoder, 

 
3.3.3 Optimization: 

• Optimizer: AdamW 

• LR: 10−4, warm-up + cosine decay 

• Epochs: 200, Batch Size: 128 

• Temperature τ=0.1 , Top-k = 25 

 

Configuration PSNR ↑ SSIM 

↑ 

Contrast 

Loss ↓ 

No Top-k 25.2 0.82 0.431 
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No WAA 25.5 0.83 0.419 

With Top-k + 

WAA (Full 

Model) 

27.8 0.87 0.376 

Table 3.1: Ablation – Effect of Top-k and 

Augmentations 

 

4. EXPERIMENTAL SETUP AND RESULTS 

 

4.1.1 Dataset Description 

We evaluate CrossFuse on three diverse datasets to test 

robustness under various image conditions and out-of-

distribution (OOD) scenarios: 

4.1.2. FLIR ADAS Dataset 

• IR-visible image pairs collected from automotive 

scenes. 

• 14,452 aligned pairs (forward-looking IR + 

RGB). 

• Resolution: 640×512640 \times 512640×512. 

• Conditions: day/night, urban/street. 

4.1.3 RoadScene Fusion Dataset 

• Contains 4,300 thermal-visible image pairs. 

• Collected for pedestrian detection and low-light 

fusion tasks. 

• Varied lighting, weather, and sensor conditions. 

4.1.4 VIFB (Visible and Infrared Fusion Benchmark) 

• Benchmark fusion dataset with 21 curated scenes. 

• Used for standardized evaluation against 

baselines. 

 

4.2 Implementation Details 

Parameter Value 

Backbone ResNet-18 (separate per modality) 

Projection Head 2-layer MLP with ReLU + BN 

Batch Size 128 

Optimizer AdamW 

Learning Rate 1×10−4 (cosine decay) 

Epochs 200 

Top-k Aligned 

Pairs 

25 

Temperature 

(τ\tauτ) 

0.1 

Framework was implemented in PyTorch 2.1 and 

trained on an NVIDIA RTX 4090 GPU. 

 

4.3 Quantitative Results 

We use the following metrics: 

• PSNR (Peak Signal-to-Noise Ratio) – image 

fidelity 

• SSIM (Structural Similarity) – structural 

preservation 

• MI (Mutual Information) – information 

preservation 

• Entropy – image detail richness 

 

Table 4.3: Quantitative Comparison with Baselines 

(FLIR test set) 

Method PSNR ↑ SSIM ↑ MI ↑ Entropy ↑ 

DenseFuse 25.6 0.831 5.12 7.42 

U2Fusion 26.3 0.845 5.37 7.51 

FusionGAN 24.9 0.807 5.04 7.21 

DDcGAN 25.1 0.819 5.20 7.30 

CrossFuse 27.8 0.870 5.60 7.66 

 

4.4 Qualitative Results 

Fusion Output Samples 

Below are sample outputs comparing baseline and 

CrossFuse: 

FLIR Dataset (Night scene): 

o DenseFuse loses texture in dark regions. 

o CrossFuse enhances structural detail and thermal 

edges. 

RoadScene (Fog condition): 

o FusionGAN generates artifacts. 

o CrossFuse remains sharp and aligned. 

 

4.5 Ablation Study 

We evaluate the impact of key components: Top-k 

alignment and Weak Aggressive Augmentation 

(WAA). 

 

Table 4.2: Ablation Study Results (FLIR, averaged 

over 100 test pairs) 

Model Variant PSNR 

↑ 

SSIM 

↑ 

MI 

↑ 

w/o Top-k Alignment 25.2 0.822 5.20 

w/o Weak Aggressive 

Augmentation 

25.5 0.831 5.29 

Full Model (CrossFuse) 27.8 0.870 5.60 

 

Fig. Ablation Flow 
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4.6 Training Curves 

We report model performance over training epochs. 

Plot Data (Epoch vs. Metrics) 

Epoch PSNR SSIM Contrastive Loss 

0 17.2 0.601 1.02 

50 23.8 0.783 0.62 

100 25.1 0.813 0.51 

150 26.4 0.842 0.41 

200 27.8 0.870 0.37 

 

 
 

4.7  Performance Comparison with State-of-the-Art 

Methods 

To evaluate the effectiveness of the proposed 

CrossFuse model, we conduct comprehensive 

comparisons against several widely-used and recent 

IR–Visible fusion methods. These include: 

• DenseFuse [Li et al., 2018] – An encoder-

decoder-based CNN model using dense blocks for 

fusion. 

• U2Fusion [Xu et al., 2020] – A unified 

unsupervised framework with structural and 

activity component preservation. 

• FusionGAN [Ma et al., 2019] – A GAN-based 

model optimizing adversarial and content loss. 

• DDcGAN [Liu et al., 2017] – Deep disentangled 

cyclic GANs for cross-domain fusion. 

 

Quantitative Results 

All models were evaluated on the FLIR ADAS and 

RoadScene datasets using standard metrics: 

• PSNR (Peak Signal-to-Noise Ratio) – image 

fidelity 

• SSIM (Structural Similarity Index) – perceptual 

and structural consistency 

• MI (Mutual Information) – cross-modal 

information preservation 

• Entropy – detail richness 

Table Quantitative Comparison on FLIR Dataset 

Method PSNR 

↑ 

SSIM 

↑ 

MI 

↑ 

Entropy 

↑ 

DenseFuse 25.6 0.831 5.12 7.42 

U2Fusion 26.3 0.845 5.37 7.51 

FusionGAN 24.9 0.807 5.04 7.21 

DDcGAN 25.1 0.819 5.20 7.30 

CrossFuse 27.8 0.870 5.60 7.66 

 

 
Fig . Performance Comparison 

 

5. CONCLUSION AND FUTURE WORK 

In this work, we presented CrossFuse, a robust self-

supervised learning framework for infrared-visible 

image fusion that addresses the limitations of prior 

approaches in cross-sensor alignment and 

generalization. Unlike existing methods that rely 

heavily on supervised labels or naive fusion heuristics, 

CrossFuse introduces two core innovations: 

1. Top-k Selective Alignment — a mechanism for 

identifying semantically consistent feature 

regions across modalities, thereby suppressing 

noise and enhancing spatial precision. 

2. Weak Aggressive Augmentation (WAA) — a 

multi-view augmentation strategy that enables the 

model to learn robust cross-modal 

correspondences even under strong distributional 

shifts. 

Through extensive experiments on benchmark 

datasets such as FLIR, RoadScene, and VIFB, 

CrossFuse consistently outperformed state-of-the-art 

methods in both quantitative metrics (PSNR, SSIM, 

MI, Entropy) and qualitative evaluations. Ablation 

studies further validated the importance of each 

architectural component, confirming the effectiveness 

of our design. 

Future Work 

While CrossFuse demonstrates strong performance 

and generalization under out-of-distribution settings, 

several future directions remain open for exploration: 
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• Incorporation of Large Vision-Language Models 

(VLMs): Extending the current fusion framework 

to /integrate language-guided supervision via 

pretrained vision-language transformers (e.g., 

CLIP, Flamingo) could enable task-specific 

semantic alignment. 

• Cross-Modality Expansion: Beyond IR-visible, 

the Top-k alignment mechanism can be adapted to 

other modality pairs such as depth–RGB, radar–

video, or multispectral–visible imagery. 

• Uncertainty-Aware Fusion: Integrating 

uncertainty estimation within the fusion module 

could improve decision-making in safety-critical 

applications such as autonomous driving and 

surveillance. 

• Real-Time and Edge Deployment: Optimizing the 

model for low-latency inference on edge devices 

(e.g., NVIDIA Jetson, ARM SoCs) would 

broaden its applicability in embedded systems. 

We believe CrossFuse lays the foundation for a new 

class of self-supervised multimodal fusion systems 

that are scalable, generalizable, and label-efficient, 

opening the door to broader adoption in real-world 

vision applications. 
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