
© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 182057 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 621 

Artificial Intelligence in Signal Acquisition for EEG-

Based Brain-Computer Interfaces 
 

 
Ankita Roy1, Abhishek Kr Kashyap2 

Department of Computer Science and Engineering, Ramgarh Engineering College, Ramgarh, Jharkhand 

 
Abstract- Brain-Computer Interfaces (BCIs) have 

become an important technology for enabling direct 

communication between the human brain and external 

devices. However, their practical use has faced 

challenges due to the low accuracy and reliability of 

interpreting brain signals. Signal acquisition is essential 

to BCI systems, especially those that rely on non-invasive 

Electroencephalography (EEG). Yet, issues like noise 

interference, signal variability, and hardware limitations 

disrupt effective interpretation of brain signals. This 

paper looks at the important role of Artificial 

Intelligence (AI) in improving the EEG signal acquisition 

process. AI methods like deep learning, reinforcement 

learning, and adaptive sampling are changing how we 

enhance signals, remove artifacts, optimize electrodes, 

and assess quality in real time. We provide a review of 

the methods, structures, and advantages related to AI-

driven signal acquisition. We conclude that smart 

acquisition systems are a crucial step toward creating 

real-time, high-accuracy, and user-friendly BCI 

technology. 
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1.INTRODUCTION 

 

Brain-Computer Interfaces (BCIs) are recent 

technologies that offer a direct communication link 

between the brain and external devices through 

decoding brain signals mainly 

Electroencephalography (EEG) as control commands. 

EEG-based BCIs are cheap, non-invasive, offer high 

temporal resolution and are therefore widely utilized 

in applications such as neurorehabilitation, assistive 

technologies, games, and cognitive testing [15], [16]. 

Signal acquisition is the most challenging and most 

critical stage of BCI pipelines in general. EEG signals 

tend to be low-amplitude, artifact-contaminated with 

noise (e.g., eye blinks, muscle activity, and electrical 

noise) and highly variable within and across subjects 

[1], [18]. Signal acquisition and preprocessing must 

thus be robust for the overall robustness and accuracy 

of the BCI pipeline. 

Recent advances in Artificial Intelligence (AI), 

specifically in machine learning (ML) and deep 

learning (DL), have revolutionized the acquisition, 

denoising, and pre-processing of EEG signals for 

classification. Traditional signal acquisition processes 

are based on hand-designed filters and manual 

rejection of artifacts, which may be ineffective for use 

in real-time or for systems of large scale. AI-driven 

solutions, however, can potentially offer automatic, 

adaptive, and data-driven solutions, which can learn 

complex temporal and spatial EEG patterns directly 

from raw signals [2], [3]. 

Sharma et al. [7] provide a comprehensive overview 

of AI methods applied to EEG signal processing and 

show their effectiveness in solving fundamental signal 

acquisition issues like noise removal, channel 

selection, and feature coding. The authors observe that 

AI-enabled methods like CNNs, RNNs, and attention 

mechanisms can learn task-dependent features from 

raw EEG signals without any intervention, leading to 

substantial improvement in downstream accuracy. 

At the international level, architectures such as 

EEGNet [4] and deep CNN-RNN combinations [23] 

have been reported to perform well in real-time BCIs 

for motor imagery, emotion recognition, and cognitive 

workload estimation. Lawhern et al. [4] introduced a 

light-weight CNN architecture that operates on raw 

EEG input, facilitating real-time and low-latency 

signal processing. Schirrmeister et al. [23] also 

illustrated the capability of deep CNNs to learn from 

full-band EEG signals without requiring domain-

specific feature engineering. 

Indian researchers have made significant contributions 

to this field. For example, Prajapati and Prasad [5] 

proposed a real-time deep learning architecture from 

LSTM networks for dynamic acquisition and 

classification of EEG signals. Gaur et al. [25] 

proposed a multiresolution-based approach using 
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empirical mode decomposition and SVMs for early 

diagnosis of neurological disorders. Joshi et al. [26] 

employed wavelet transform and CNNs for 

classification of motor imagery, and Rathi and Singh 

[6] explored CNN-RNN hybrids for emotion-based 

EEG interpretation for enhancing BCI adaptability in 

varying mental states. 

Despite such advances, there remain core problems in 

generalizing, interpreting, and computationally 

efficient AI-based signal acquisition. Data imbalance, 

subject variability, and the need for labeled training 

data remain problems. AI contribution to signal 

acquisition is still anticipated to grow with the use of 

transfer learning, federated learning, and light-weight 

edge-AI models in the instance of portable EEG-based 

BCIs [28], [29]. 

This paper talks about and examines the use of 

artificial intelligence in the capture of EEG signals, for 

use in BCI systems. It identifies current AI methods, 

highlights major challenges and opportunities, and 

outlines international and Indian research on the topic. 

 
 

3. LITERATURE REVIEW 

 

EEG-based Brain-Computer Interfaces (BCIs) have 

been gaining more attention due to their non-invasive 

characteristics and potential in neuroprosthetics, 

cognitive monitoring, and neurorehabilitation. For any 

BCI system, signal acquisition and preprocessing are 

an extremely significant aspect, for which the use of 

artificial intelligence (AI) has shown promising 

outcomes in enhancing the quality and interpretability 

of EEG data. 

Lotte et al. [1] demonstrate a comprehensive overview 

of classification methods for EEG-based BCIs during 

the past decade, emphasizing the fact that the 

performance of classifiers is highly influenced by the 

quality of input signals from the acquisition and 

preprocessing stage. Here, AI-based filtering and 

noise cancellation techniques have a critical role to 

play in enhancing signal-to-noise ratios and extracting 

pertinent neural patterns. 

Deep learning models such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks 

(RNNs) are becoming more widely used to extract 

features directly from raw EEG signals. Craik et al. [2] 

and Roy et al. [3] describe how these models perform 

much better than the traditional methods by extracting 

temporal and spatial patterns in EEG signals. EEGNet 

proposed by Lawhern et al. [4] is one of these types 

that comprises a light-weight CNN structure 

optimized for EEG, enabling end-end learning from 

raw signals with reduced handcrafted feature usage. 

From the Indian research community, Prajapati and 

Prasad [5] present a real-time deep learning 

framework based on LSTM networks to learn 

temporal EEG dynamics and demonstrate improved 

performance in real-time BCI systems. Similarly, 

Rathi and Singh [6] utilize CNN-RNN hybrid models 

for emotion recognition based on EEG and 

demonstrate the ability of AI in acquisition as well as 

decoding of future cognitive states. 

A broader review in the Indian perspective is given by 

Sharma et al. [7], wherein they give an exhaustive 

review of automated EEG analysis for diagnosis of 

neurological disorders. The authors discuss signal 

acquisition problems, preprocessing with AI-based 

methods such as wavelet denoising, and the 

application of deep neural networks for improving the 

diagnostic accuracy. Interestingly, the authors 

emphasize the integration of domain knowledge and 

AI-based models for effective BCI systems clinically. 

Furthermore, Joshi et al. [8] also talk about wavelet 

transform-based preprocessing using CNN for the 

classification of motor imagery EEG signals, an 

important part of BCI-based rehabilitation. Their 

paper highlights the importance of having a sound 

signal acquisition pipeline to realize the highest 

classification accuracy. 

These studies all report that AI enables EEG signal 

acquisition by intelligent artifact removal, efficient 

feature learning, and real-time adaptability—thus 

making a contribution to the scalability and reliability 

of BCIs. 

4. RELATED WORK 

 

The incorporation of Artificial Intelligence (AI) into 

the field of Electroencephalography (EEG)-based 
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Brain-Computer Interfaces (BCIs) has accelerated the 

development of signal acquisition, noise cancellation, 

and system flexibility. Conventional methods of EEG 

signal acquisition are typically plagued by drawbacks 

including vulnerability to artifacts, poor signal-to-

noise ratio (SNR), and high inter-subject variance. 

Emerging research has searched for ways AI methods 

can overcome these issues, enabling more stable and 

real-time BCI systems. 

A light-weight convolutional neural network 

specifically for EEG-based BCI tasks. EEGNet 

showed robust performance on different paradigms 

(e.g., motor imagination, P300, and SSVEP), 

highlighting the potential of deep learning models to 

generalize across users and tasks (30). This 

architecture set the stage for light-weight models 

intended for real-time applications. 

Another significant work introduced a systematic 

survey on deep learning techniques for EEG data, 

focusing on architectures like CNNs, RNNs, and 

autoencoders (31). The authors highlighted end-to-end 

learning's role in avoiding handcrafted features, thus 

overturning the established signal processing 

pipelines. 

Showing that pre-trained models on large-scale EEG 

databases can be adapted to individual tasks using 

smaller datasets (32). This greatly diminished the 

training data requirements for high-performing 

models, a vital issue in EEG-based systems where data 

acquisition is energetically costly. 

In terms of improving signal acquisition directly, a 

hybrid deep learning model combining CNNs and 

attention mechanisms to enhance feature extraction 

from raw EEG signals (33). Their approach effectively 

denoised signals and improved classification 

performance, suggesting AI’s potential role not only 

in post-acquisition processing but during the 

acquisition phase itself. 

Recent studies have also investigated adaptive 

learning and online calibration to handle subject 

variability and non-stationarity of EEG signals. For 

example, the application of reinforcement learning to 

dynamically optimize electrode configurations (34) is 

a new wave in adaptive signal acquisition, which is 

capable of providing more personalized BCIs. 

In addition, AI-powered noise-resistant acquisition 

techniques like Generative Adversarial Networks 

(GANs) for artifact elimination (e.g., ocular or 

muscular noise) are being explored to enhance data 

quality at the point of origin (Panwar et al., 2021). 

Such techniques promise to allow for the acquisition 

of clean signals without heavy-handed manual pre-

processing. 

In spite of these developments, there are still issues in 

model interpretability, cross-subject generalizability, 

and hardware-level integration. However, the current 

literature unmistakably demonstrates a shift of 

paradigms toward AI-augmented EEG acquisition to 

facilitate more precise, efficient, and user 

customizable BCI systems. 

5. TRADITIONAL CHALLENGES IN EEG 

SIGNAL ACQUISITION 

 

I) Noise and Artifact: EEG signals are of relatively 

low amplitude (μV range) and very prone to noise 

arising from muscle activity (EMG), eye movements 

(EOG), and external power sources. 

II) Low Signal-to-Noise Ratio (SNR): Raw EEG 

recordings tend to have a higher content of noise than 

information, so real-time interpretation is challenging. 

III) Sensor Setup Problems: The ideal electrode 

location is user-dependent, but classic systems have 

fixed layouts, which limits efficiency and comfort. 

IV) Static Sampling: Fixed-rate sampling may result 

in unwanted data burden or loss of important 

information. 

6. METHODOLOGY 
 

The main goal of this paper is to examine how 

Artificial Intelligence (AI) can improve the signal 

acquisition process in EEG-based Brain-Computer 

Interfaces (BCIs). The approach taken includes 

looking into important AI models and methods. It also 

discusses their integration with EEG signal processing 

systems and the advantages they offer for the 

performance and usability of BCIs 
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6.1 Signal Acquisition and Preprocessing 

Electrical activity of the brain can be detected. 

However, these signals often contain noise, artifacts, 

and interference from the environment. Traditional 

preprocessing techniques depend on manual filtering 

or basic statistical methods to eliminate noise. These 

methods struggle with complex and changing data. 
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In this work, we use AI models, especially those based 

on deep learning, for automatic signal preprocessing. 

The first step in this AI method is to collect raw EEG 

signals. Next, we apply deep neural networks (DNNs) 

or autoencoders to remove common artifacts, such as 

eye blinks and muscle activity. The following AI 

techniques are used: 

 

• Convolutional Neural Networks (CNNs): These 

networks effectively identify and classify spatial and 

temporal patterns in EEG data. This process is 

essential for distinguishing brain activity from noise.   

 

Model Description Example Use 

EEGNet Lightweight CNN optimized for EEG signal analysis. MI (Motor Imagery) classification 

DeepConvNet Deeper architecture for feature-rich EEG data. Event-related potential detection 

ShallowConvNet Simpler layers focused on band power features. SSVEP, P300 signals 

Hybrid CNNs Combine CNN with RNN or attention layers. Spatiotemporal decoding 

 

 
The figure illustrates an AI-based BCI system 

workflow: EEG signals are recorded, cleaned (pre-

processed), relevant features are extracted and 

selected, and classified by AI/ML models. The output 

is utilized for decision-making (e.g., control tasks), 

and feedback is employed to enhance system accuracy 

and user interaction. 

 

• Autoencoders: These unsupervised learning models 

learn a compressed, noise-free representation of EEG 

signals. They are ideal for removing artifacts like eye 

blinks, movement of muscles, and external electrical 

interference. This serves to maintain the actual brain 

activity patterns. In addition, autoencoders can be used 

as a dimensionality reduction tool, mapping high-

dimensional EEG data to a lower-dimensional latent 

space while preserving fundamental features. This 

lowers the computational cost in subsequent stages of 

processing. In addition, autoencoders can learn useful 

representations of EEG signals automatically, without 

the need for feature extraction by human intervention. 

By incorporating autoencoders early in the processing 

pipeline of EEG, BCI systems can yield more accurate 

and effective signal interpretation against noise. 

 

• Generative Adversarial Networks (GANs): GANs 

generate clean EEG signals from noisy or corrupted 

data. They train the generator to create noise-free data 

that closely matches the real signal. These methods are 

trained on large, labelled datasets containing both 

clean and noisy EEG signals, allowing the AI models 

to learn how to automatically distinguish between 

relevant brain activity and various sources of noise. 

 

6.2 Feature Extraction Using AI 

After pre-processing and cleaning the raw EEG 

signals, feature extraction is the second step. 

Handcrafted features like spectral power (delta, theta, 

alpha bands) or coherence measures have been used in 

conventional BCI systems, but such features are not 

able to represent rich brain dynamics, particularly in 

real-time. 

AI system-based techniques, specifically deep 

learning models, provide a more sophisticated method 

for feature extraction as they learn salient patterns 

from the raw EEG signals. The following methods are 

frequently employed: 

• Deep Convolutional Networks (CNNs): CNNs 

are used to learn spatial features automatically 

from EEG signals by convolving filters in time 

and frequency domains. These features are 

applied to perform classification tasks, generally 

achieving superior performance compared to 

conventional feature extraction techniques. 

• Recurrent Neural Networks (RNNs): RNNs, and 

in particular, Long Short-Term Memory (LSTM) 

networks, are employed to encode temporal 

dynamics in EEG signals. Such networks are 

particularly suited for the processing of time-

series data, which makes them suitable for 
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activities such as motor imagery or real-time 

control of prosthetic limbs. 

• Transfer Learning: In cases where labelled EEG 

data are scarce or non-existent for a particular 

person, transfer learning can be utilized. Pre-

trained models from big, open-source EEG 

datasets are fine-tuned for specific users, 

minimizing large-scale data collection and 

enhancing performance for cross-user tasks 

 

6.3 Signal Classification and Real-Time Processing 

The last step in the AI-based approach is classifying 

the EEG signals into functional brain states or 

commands. Classification of signals is necessary to 

control external devices like robotic arms, 

communication equipment, or even video games in 

BCI applications. AI models, especially deep learning 

models, are best suited for classifying EEG signals in 

real-time because they can process complex patterns 

quickly. 

• Deep Learning Classifiers: RNNs and CNNs are 

usually merged in a hybrid model for EEG signal 

classification. RNNs handle the temporal 

dynamics while CNNs are utilized for the 

extraction of spatial features so that highly 

accurate classification of intricate EEG signals, 

e.g., motor imagery or P300 signals, can be 

achieved. 

• Real-Time Processing: Low-latency signal 

classification is needed in real-time BCI systems 

to offer instant feedback to the users. AI models 

can be tuned to work in real-time by decreasing 

the number of layers within the model, 

implementing batch normalization and dropout 

techniques, and utilizing lighter architectures like 

EEGNet. These optimizations make it possible for 

the system to classify EEG signals in near real-

time, which is essential for use in neurofeedback 

or the control of prosthetics. 

 

6.4 Online Adaptation and Personalization 

One of the greatest advantages of using AI in EEG-

based BCIs is the ability to tailor and adapt the system 

to the individual user. Unlike other BCIs, which must 

be rebooted in detail for every user, AI-based models 

can adapt dynamically the user's unique brain activity 

patterns. This is achieved via online learning and 

reinforcement learning.  

• Reinforcement Learning (RL): Here, an AI agent 

interacts with the user in real-time and learns from 

the feedback. For instance, in the case of a robotic 

arm or cursor controlled by the user through EEG 

signals, the AI model tunes its parameters in 

relation to whether the task has been 

accomplished or not, resulting in better 

performance over time. The online learning 

process enables the system to learn from the user's 

brain activity without the need for a high amount 

of pre-existing training data 

• Personalized Model Fine-Tuning: Transfer 

learning can be combined with personalization 

strategies to further increase the flexibility of the 

BCI system. Fine-tuning of a pre-trained model 

for the specific EEG data allows the system to 

acquire the user-specific features effectively 

without requiring lengthy calibration times with 

the potential of maintaining high classification 

performances. 

 

6.5 Evaluation and Performance Metrics 

The performance of EEG-based BCIs based on AI is 

quantified by several key metrics: 

•  Classification Accuracy: The rate of correct 

predictions by the AI model to true values. 

•  Signal-to-Noise Ratio (SNR): The improvement 

of the SNR of the treated EEG signals after the 

application of AI-based artifact removal 

techniques. 

•  Latency: Assess the system's processing time for 

EEG signals and reaction, an important factor in 

real-time applications. 

• User Adaptability: The ability of the system to 

adapt and familiarize itself with individual users 

and contexts over time, with increasing accuracy 

and usability with repeated usage. 

 

7. RESULTS 

 

The incorporation of Artificial Intelligence (AI) in 

EEG-based Brain-Computer Interfaces (BCIs) has 

resulted in several optimistic outcomes, specifically 

regarding enhancing the quality of acquisition of EEG 

signal, real-time processing capacity, and 

personalization and flexibility of BCI systems. The 

most important outcomes of using AI-oriented 
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techniques in EEG signal acquisition can be classified 

as follows: 

 

7.1 Improved Signal Quality and Noise Reduction 

One of the greatest benefits of integrating AI into EEG 

signal recording is the dramatic enhancement in signal 

quality. Conventional EEG preprocessing techniques 

typically have difficulty separating brain activity from 

multiple sources of noise (e.g., ocular, muscular, 

environmental artifacts). AI models, especially deep 

learning architectures, have shown more efficient 

performance in artifact rejection and denoising. 

• Deep Learning-Based Artifact Removal: 

Research by Zhang et al. (2020) and Panwar et al. 

(2021) indicates that deep learning algorithms, 

specifically Convolutional Neural Networks 

(CNNs) and Generative Adversarial Networks 

(GANs), have greatly improved the Signal-to-

Noise Ratio (SNR) of EEG signals (12). These 

algorithms are able to identify and remove 

artifacts precisely without sacrificing significant 

brain activity features.  

• Improved Classification Accuracy: By enhancing 

the quality of EEG signals via AI-preprocessing, 

overall EEG-based BCI classification accuracy is 

improved. In several studies, deep learning 

algorithms like EEGNet have repeatedly 

outperformed conventional approaches (4), 

demonstrating higher accuracy in classifying 

brain states (e.g., motor imagery, P300, SSVEP) 

across a variety of user populations. 

 

7.2 Real-Time Signal Processing and Low Latency 

Real-time processing is a key to the success of BCI 

systems, particularly when immediate feedback is 

needed in applications like controlling prosthetic 

limbs or communication devices. AI methods, and 

particularly deep learning, have facilitated more 

effective and quicker processing of EEG signals, 

lower latency, and enhanced user experience. 

• Real-Time EEG Classification: By utilizing 

CNNs and Recurrent Neural Networks (RNNs), 

BCIs based on AI have proven to be capable of 

real-time EEG signal classification with low 

latency. For instance, CNN-based systems are 

capable of rapidly processing spatial features of 

EEG signals, whereas RNNs are capable of 

processing temporal dependencies efficiently, 

providing real-time feedback to the user. This has 

rendered applications like neurofeedback and 

brain-controlled prosthetic limbs more responsive 

and productive. 

• Reduced Processing Time: With the application 

of AI models tailored for real-time use (e.g., 

through light-weight architectures such as 

EEGNet), processing time to capture and classify 

EEG signals has considerably decreased, and thus 

real-time brain control applications have become 

more feasible and efficient. 

 

7.3 Personalization and User Adaptability 

AI-based BCIs can be tailored to the specific user, 

allowing the BCI to learn each user's idiosyncratic 

brain patterns. Conventional systems tend to need 

extended periods of calibration for every user, and 

there can be a decline in performance over time as the 

brain activity naturally evolves. 

• Adaptive Learning with Reinforcement Learning 

(RL):AI- based BCIs is the potential for 

personalizing the system to the user, allowing the 

BCI to learn each user's specific neural patterns. 

Conventional systems typically need to spend a 

lot of time calibrating for each user, and 

performance diminishes over time as brain 

activity changes. 

• Transfer Learning and Cross-User Adaptability: 

Transfer learning has been shown to improve the 

performance of BCIs across different users. Pre-

trained models can be fine-tuned for individual 

users, reducing the need for extensive 

recalibration and providing a personalized user 

experience. Research by Sakhavi et al. (2018) has 

shown that transfer learning allows AI models to 

generalize well across different users, leading to 

faster system setup and better performance. 

 

7.4 Reduced Training Time and Data Requirements 

One of the most significant challenges in EEG-based 

BCI systems is the need for large amounts of labelled 

data to train classification models. Data collection is 

often time-consuming and expensive, and it can be 

challenging to gather sufficient data from a variety of 

subjects. 

• Reduced Data Dependency with Transfer 

Learning: AI models, especially deep learning 

models, can be trained on large datasets and then 
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fine-tuned for individual users using smaller 

datasets. This reduces the overall data 

requirements for effective BCI performance. 

Transfer learning has been shown to be 

particularly beneficial in applications where data 

is scarce, allowing AI-driven BCIs to achieve 

high performance even with limited subject-

specific data. 

• Improved Generalization Across Tasks: AI 

models that utilize transfer learning and deep 

neural networks can generalize well across 

different BCI tasks. This flexibility allows a 

single BCI system to be used for various 

applications (e.g., motor control, communication, 

neurofeedback) without the need to retrain the 

model extensively for each task. 

 

7.5 Scalability and Usability of BCI Systems 

AI has been instrumental in transforming EEG-based 

BCIs into scalable and accessible technologies. 

Conventional systems tended to be tricky to set up and 

involve significant calibration, hence not easily usable 

by novices and thereby not suitable for mass 

application. 

• Simplified Calibration: Artificial intelligence 

models, especially those employing transfer 

learning and reinforcement learning, have made 

the calibration easier. Users are able to engage 

with the system more naturally, and the AI model 

learns their neural patterns without having to go 

through extensive setup times. 

• Non-Invasive and Portable Systems: The advent 

of AI has led to the development of more compact 

and non-invasive BCI systems, which can be 

easily deployed outside of laboratory settings. AI-

driven signal processing allows these systems to 

function effectively in real-world environments, 

making them more accessible and practical for 

both medical and non-medical applications. 

 

8. CONCLUSION 

This review emphasizes the revolutionary contribution 

of Artificial Intelligence (AI) towards the   signal 

acquisition process in EEG-based Brain-Computer 

Interfaces (BCIs). Conventional EEG acquisition is 

marred with noise, non-stationarity, and low signal-to-

noise ratios, thereby constrained BCI performance. 

Machine learning and deep learning algorithms such 

as denoising autoencoders, convolutional neural 

networks (CNNs), and adaptive filtering schemes have 

already shown substantial performance gains in terms 

of artifact removal, signal amplification, and feature 

extraction at the acquisition stage. These 

developments allow for more precise and resilient 

downstream processing, ultimately resulting in more 

responsive and dependable BCI systems. As research 

advances, the use of AI in signal acquisition should not 

only automate preprocessing operations but also learn 

to tailor itself to individual users in real time, opening 

the door to next-generation, user-centric, and 

application-specific BCI solutions. 
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