
© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

 

IJIRT 182048         INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 520 

Investigation of Self-Supervised Speech Models for 

Stuttered Speech Detection 
 

 

Md Dilwar Alam1, Deepti Gupta2 

1University Institute of Engineering and Technology 
2Panjab University Chandigarh Chandigarh, India 

 

Abstract—A speech condition called stuttering is 

typified by irregularities in speech fluency, such as 

repetitions, blocks, and prolongations. Speech-language 

pathologists' (SLPs') manual evaluations, which take a 

lot of time and need specialized knowledge, are a major 

component of traditional diagnosis. This study explores 

utterance-level stuttering detection using self-supervised 

learning (SSL) models to facilitate automated 

evaluation. We specifically assess how well a number of 

pretrained SSL speech models perform on utterance-

level stuttering categorization tasks: WavLM Base, 

HuBERT Base, Wav2Vec 2.0 Base, WavLM Large, 

HuBERT Large, and Wav2Vec 2.0 Large. The Kassel 

State of Fluency (KSoF) dataset, FluencyBank, and 

SEP-28K are used for independent testing, and the 

models are refined using these datasets. F1 scores for 

various stuttering types are used to gauge performance. 

All three test sets (SEP-28K, FluencyBank, and KSoF) 

have the following F1 values: WavLM Base (0.797, 

0.800, 0.772), HuBERT Base (0.790, 0.790, 0.766), 

Wav2Vec 2.0 Base (0.778, 0.782, 0.758), WavLM 

Large (0.832, 0.832, 0.758), HuBERT Large (0.817, 

0.816, 0.788), and Wav2Vec 2.0 Large (0.804, 0.803, 

0.779).WavLM Large continuously performs the best on 

utterance-level benchmarks out of all the models. This 

comparison study demonstrates how well SSL models 

identify stuttering and offers information about how 

they may be used in actual speech pathology and fluency 

disorder evaluation. 

 

Keywords—Sel-Supervised Learning, Utteranc-Level 

Stuttering Detection, Feature Extraction. 

 

1. INTRODUCTION 

A neurodevelopmental speech disease, stuttering 

causes involuntary repetitions, prolongations, blocks, 

and interjections that interfere with speech's natural 

flow. For millions of people globally, it has a major 

impact on professional development, academic 

achievement, and social engagement. Stuttering affects 

about 80 million people worldwide, but access to 

clinical evaluation is still restricted because there aren't 

enough qualified speech-language pathologists (SLPs) 

[1,2]. The necessity for automated screening methods to 

enhance early identification and management is further 

highlighted by the fact that many SLPs express a lack of 

confidence in their ability to cure fluency issues [2]. 

Stuttering event detection and classification have 

advanced significantly as a result of the use of machine 

learning (ML) in speech pathology. Early attempts used 

manually extracted characteristics like linear prediction 

cepstral coefficients (LPCCs) or Mel-frequency 

cepstral coefficients (MFCCs) [3]. The generalizability 

of these conventional approaches across speakers and 

languages is constrained, especially when it comes to 

spontaneous or therapy-influenced speech [4]. 

Speech processing challenges have been transformed 

by recent developments in self-supervised learning 

(SSL). By learning contextualized speech 

representations from unlabeled data, models like 

Wav2Vec 2.0, HuBERT, and WavLM have shown 

higher performance in speaker verification, automatic 

speech recognition (ASR), and fluency analysis [5,6]. 

Additionally, research has demonstrated that SSL 

characteristics are more effective than conventional 

acoustic features at detecting stuttering, especially in 

noisy or low-resource environments [7, 8]. 

Although ASR and utterance-level classification have 

been used in previous research to detect stuttering [9], 

word-level annotation is necessary in clinical situations 

because clinicians usually evaluate stuttering at the level 

of individual words or syllables[2]. Additionally, multi-

label classification is a more realistic technique because 

real-world speech frequently involves overlapping or 

co-occurring stuttering kinds [10]. 

This study examines the effectiveness of six SSL 

models— WavLM, HuBERT, and Wav2Vec 2.0—for 

utterance-level stuttering detection in both Base and 
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Large configurations in order to overcome these 

constraints. Block, Prolongation, Sound Repetition, 

Word Repetition, and Interjection are the five 

typically annotated stuttering kinds that we 

concentrate on. These types are labeled in benchmark 

datasets as SEP- 28k [11], FluencyBank Timestamped 

[9], and KSoF [4]. We assess generalization across 

SEP-28k, FluencyBank, and KSoF separately and 

refine each model on a combined training set of SEP-

28k and FluencyBank. 

This study compares self-supervised learning models 

(Wav2Vec 2.0, HuBERT, and WavLM in base and 

large configurations) for stuttering detection in order 

to fill in these gaps. This work's primary contributions 

are: 

1. Model Comparison: We assess how well six SSL- 

based methods detect stuttering. 

2. Dataset Combination: To evaluate 

generalizability, we test on SEP-28k, 

FluencyBank, and KSoF after training on a 

combined dataset (SEP-28k + FluencyBank). 

3. Fine-grained Detection: To enhance clinical 

relevance, we categorize five different types of 

disfluencies and present cross-type performance. 

 

2. RELATED WORK 

Research on automatic stuttering detection has 

progressed from rule-based techniques to deep 

learning and data-driven strategies. MFCC and LPCC, 

two manually constructed acoustic features, were 

crucial to early systems' ability to identify speech 

dysfluencies [12,13]. Although successful in 

controlled settings, these techniques had issues with 

scalability and generalization. 

The field has made great progress since the 

introduction of big annotated datasets. More than 

28,000 clips with annotations for five different 

disfluency types—blocks, prolongations, sound 

repetitions, word repetitions, and interjections—were 

added by SEP-28k [11] and its extension [14]. Previous 

datasets were expanded by FluencyBank Timestamped 

[9], which offered word-level timing data crucial for 

clinical applications. Furthermore, therapy-based 

recordings with thorough labels, including speech 

alterations pertinent to tracking therapeutic progress, 

were provided by KSoF [4]. 

A varied stuttering speech dataset comprising Indian 

languages with demographic metadata and both read 

and spontaneous speech recordings was introduced by 

Project Boli in order to close the multilingual gap [1]. 

Training more reliable stuttering detection models has 

been made possible by these datasets. 

Deep learning models like Bi-LSTMs have 

outperformed conventional machine learning 

techniques like SVMs and random forests in terms of 

modeling methods because they are better at capturing 

temporal relationships in speech. To classify four 

dysfluency classes in real-time, for example, 

[15] integrated MFCCs with phoneme probabilities. 

The detection of stuttering has changed with the advent 

of self-supervised learning (SSL). Wav2Vec 2.0, 

HuBERT, and WavLM are examples of SSL models 

that are refined for downstream tasks after being trained 

on vast amounts of unlabeled speech. A word-level 

SSL-based model was presented by Shih et al. [2] and 

performed better than earlier utterance-level methods. 

On the KSoF dataset, Sheikh et al. 

[8] also used Wav2Vec 2.0 embeddings and showed 

better accuracy than conventional baseline models. 

A 10% relative gain in ASR accuracy was attained by 

Arunkumar et al. [5] by the use of ensemble approaches 

that included features from Wav2Vec 2.0, HuBERT, 

and WavLM in order to further improve performance. 

In another work, Javanmardi et al. [16] improved the 

classification of dysarthria severity using early and final 

layer embeddings of Wav2Vec 2.0, demonstrating the 

adaptability of SSL characteristics for various speech 

disorders. 

Since stuttering kinds frequently co-occur, multi-label 

classification has also drawn interest. An attention-

based head Wav2Vec 2.0 system was presented by 

Bayerl et al. 

[10] for multi-label stuttering detection across several 

languages and corpora. By hierarchically combining 

transcription and detection, Lian et al. [17] suggested 

an unconstrained dysfluency modeling (UDM) 

framework that lessens the need for manual annotation. 

Multilingual and cross-corpus evaluation are still 

essential. Wav2Vec 2.0 was fine-tuned on therapy-

altered speech by Bayerl et al. [18], who showed better 

generalization across situations. In order to capture 

speaker-specific patterns and disfluency boundaries, 
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Mohapatra et al. [19] employed CNNs and 

bidirectional RNNs to concentrate on contextual cues. 

These patterns are emphasized in thorough 

evaluations like Sheikh et al. [12], which also advocate 

for more uniform standards. 

In this study, we expand on these foundations by 

testing three benchmark datasets for utterance-level 

identification of five stuttering kinds using three 

different SSL models: WavLM, HuBERT, and 

Wav2Vec 2.0. In an effort to increase practical 

applicability, we also do ablation analysis to 

comprehend the impact of various model 

characteristics and dataset combinations. 

 

3. PROPOSED METHOD 

This study investigates the use of self-supervised 

learning (SSL) models for stuttering detection on 

three important datasets: KSoF, FluencyBank, and 

SEP-28k. Every dataset makes a distinct contribution 

to the creation and assessment of stuttering detection 

systems. SEP-28k offers comprehensive annotations 

of English speech stutter kinds. The model's 

generalizability is improved by FluencyBank's 

timestamped, real-world speech data from adults and 

children. KSoF adds linguistic diversity and 

robustness to the evaluation process; it was created for 

Arabic stuttering detection. 

The study makes use of SSL models in base and large 

configurations, including WavLM, HuBERT, and 

Wav2Vec 2.0. These models are optimized for 

stuttering classification tasks after being pre-trained 

on a significant amount of unlabeled speech. The 

study assesses generalizability and adaptability by 

comparing model performance across datasets. 

Techniques for feature extraction are essential to the 

methodology, especially when utilizing the averaged 

hidden states or the final hidden layer. 

Based on a thorough literature review, this study 

contrasts more contemporary SSL-based approaches 

with more conventional techniques like CNN/LSTM-

based architectures, ZCR, and MFCCs. This study 

assesses generalization across languages and domains 

in a new way, in contrast to previous publications that 

usually concentrate on a single language or dataset. It 

proves the effectiveness of SSL in this area by 

showing that models such as WavLM-Large get 

higher F1 scores and greater generalization on 

unknown data. 

Utterance Level Stuttering Classification 

 

 
Figure 1 Flowchart of stutter type classification 

 

The findings highlight how crucial it is to develop more 

inclusive and reliable speech technology by utilizing 

big, varied datasets and contemporary designs. 

Additionally, integrating cross-linguistic datasets like 

KSoF demonstrates how these models can be used in 

multilingual real-world applications. This study helps 

create more accessible speech interfaces for PWS in 

addition to advancing automatic stuttering detection. 

4 RESULTS AND DISCUSSIONS 

The performance of several self-supervised speech 

models on the stuttering event detection challenge is 

presented in this section. The SEP-28k and 

FluencyBank datasets were combined to train each 

model. The SEP-28k, FluencyBank, and KSoF datasets 

were tested independently to assess the trained models' 

capacity for generalization. 

 

4.1 Using WavLM-Base 

The SEP-28k and FluencyBank datasets, which 

together comprise 32,321 labeled audio segments, were 

used to train the WavLM-Base model. Three test sets—

 

Stuttering Category 

B IN PR SR WR 
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SEP-28k, FluencyBank, and KSoF—were used to 

evaluate the trained model's in-domain performance 

as well as its cross-dataset generalization capabilities. 

The WavLM-Base model had high detection skills on 

data comparable to the training distribution, as 

evidenced by the experimental findings, which 

demonstrated an overall F1- score of 0.80 on the SEP-

28k test set. The model demonstrated its resilience in 

managing a variety of speech patterns by maintaining 

a similar performance with an F1- score of 0.80 when 

evaluated on FluencyBank. Despite a minor 

performance decline that was anticipated given the 

variations in recording conditions and speaker 

demographics, the model nevertheless did rather well 

on the cross-dataset test using the KSoF corpus, 

achieving an overall F1-score of 0.77. 

In every stuttering category—blocks, interjections, 

prolongations, sound repetitions, and word 

repetitions—the model continuously demonstrated 

strong performance. The fact that this consistency was 

seen in all three datasets. Table 1 shows a breakdown 

of the F1-scores for each type of stuttering as well as 

overall F1-score. 
 

4.2 Using HuBERT-Base: 

The combined SEP-28k and FluencyBank datasets, 

which contained 32,321 tagged audio segments, were 

used to train the HuBERT-Base model. SEP-28k, 

FluencyBank, and KSoF were the three different 

testing datasets used to assess this model's cross-

corpus generalization and in-domain classification 

performance. 

The model's total F1-score on both the SEP-28k and 

FluencyBank test sets was 0.79, indicating consistent 

performance. When trained on a sufficiently large and 

diverse dataset, this shows that the model can 

generalize across recordings from various sources. 

The HuBERT-Base model demonstrated good 

generalization across variations in recording settings 

and speaker populations when tested on the unseen 

KSoF dataset, achieving an F1-score of 0.77. 

In every stuttering category—blocks, interjections, 

prolongations, sound repetitions, and word 

repetitions—the model continuously demonstrated 

performance. The fact that this consistency was seen 

in all three test datasets. Table 1 shows a breakdown 

of the F1-scores for each type of stuttering as well as 

overall F1-score. 

 

4.3 Using Wav2Vec 2.0 -Base 

The combined SEP-28k and FluencyBank datasets, 

which included 32,321 tagged stuttering and non-

stuttering segments, were used to train the Wav2Vec 

2.0 Base model. The model's performance within the 

dataset and its ability to generalize to new data were 

subsequently assessed using three testing datasets: 

SEP-28k, FluencyBank, and the external KSoF corpus. 

The model consistently identified stuttering events 

across recordings with identical labeling structures, as 

evidenced by its F1-score of 0.78 on the SEP-28k and 

FluencyBank testing datasets. The model retained a 

reasonable F1 score of 0.76 for the external KSoF 

dataset, indicating that it can generalize even to audio 

recorded in various situations. 

For Block, Prolongation, Interjection, Sound 

Repetition, and Word Repetition events, the model 

continuously demonstrated high detection capabilities 

in terms of stuttering type-specific performance across 

all three datasets. This demonstrates the model's ability 

to handle a variety of stuttering patterns with resilience 

and its potential for use in automated stuttering 

detection systems. Table 1 shows a breakdown of the 

F1-scores for each type of stuttering as well as overall 

F1-score. 

Table 1:Performance of Stuttering Detection for Base 

Model 

Training data:SEP-28K+FluencyBank (size:32321) 

 F1-Score 

MODEL Test 

Dataset 

Over 

All 

B IR PR SR WR 

 

WavLm 

SEP-28k 0.797 0.82 0.78 0.81 0.71 0.74 

FluencyBank 0.800 0.83 0.83 0.80 0.80 0.78 

KSoF 0.772 0.80 0.80 0.78 0.70 0.71 

 

HuBERT 

SEP-28K 0.790 0.82 0.78 0.79 0.78 0.74 

FLuencyBank 0.790 0.80 0.77 0.80 0.80 0.76 

KSoF 0.766 0.80 0.79 0.77 0.71 0.71 

 

Wav2v ec 

2.0 

SEP-28K 0.778 0.80 0.76 0.79 0.76 0.72 

FluencyBank 0.782 0.80 0.76 0.78 0.77 0.78 

KSOF 0.758 0.79 0.78 0.75 0.69 0.71 

4.4 Using WavLM-Large: 

The WavLM-Large model was trained using 32,321 

labeled speech samples from the SEP-28K and 

FluencyBank combined dataset. SEP-28K, 

FluencyBank, and KSOF were the three different testing 

datasets used to assess the model's performance. 

According to the evaluation results, the model obtained 

an F1-score of 0.832 on the FluencyBank dataset, 0.808 

on the KSOF dataset, and 0.832 on the SEP-28K 

dataset. The model's remarkable generalization skills 
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across in-domain and out-of-domain datasets are 

demonstrated by these results. 

The WavLM-Large model consistently demonstrated 

good F1 scores for stuttering type-wise performance 

across all three datasets, especially for Block, 

Interjection, Prolongation, Sound Repetition, and 

Word Repetition stuttering events. The model's ability 

to handle a range of stuttering traits in real-world 

speech samples is further supported by this. The 

breakdown of these results is presented in Table 2. 

 

4.5 Using HuBERT-Large: 

A combined dataset of SEP-28K and FluencyBank, 

which included 32,321 audio samples with stuttering 

labels, was used to train the HuBERT-Large model. 

Three datasets— SEP-28K, FluencyBank, and 

KSOF—were independently tested to evaluate the 

model's capacity for generalization. 

On the SEP-28K dataset, the model's F1-score was 

0.817; on FluencyBank, it was 0.816; and on the 

KSOF dataset, it was 0.788. These findings show that 

the model continues to function dependably when 

tested on additional datasets like KSOF in addition to 

the observed data distributions. 

For the basic stuttering categories of Block, 

Interjection, Prolongation, Sound Repetition, and 

Word Repetition, the HuBERT Large model 

consistently shown strong identification abilities 

across all three datasets, attaining high F1-scores, as 

show results in Table 2. 

 

4.6 Using Wav2Vec 2.0-Large: 

The Wav2Vec 2.0-Large model was trained using 

32,321 labeled samples from a combined dataset that 

included the SEP-28K and FluencyBank corpora. To 

determine how well the model generalized across 

various speech sources, it was independently tested on 

three test datasets: SEP-28K, FluencyBank, and 

KSOF. 

The model's F1-scores on the SEP-28K test set were 

0.804, FluencyBank was 0.803, and KSOF was 0.779. 

The aforementioned findings validate that the 

Wav2Vec 2.0- Large model exhibits consistent and 

dependable performance on both in-domain and 

external datasets, including KSOF. 

The model also achieved strong F1-scores and 

demonstrated dependable detection performance 

across the primary stuttering types, including Block, 

Interjection, Prolongation, Sound Repetition, and 

Word Repetition. The results in Table 

2 demonstrate its effectiveness in real-world stuttering 

identification tasks. 

Table 2: Performance of Stuttering Detection for Large 

Model 

Training data:SEP-28K+FluencyBank (size:32321) 

 F1-Score 

MODE

L 

Test 

Dataset 

Over 

All 

B IR PR SR WR 

 

WavLm 

SEP-28k 0.832 0.85 0.82 0.84 0.81 0.78 

FluencyBank 0.832 0.87 0.82 0.83 0.83 0.81 

KSoF 0.808 0.84 0.83 0.81 0.73 0.75 

HuBER T SEP-28K 0.817 0.84 0.80 0.83 0.80 0.76 

FLuencyBank 0.816 0.85 0.80 0.82 0.81 0.79 

KSoF 0.788 0.82 0.81 0.79 0.77 0.73 

Wav2v 

ec 2.0 

SEP-28K 0.804 0.83 0.79 0.81 0.79 0.75 

FluencyBank 0.803 0.83 0.79 0.80 0.80 0.78 

KSOF 0.779 0.81 0.79 0.78 0.71 0.72 

 

A comparison of deep learning models for stuttering 

detection across five disfluency classes is presented in 

this article. To improve diversity and robustness, 

models were trained using the combined SEP-28k and 

FluencyBank datasets. To evaluate generalizability, the 

SEP-28k, FluencyBank, and KSoF test sets were used. 

Because of its balance, the F1 score served as the main 

performance indicator. The findings indicate that 

WavLM Large fared better than the other models, 

particularly when it came to identifying word repetition 

and extension. However, because they are nuanced and 

speaker-specific, interjections and sound repeats 

presented difficulties. The significance of model scale 

and pretraining data in managing stuttering variability 

is demonstrated by the consistent superior performance 

of larger SSL models, such as HuBERT Large and 

Wav2Vec 2.0 Large, over their base equivalents. 

 

5. CONCLUSIONS 

In this work, six self-supervised learning (SSL) models 

for utterance-level stuttering detection—WavLM, 

HuBERT, and Wav2Vec 2.0 in Base and Large 

configurations—are thoroughly evaluated. To verify 

model performance, we used lightweight classifiers to 

evaluate representations taken from pretrained SSL 

models on three benchmark datasets: KSoF, 

FluencyBank, and SEP-28k. WavLM Large 

continuously produced the highest F1 scores of any 

model, exhibiting excellent generalization in both in-

domain and cross-domain contexts. The findings 

demonstrate that, even in the absence of fine-tuning, 
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massive SSL designs have the capacity to record 

strong acoustic patterns associated with speech 

disfluencies. This study provides a solid foundation 

for upcoming cross-corpus stuttering research and 

highlights the efficacy of SSL-based methods in the 

identification of fluency disorders. Future research 

will include multilingual adaptability, frame-level 

disfluency detection, and integration with clinical 

evaluation. 

REFERENCE 

 

[1] A. Batra, M. narang, N. K. Sharma, and P. K. Das, 

“Boli: A dataset for understanding stuttering 

experience and analyzing stuttered speech,” 2025, 

[Online]. Available: 

http://arxiv.org/abs/2501.15877 

[2] Y.-J. Shih, Z. Gkalitsiou, A. G. Dimakis, and 

D. Harwath, “Self-superviesed Speech Models for 

Word-Level Stuttered Speech Detection,” Sep. 

2024, [Online]. Available: 

http://arxiv.org/abs/2409.10704 

[3] O. Chia Ai, M. Hariharan, S. Yaacob, and L. Sin 

Chee, “Classification of speech dysfluencies with 

MFCC and LPCC features,” Expert Syst. Appl., 

vol. 39, no. 2, pp. 2157–2165, 2012, doi: 

10.1016/j.eswa.2011.07.065. 

[4] S. P. Bayerl, A. W. von Gudenberg, F. Hönig, E. 

Nöth, and K. Riedhammer, “KSoF: The Kassel 

State of Fluency Dataset - A Therapy Centered 

Dataset of Stuttering,” 2022 Lang. Resour. Eval. 

Conf. Lr. 2022, no. June, pp. 1780–1787, 2022. 

[5] A. Arunkumar, V. N. Sukhadia, and S. Umesh, 

“Investigation of Ensemble features of Self- 

Supervised Pretrained Models for Automatic 

Speech Recognition,” Proc. Annu. Conf. Int. 

Speech Commun. Assoc. INTERSPEECH, vol. 

2022-Septe, pp. 5145–5149, 2022, doi: 

10.21437/Interspeech.2022-11376. 

[6] S. W. Yang et al., “SUPERB: Speech processing 

Universal PERformance Benchmark,” Proc. 

Annu. Conf. Int. Speech Commun. Assoc. 

INTERSPEECH, vol. 4, pp. 3161–3165, 2021, 

doi:10.21437/Interspeech.2021-1775. 

[7] R. V, R. Chainani, S. Mehrotra, S. Sah, and S. 

Mahajan, “Evaluative comparison of machine 

learning algorithms for stutter detection and 

classification,” MethodsX, vol. 13, no. October, p. 

103050, 2024, doi: 10.1016/j.mex.2024.103050. 

[8] S. A. Sheikh, M. Sahidullah, S. Ouni, and F. Hirsch, 

“End-to-End and Self-Supervised Learning for 

ComParE 2022 Stuttering Sub-Challenge,” MM 

2022 - Proc. 30th ACM Int. Conf. Multimed., pp. 

7104–7108, 2022, doi: 10.1145/3503161.3551588. 

[9] A. Romana, M. Niu, M. Perez, and E. M. Provost, 

“FluencyBank Timestamped: An Updated Data Set 

for Disfluency Detection and Automatic Intended 

Speech Recognition,” J. Speech. Lang. Hear. Res., 

vol. 67, no. 11, pp. 4203–4215, 2024, doi: 

10.1044/2024_JSLHR-24-00070. 

[10] S. P. Bayerl et al., “A Stutter Seldom Comes Alone- 

Cross-Corpus Stuttering Detection as a Multi-label 

Problem,” Proc. Annu. Conf. Int. Speech Commun. 

Assoc. INTERSPEECH, vol. 2023-Augus, no. 

August 2023, pp. 1538–1542, 2023, doi: 

10.21437/Interspeech.2023-2026. 

[11] C. Lea, V. Mitra, A. Joshi, S. Kajarekar, and J. P. 

Bigham, “SEP-28K: A dataset for stuttering event 

detection from podcasts with people who stutter,” 

ICASSP, IEEE Int. Conf. Acoust. Speech Signal 

Process. - Proc., vol. 2021-June, no. Lm, pp. 6798– 

6802, 2021, doi: 

10.1109/ICASSP39728.2021.9413520. 

[12] S. A. Sheikh, M. Sahidullah, F. Hirsch, and S. Ouni, 

“Machine learning for stuttering identification: 

Review, challenges and future directions,” 

Neurocomputing, vol. 514, pp. 385–402, 2022, doi: 

10.1016/j.neucom.2022.10.015. 

[13] T. Kourkounakis, A. Hajavi, and A. Etemad, 

“FluentNet: End-to-End Detection of Stuttered 

Speech Disfluencies with Deep Learning,” 

IEEE/ACM Trans. Audio Speech Lang. Process., 

vol. 29, pp. 2986–2999, 2021, doi: 

10.1109/TASLP.2021.3110146. 

[14] S. P. Bayerl, D. Wagner, E. Nöth, T. Bocklet, and 

K. Riedhammer, “The Influence of Dataset 

Partitioning on Dysfluency Detection Systems,” 

Lect. Notes Comput. Sci. (including Subser. Lect. 

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 

13502 LNAI, pp. 423–436, 2022, doi: 10.1007/978- 

3-031-16270-1_35. 

[15] M. Jouaiti and K. Dautenhahn, “Dysfluency 

Classification in Stuttered Speech Using Deep 

Learning for Real-Time Applications,” ICASSP, 

IEEE Int. Conf. Acoust. Speech Signal Process. - 

Proc., vol. 2022-May, no. February, pp. 6482–

6486, 2022, doi: 

10.1109/ICASSP43922.2022.9746638. 

http://arxiv.org/abs/2501.15877


© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

 

IJIRT 182048         INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 526 

[16] F. Javanmardi, S. Tirronen, M. Kodali, S. R. 

Kadiri, and P. Alku, “Wav2vec-Based Detection 

and Severity Level Classification of Dysarthria 

From Speech,” ICASSP, IEEE Int. Conf. Acoust. 

Speech Signal Process. - Proc., vol. 2023-June, 

no. 1, 2023, doi: 

10.1109/ICASSP49357.2023.10094857. 

[17] J. Lian et al., “Unconstrained Dysfluency 

Modeling for Dysfluent Speech Transcription and 

Detection,” 2023 IEEE Autom. Speech Recognit. 

Underst. Work. ASRU 2023, pp. 1–8, 2023, doi: 

10.1109/ASRU57964.2023.10389771. 

[18] S. P. Bayerl, D. Wagner, E. Nöth, and K. 

Riedhammer, “Detecting Dysfluencies in 

Stuttering Therapy Using wav2vec 2.0,” Proc. 

Annu. Conf. Int. Speech Commun. Assoc. 

INTERSPEECH, vol. 2022-Septe, pp. 2868–

2872, 2022, doi:10.21437/Interspeech.2022-

10908. 

[19] P. Mohapatra, A. Pandey, B. Islam, and Q. Zhu, 

“Speech Disfluency Detection with Contextual 

Representation and Data Distillation,” IASA 2022 

- Proc. 2022 1st ACM Int. Work. Intell. Acoust. 

Syst. Appl., pp. 19–24, 2022, doi: 

10.1145/3539490.3539601. 


