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Abstract: The goal of the current study is to solve the one-species Lotka-Volterra model and its modified 

form by introducing Holling type III functional response using Differential-Transform-Method (DTM). The 

solution obtained by DTM is compared with the Adomian Decomposition Method (LADM) and it was 

found that DTM is most potent numerical techniques for non-linear differential equation. Results are 

validate with exact solution in limiting case. 
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1. Introduction:  

Lotka-Volterra model:  

The Lotka-Volterra equations describe an arbitrary number of ecological competitors (or predator-prey) 

model which is dynamic in nature [22].  The model was framed keeping in view the ecological system but 

gradually gained its popularity in the engineering fields. The simple prey-predator model is among the most 

popular models used to demonstrate a simple non-linear control system. 

Numerical techniques:  

In the concerned field of science and technology, numerous significant physical phenomenon are frequently 

modeled by nonlinear differential equations. Such equations are often stiff or impractical to solve 

analytically. Yet, analytical approximate methods to obtain fairly accurate solutions have gained much 

significance in recent years [18]. There are numerous methods, undertaken to find out approximate 

solutions to nonlinear problems. Homotopy Perturbation method (HPM), Homotopy Analysis method 

(HAM) [21], Differential Transform method (DTM), Variational Iteration method (VIM) [11], Adomian 

Decomposition method (ADM), Laplace Adomian Decomposition method (LADM) and Runge-Kutta-

Fehlberg method (RKF) [19-20] and Chebyshev Spectral methods [13, 20] are some proven instances. The 

purpose of this paper is to bring out the analytical expressions of Lotka-Volterra single species population 

and the solution of nonlinear differential equations by using the new approach to Differential Transform 

method (DTM) [1-4, 14-16] in an elegant way. Thus, all these methods entail to multidimensional aspects. 
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Motivation:  

The accurate solutions of population growth models may become a difficult task either if the 

equations are stiff (even with a small number of species) or when the number of species is large. 

To overcome the situation there are few literatures in existence. So to fill up the gap, here we 

consider and developed the accurate solutions of population models by applying such a reliable, 

efficient and more comfortable numerical technique (e.g. LADM, DTF). 

 

Novelties:  

The principal aim of this paper is to perform systematic analysis of the comparisons among exact 

solution and some reliable numerical techniques on the dynamics of the non-autonomous Lotka-

Volterra model which shall be made to determine the performance of the method which is more 

acceptable and reliable for solving such kind of problem. The inclusions are described below 

(i) Then we introduce two new methods called LADM and DTM for solution of the single 

species Lotka-Volterra equation. Here we highlight the numerical solutions of Lotka–

Voltera single species model by using these methods.  

(ii) Analysis of the comparisons among exact solution, Laplace Adomian Decomposition 

method (LADM) and Differential Transform method (DTM) on the Lotka-Volterra single 

species model. 

(iii) The behavior of the method in-different numerical technique is illustrated graphically. 

 Moreover, we can say all these developments can help the researchers who engage with nonlinear 

differential equation and mathematical biology. 

 

Structure of the paper: 

 

The paper is organized as follows: In “Numerical Solution of Nonlinear Differential Equation” 

section we the proposed Laplace Adomian Decomposition Method (LADM) and Differential 

Transform method (DTM) in nonlinear equation. “Analysis of multispecies Lotka–Volterra 

equations” section is followed by a numerical example. In Sec In sec “Result and Discussion” is 

illustrated the error term of these methods. Finally conclusions and future research scope of this 

article are drawn in last section, “Conclusion” section. 
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2.  Numerical Solution of Nonlinear Differential Equation: 

Laplace Adomian Decomposition Method (LADM) for Nonlinear Differential 

Equation: 

The Laplace Adomian Decomposition Method (LADM) [22, 17] was firstly introduced by Suheil 

A. Khuri and has been successfully used to find the solution of linear and nonlinear differential 

equations. The significant advantage of this method is that it is a combination of two powerful 

techniques viz. Laplace transform and Adomian Decomposition Method [6, 7, 8, 9]. The Laplace 

transform is an elementary but useful technique for solving linear ordinary differential equations 

i.e., widely used by scientists and engineers for tackling linearized models. But it is totally 

incapable to solve non-linear equation and to overcome this shortcoming here we use the term 

Adomian polynomials from Adomian Decomposition Method which decompose the nonlinear 

term and make it easier to calculate. The main thrust of this method is that the solution of this 

method expressed in ∞- series which converges first to the exact solution and will not take too 

much time for compute.  

 

Consider the following nonlinear differential equation 

𝐿𝑢(𝑡) + 𝑅𝑢(𝑡) + 𝑁𝑢(𝑡) = 𝑔(𝑡) . (1) 

 

where 𝐿 is a linear operator of the highest-order derivative which is assumed to be invertible easily, 

𝑅 is the remaining linear operator of order less than 𝐿  and 𝑁 is a nonlinear operator and 𝑔(𝑡)𝑔(𝑡) 

is a source term.   

Taking Laplace transform on both sides of above equation, we get 

ℒ[𝐿𝑢(𝑡)] + ℒ[𝑅𝑢(𝑡)] + ℒ[𝑁𝑢(𝑡)] = ℒ[𝑔(𝑡)𝑔(𝑡)],   (2) 

Using the differential property of Laplace transform and using the initial condition, we get 

𝑠𝑛ℒ[𝑢(𝑡)] − 𝑠𝑛−1𝑢(0) − 𝑠𝑛−2𝑢′(0) − ⋯ ⋯ − 𝑢𝑛−1(0) + ℒ[𝑅𝑢(𝑡)] + ℒ[𝑁𝑢(𝑡)] =
ℒ[𝑔(𝑡)𝑔(𝑡)], 

or, ℒ[𝑢(𝑡)] =
𝑢(0)

𝑠
+

𝑢′(0)𝑢′(0)

𝑠2 + ⋯ ⋯ +
𝑢𝑛−1(0)

𝑠𝑛 −
1

𝑠𝑛 ℒ[𝑅𝑢(𝑡)] −
1

𝑠𝑛 ℒ[𝑁𝑢(𝑡)] +
1

𝑠𝑛
ℒ[𝑔(𝑡)𝑔(𝑡)] 

(3) 

Now we represent the unknown functions 𝑢(𝑡)𝑢(𝑡) by an infinite series of the form 

𝑢(𝑡) = ∑ 𝑢𝑛(𝑡)  ,    

∞

𝑛=0

 (4) 
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Here the components 𝑢𝑛(𝑡)𝑢𝑛(𝑡) are usually determined recurrently and the nonlinear operator 

𝑁(𝑢)𝑁(𝑢) can be decomposed into an infinite series of polynomials given by 

𝑁(𝑢) = ∑ 𝐴𝑛

∞

𝑛=0

,  

 

where 𝐴𝑛 are Adomian polynomials of 𝑢0, 𝑢1, … … … , 𝑢𝑛 defined by 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁 (∑ 𝜆𝑖𝑢𝑖

∞

𝑖=0

)]

𝜆=0

, 𝑛 = 0,1,2, … … …  

 

Therefore, 

ℒ[∑ 𝑢𝑛(𝑡)𝑢𝑛(𝑡)∞
𝑛=0 ] =

𝑢(0)

𝑠
+

𝑢′(0)

𝑠2 +  … … … … +
𝑢𝑛−1(0)

𝑠𝑛 −
1

𝑠𝑛 ℒ[𝑅{∑ 𝑢𝑛(𝑡)∞
𝑛=1 }𝑅{∑ 𝑢𝑛(𝑡)∞

𝑛=1 }] −
1

𝑠𝑛 ℒ[∑ 𝐴𝑛
∞
𝑛=1 ] +

1

𝑠𝑛 ℒ[𝑔(𝑡)𝑔(𝑡)]. 

 

 

In general, the recursive relation is given by 

ℒ[𝑢0(𝑡)𝑢0(𝑡)] =
𝑢(0)

𝑠
+

𝑢′(0)

𝑠2
+ ⋯ … … … … +

𝑢𝑛−1(0)

𝑠𝑛
+

1

𝑠𝑛
ℒ[𝑔(𝑡)𝑔(𝑡)], 

 

(5) 

and 

ℒ[𝑢𝑛+1(𝑡)𝑢𝑛+1(𝑡)] = −
1

𝑠𝑛
ℒ[𝑅(𝑢𝑛(𝑡))] −

1

𝑠𝑛
ℒ[𝐴𝑛] . 

 
(6) 

Applying the inverse Laplace transform to both sides of (5) and (6), we obtain  𝑢𝑛, (𝑛 ≥

0)  𝑢𝑛, (𝑛 ≥ 0), which is then substituted into (4). 

For numerical computation, we get the expression as 

𝜙𝑛(𝑡) = ∑ 𝑢𝑘(𝑡)𝑢𝑘(𝑡)

𝑛

𝑘=0

. (7) 

 

which is the n th term approximation of 𝑢(𝑡)𝑢(𝑡) and the obtained series solution converges to 

the exact solution and the convergence of the method is established by [24-28]. 
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3. Differential-Transform Method (DTM) for Nonlinear 

Differential Equation (One-Dimensional Differential 

Transform): 

In this section, we first give some basic properties of one-dimensional differential transform method. 

Differential transform of a function 𝑦(𝑥)𝑦(𝑥)  is defined as follows:  

𝑌(𝑘) =
1

𝑘!
 
𝑑𝑘𝑦

𝑑𝑥𝑘
|

𝑥=0

 (7) 

where 𝑦(𝑥)𝑦(𝑥) is the original function and 𝑌(𝑘) is the transformed function for 𝑘 = 0, 1, 2, 3, … . The 

differential inverse transform of  𝑌(𝑘) is defined as 

𝑦(𝑥) = ∑ 𝑥𝑘

∞

𝑘=0

 𝑌(𝑘)𝑦(𝑥) = ∑ 𝑥𝑘

∞

𝑘=0

 𝑌(𝑘) (8) 

 

From Equations (7) and (8) we get 

𝑦(𝑥) = ∑ 𝑥𝑘

∞

𝑘=0

 
1

𝑘!
 
𝑑𝑘𝑦

𝑑𝑥𝑘
|

𝑥=0

 (9) 

 

which implies that the concept of DTM is derived from Taylor series expansion, but the method does not 

evaluate the derivative symbolically. However, relative derivatives are calculated by an iterative procedure 

which is described by the transformed equations of the original functions. In this work, we use the lower-

case letters to represent the original functions and upper-case letters to represent the transformed functions. 

The operation properties of differential Transformation: 

If u(x) and v(x) are two uncorrelated functions of x where U(k) and V(k) are the transformed 

functions corresponding to u(x) and v(x) then we can easily proof the fundamental mathematics 

operations performed by differential transformation, 

1.  𝐼𝑓  𝑦(𝑥) = 𝑢(𝑥) ± 𝑣(𝑥)  𝑡ℎ𝑒𝑛  𝑌(𝑘) = 𝑈(𝑘) ± 𝑉(𝑘) 

2. 𝐼𝑓 𝑦(𝑥) = 𝑐𝑢(𝑥) 𝑡ℎ𝑒𝑛 𝑌(𝑘) = 𝑐𝑈(𝑘). Where c is any constant. 

3.  𝐼𝑓 𝑦(𝑥) =  
𝑑𝑢

𝑑𝑥  
 𝑡ℎ𝑒𝑛 𝑌(𝑘) = (𝑘 + 1)𝑈(𝑘 + 1) 𝐼𝑓 𝑦(𝑥)  =  

𝑑𝑢

𝑑𝑥  
 𝑡ℎ𝑒𝑛 𝑌(𝑘) = (𝑘 + 1)𝑈(𝑘 + 1)  

4. 𝐼𝑓 𝑦(𝑥) =  
𝑑𝑚𝑢

𝑑𝑥𝑚  𝑡ℎ𝑒𝑛 𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2) … … … … (𝑘 + 𝑚)𝑈(𝑘 + 𝑚). 

5. 𝐼𝑓 𝑦(𝑥) = 𝑢(𝑥)𝑣(𝑥)𝑡ℎ𝑒𝑛 𝑌(𝑘) = ∑ 𝑈(𝑟)𝑉(𝑘 − 𝑟)𝑘
𝑟=0 𝐼𝑓 𝑦(𝑥)  = 𝑢(𝑥) 𝑣(𝑥) 𝑡ℎ𝑒𝑛 𝑌(𝑘) =

∑ 𝑈(𝑟)𝑉(𝑘 − 𝑟)𝑘
𝑟=0   

6.    𝐼𝑓 𝑦(𝑥) = exp(𝜆𝑥)    𝑡ℎ𝑒𝑛 𝑌(𝑘) =  
𝜆𝑘

𝑘!
  𝐼𝑓 𝑦(𝑥)  = exp (𝜆𝑥)    𝑡ℎ𝑒𝑛 𝑌(𝑘) =  

𝜆𝑘

𝑘!
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7.    𝐼𝑓 𝑦(𝑥) = 𝑥𝑚  𝑡ℎ𝑒𝑛 𝑌(𝑘) =  𝛿(𝑘 − 𝑚)         𝑤ℎ𝑒𝑟𝑒 𝛿(𝑘 − 𝑚) = {
1     𝑖𝑓 𝑘 = 𝑚
0, 𝑖𝑓 𝑘 ≠ 𝑚

   𝐼𝑓 𝑦(𝑥)  =

𝑥𝑚  𝑡ℎ𝑒𝑛 𝑌(𝑘) =  𝛿(𝑘 − 𝑚)         𝑤ℎ𝑒𝑟𝑒 𝛿(𝑘 − 𝑚) = {
1     𝑖𝑓 𝑘 = 𝑚
0, 𝑖𝑓 𝑘 ≠ 𝑚

  

8.   𝐼𝑓 𝑦(𝑥) = (1 + 𝑥)(1 + 𝑥)𝑚   𝑡ℎ𝑒𝑛 𝑌(𝑘) =
𝑚(𝑚−1)(𝑚−2)……….(𝑚−𝑘+1)𝑚(𝑚−1)(𝑚−2)……….(𝑚−𝑘+1)

𝑘!
   𝐼𝑓 𝑦(𝑥)  = (1 + 𝑥)(1 +

𝑥)𝑚   𝑡ℎ𝑒𝑛 𝑌(𝑘) =
𝑚(𝑚−1)(𝑚−2)……….(𝑚−𝑘+1)𝑚(𝑚−1)(𝑚−2)……….(𝑚−𝑘+1)

𝑘!
  

9.    𝐼𝑓 𝑦(𝑥) = 𝑠𝑖𝑛(𝜔𝑥 + 𝛼)  𝑡ℎ𝑒𝑛  𝑌(𝑘) =  
𝜔

𝑘!

𝑘
𝑠𝑖𝑛 (

𝜋𝑘

2
+ 𝛼)    𝐼𝑓 𝑦(𝑥)  = 𝑠𝑖𝑛(𝜔𝑥 + 𝛼)  𝑡ℎ𝑒𝑛  𝑌(𝑘) =

 
𝜔

𝑘!

𝑘
𝑠𝑖𝑛 (

𝜋𝑘

2
+ 𝛼)  

10.   𝐼𝑓 𝑦(𝑥) = 𝑐𝑜𝑠(𝜔𝑥 + 𝛼)  𝑡ℎ𝑒𝑛  𝑌(𝑘) =  
𝜔

𝑘!

𝑘
𝑐𝑜𝑠 (

𝜋𝑘

2
+ 𝛼)   𝐼𝑓 𝑦(𝑥)  = 𝑐𝑜𝑠(𝜔𝑥 + 𝛼)  𝑡ℎ𝑒𝑛  𝑌(𝑘) =

 
𝜔

𝑘!

𝑘
𝑐𝑜𝑠 (

𝜋𝑘

2
+ 𝛼) 

               

2.2.2. Two dimensional Differential Transform: 

The basic definitions and fundamental operations of the two dimensional differential transform are defined 

in [4-7]as follows. Consider a function of two variable 𝑤(𝑥, 𝑦), 𝑤(𝑥, 𝑦), be analytic in the domain K and 

let (𝑥, 𝑦) = (0,0)(𝑥, 𝑦) = (0,0) in this domain. The function 𝑤(𝑥, 𝑦)𝑤(𝑥, 𝑦) is then represented by one 

series whose centre at located at (0,0). (0,0). The differential transform of the function 𝑤(𝑥, 𝑦) 𝑤(𝑥, 𝑦)is 

the form 

𝑊(𝑘, ℎ) =
1

𝑘! ℎ!
 [

𝜕𝑘+ℎ  𝑤(𝑥, 𝑦)𝜕𝑘+ℎ  𝑤(𝑥, 𝑦)

𝜕𝑥𝑘𝜕𝑦𝑘
]

(0,0)(0,0)

  

Where 𝑤(𝑥, 𝑦)𝑤(𝑥, 𝑦) is the original function and 𝑊(𝑘, ℎ)𝑊(𝑘, ℎ) is the transformed function. The 

differential inverse transform of 𝑊(𝑘, ℎ)𝑊(𝑘, ℎ) is defined as 

𝑤(𝑥, 𝑦) =  ∑ ∑ 𝑊(𝑘, ℎ) (𝑥 −  𝑥0)(𝑥 − 𝑥0)𝑘(𝑦 −  𝑦0)(𝑦 −  𝑦0)ℎ

∞

ℎ=0

∞

𝑘=0

  

 

 1.  𝐼𝑓  𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) ± 𝑣(𝑥, 𝑦)  𝑡ℎ𝑒𝑛   

                  𝑊(𝑘, ℎ) = 𝑈(𝑘, ℎ) ± 𝑉(𝑘, ℎ) 

2.  𝐼𝑓  𝑤(𝑥, 𝑦) = 𝑐𝑢(𝑥, 𝑦) 𝑡ℎ𝑒𝑛 

 𝑊(𝑘, ℎ) = 𝑐 𝑈(𝑘, ℎ) 

3.    𝐼𝑓  𝑤(𝑥, 𝑦) =  
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
   𝑡ℎ𝑒𝑛 
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 𝑊(𝑘, ℎ) = (𝑘 + 1)𝑈(𝑘 + 1, ℎ)𝑊(𝑘, ℎ) = (𝑘 + 1) 𝑈(𝑘 + 1, ℎ) 

4.         𝐼𝑓  𝑤(𝑥, 𝑦) =  
𝜕𝑢(𝑥,𝑦)

𝜕𝑦
   𝑡ℎ𝑒𝑛 

 𝑊(𝑘, ℎ) = (𝑘 + 1)𝑈(𝑘, ℎ + 1)𝑊(𝑘, ℎ) = (𝑘 + 1) 𝑈(𝑘, ℎ + 1) 

5.  𝐼𝑓  𝑤(𝑥, 𝑦) =  
𝜕𝑟+𝑠𝑢(𝑥,𝑦)

𝜕𝑥𝑟𝜕𝑦𝑠    𝑡ℎ𝑒𝑛 

 𝑊(𝑘, ℎ) = (𝑘 + 1)(𝑘 + 2)(𝑘 + 3) … (𝑘 + 𝑟)(ℎ + 1)(ℎ + 2) … (ℎ + 𝑠) × 𝑈(𝑘 + 𝑟, ℎ + 𝑠) 

6.  𝐼𝑓  𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑣(𝑥, 𝑦)  𝑡ℎ𝑒𝑛 

   𝑊(𝑘, ℎ) =  ∑ ∑  𝑈(𝑟, ℎ − 𝑠)𝑉(𝑘 − 𝑟, 𝑠) 𝑈(𝑟, ℎ − 𝑠)𝑉(𝑘 − 𝑟, 𝑠)ℎ
𝑥=0

𝑘
𝑥=0  

8.     𝐼𝑓 𝑤(𝑥, 𝑦) = 𝑥𝑚𝑦𝑛    𝑡ℎ𝑒𝑛 𝐼𝑓 𝑤(𝑥, 𝑦)  = 𝑥𝑚𝑦𝑛    𝑡ℎ𝑒𝑛 

          𝑊(𝑘, ℎ) =  𝛿(𝑘 − 𝑚, ℎ − 𝑛)  = {
1     𝑖𝑓 𝑘 = 𝑚 𝑎𝑛𝑑 ℎ = 𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑊(𝑘, ℎ) =  𝛿(𝑘 − 𝑚, ℎ − 𝑛)  =

{
1     𝑖𝑓 𝑘 = 𝑚 𝑎𝑛𝑑 ℎ = 𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

9.   𝐼𝑓  𝑤(𝑥, 𝑦) =  
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
 
𝜕𝑣(𝑥,𝑦)

𝜕𝑥
  𝑡ℎ𝑒𝑛 

             𝑊(𝑘, ℎ) =  ∑ ∑ (𝑟 + 1)(𝑘 − 𝑟 + 1) 𝑈(𝑟 + 1, ℎ − 𝑠)𝑉(𝑘 − 𝑟 + 1, 𝑠)(𝑟 + 1)(𝑘 − 𝑟 +ℎ
𝑥=0

𝑘
𝑥=0

1) 𝑈(𝑟 + 1, ℎ − 𝑠)𝑉(𝑘 − 𝑟 + 1, 𝑠) 

 

10.  𝐼𝑓  𝑤(𝑥, 𝑦) =  
𝜕𝑢(𝑥,𝑦)

𝜕𝑦
 
𝜕𝑣(𝑥,𝑦)

𝜕𝑦
  𝑡ℎ𝑒𝑛 

              𝑊(𝑘, ℎ) =  ∑ ∑ (ℎ − 𝑠 + 1)(𝑠 + 1) 𝑈(𝑟, ℎ − 𝑠 + 1)𝑉(𝑘 − 𝑟, 𝑠 + 1)(ℎ − 𝑠 + 1)(𝑠 +ℎ
𝑥=0

𝑘
𝑥=0

1) 𝑈(𝑟, ℎ − 𝑠 + 1)𝑉(𝑘 − 𝑟, 𝑠 + 1) 

11.  𝐼𝑓  𝑤(𝑥, 𝑦) =  
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
 
𝜕𝑣(𝑥,𝑦)

𝜕𝑦
  𝑡ℎ𝑒𝑛 

           𝑊(𝑘, ℎ) =  ∑ ∑ (𝑘 − 𝑟 + 1)(ℎ − 𝑠 + 1) 𝑈(𝑘 − 𝑟 + 1, 𝑠)𝑉(𝑟, ℎ − 𝑠 + 1)(𝑘 − 𝑟 + 1)(ℎ −ℎ
𝑥=0

𝑘
𝑥=0

𝑠 + 1) 𝑈(𝑘 − 𝑟 + 1, 𝑠)𝑉(𝑟, ℎ − 𝑠 + 1) 

12.   𝐼𝑓  𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑣(𝑥, 𝑦)𝑝(𝑥, 𝑦) 𝑡ℎ𝑒𝑛𝐼𝑓  𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑣(𝑥, 𝑦)𝑝(𝑥, 𝑦)  𝑡ℎ𝑒𝑛 

            𝑊(𝑘, ℎ) =  ∑ ∑ ∑ ∑ 𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑉(𝑡, 𝑠)𝑃(𝑘 − 𝑟 − 𝑡, 𝑝)𝑈(𝑟, ℎ − 𝑠 −ℎ−𝑠
𝑝=0

ℎ
𝑠=0

𝑘−𝑟
𝑡=0

𝑘
𝑟=0

𝑝)𝑉(𝑡, 𝑠)𝑃(𝑘 − 𝑟 − 𝑡, 𝑝) 

13.  𝐼𝑓  𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)
𝜕𝑣(𝑥,𝑦)

𝜕𝑥
 
𝜕𝑝(𝑥,𝑦)

𝜕𝑥
  𝑡ℎ𝑒𝑛𝐼𝑓  𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) 

𝜕𝑣(𝑥,𝑦)

𝜕𝑥
 
𝜕𝑝(𝑥,𝑦)

𝜕𝑥
  𝑡ℎ𝑒𝑛 
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𝑊(𝑘, ℎ) =  ∑ ∑ ∑ ∑(𝑡 + 1)(𝑘 − 𝑟 − 𝑡 + 1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑉(𝑡 + 1, 𝑠)𝑃(𝑘 − 𝑟 − 𝑡 + 1, 𝑝)(𝑡

ℎ−𝑠

𝑝=0

ℎ

𝑠=0

𝑘−𝑟

𝑡=0

𝑘

𝑟=0

+ 1)(𝑘 − 𝑟 − 𝑡 + 1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑉(𝑡 + 1, 𝑠)𝑃(𝑘 − 𝑟 − 𝑡 + 1, 𝑝) 

14.  𝐼𝑓  𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑣(𝑥, 𝑦)
𝜕2𝑝(𝑥,𝑦)𝜕2𝑝(𝑥,𝑦)

𝜕𝑥2  

𝑊(𝑘, ℎ) =  ∑ ∑ ∑ ∑(𝑘 − 𝑟 − 𝑡 + 2)(𝑘 − 𝑟 − 𝑡 + 1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑉(𝑡, 𝑠)𝑃(𝑘 − 𝑟 − 𝑡 + 2, 𝑝)(𝑘

ℎ−𝑠

𝑝=0

ℎ

𝑠=0

𝑘−𝑟

𝑡=0

𝑘

𝑟=0

− 𝑟 − 𝑡 + 2)(𝑘 − 𝑟 − 𝑡 + 1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑉(𝑡, 𝑠)𝑃(𝑘 − 𝑟 − 𝑡 + 2, 𝑝) 

 

3. Analysis of multispecies Lotka–Volterra equations:  

 

Mathematical models of population growth have been formed to provide an inconceivable 

significant angle of true ecological situation. The meaning of each parameter in the models has 

been defined biologically. For n species, we consider the following [12, 23] general Lotka–

Volterra model 

𝑑𝑁𝑖

𝑑𝑡
= 𝑁𝑖 (𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑁𝑗

𝑛

𝑗=1

) , 𝑖 = 1, 2, … … … … … . . 𝑛.  

These equations may represent either predator–prey or competition cases. 

3.1 Model I (Single species): 

In case of one-species, Eq. (10) is written for a given limited source of food, 

𝑑𝑁

𝑑𝑡
= 𝑁(𝑏 − 𝑎𝑁), 𝑏 > 0, 𝑎 > 0, 𝑁(0) > 0  

where a and b are positive constants. This equation has an exact solution 

𝑁(𝑡) =

𝑏𝑒𝑏𝑡

(
𝑏 − 𝑎𝑁(0)

𝑁(0)
) + 𝑎𝑒𝑏𝑡

       𝑓𝑜𝑟 𝑏 ≠ 0

𝑁0(𝑡)𝑁0(𝑡)

1 + 𝑎𝑡𝑁0(𝑡)1 + 𝑎𝑡𝑁0(𝑡)
         𝑓𝑜𝑟 𝑏 = 0.

  

         

where 𝑁(0) is the initial condition. 

 

Solving Eq. (10) by LADM yields the following recursive algorithm 

𝑁0 = 𝑁(0),   𝑁𝑛+1(𝑡) = 𝑏𝐿−1 {
1

𝑠
𝐿(𝑁𝑛(𝑡))} − 𝑎𝐿−1 {

1

𝑠
𝐿(𝐴1,𝑛)}   ,    𝑛 ≥ 0  
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where the Adomian Polynomials 𝐴1,𝑛 are given by 

𝐴1,𝑛 = ∑ 𝑁𝑖𝑁𝑛−𝑖
𝑛
𝑖=0  .  

We now solve Eq. (10) by Differential - Transform Method (DTM) with the initial condition 

𝑁(0) = 0.1. Applying differential transform, we have 

(𝑘 + 1)𝑁1(𝑘 + 1) = 𝑏𝑁1(𝑘) − 𝑎 ∑ 𝑁1

𝑘

𝑟=0

(𝑟)𝑁1(𝑘 − 𝑟)(𝑘 + 1)𝑁1(𝑘 + 1)

= 𝑏𝑁1(𝑘) − 𝑎 ∑ 𝑁1

𝑘

𝑟=0

(𝑟) 𝑁1(𝑘 − 𝑟) 

 

 

       

𝑁1(k + 1) =
1

(𝑘 + 1)(𝑘 + 1)
[b𝑁1(k) − 𝑎 ∑ 𝑁1

𝑘

𝑟=0

® 𝑁1(k − r)b𝑁1(k)

− 𝑎 ∑ 𝑁1

𝑘

𝑟=0

® 𝑁1(k − r)] 𝑁1(k + 1)

=
1

(𝑘 + 1)(𝑘 + 1)
[b𝑁1(k) − 𝑎 ∑ 𝑁1

𝑘

𝑟=0

® 𝑁1(k − r)b𝑁1(k)

− 𝑎 ∑ 𝑁1

𝑘

𝑟=0

® 𝑁1(k − r)] 

   

 

 Where   𝑁1(k) is the differential transform of 𝑁(𝑡). 

Now the initial condition is 

 𝑁(0) = 0.1 ⇒ 𝑁1(0) = 0.1 

Putting 𝑘 = 0,1,2,3, . . . . . . .. in equation (2) we get, 

𝑁1(1) = [𝑏𝑁1(0) − 𝑎 ∑ 𝑁1

0

𝑟=0

(𝑟)𝑁1(−𝑟)𝑏𝑁1(0) − 𝑎 ∑ 𝑁1

0

𝑟=0

(𝑟)𝑁1(−𝑟)] 

 

⇒ 𝑁1(1) = 0.1𝑏 − 0.01𝑎 
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𝑁1(2) =
1

2
[𝑏𝑁1(1) − 𝑎 ∑ 𝑁1

1

𝑟=0

(𝑟)𝑁1(1 − 𝑟)𝑏𝑁1(1) − 𝑎 ∑ 𝑁1

1

𝑟=0

(𝑟)𝑁1(1 − 𝑟)] 

                                                 

⇒ 𝑁1(2) =
1

2
[0.1𝑏 − 0.03𝑎𝑏 + 0.002𝑎2] 

 

 

 

𝑁1(3) =
1

3
[𝑏𝑁1(2) − 𝑎 ∑ 𝑁1

2

𝑟=0

(𝑟)𝑁1(2 − 𝑟)𝑏𝑁1(2) − 𝑎 ∑ 𝑁1

2

𝑟=0

(𝑟)𝑁1(2 − 𝑟)] 

                                        

⇒ 𝑁1(3) =
1

3
[0.05𝑏3 − 0.035𝑎𝑏2 + 0.006𝑎2𝑏 − 0.0003𝑎3] 

𝑁1(4) =
1

4
[𝑏𝑁1(3) − 𝑎 ∑ 𝑁1

3

𝑟=0

(𝑟)𝑁1(3 − 𝑟)] 

⇒ 𝑁1(4) =
1

4
[0.017𝑏4 − 0.0254𝑎𝑏3 + 0.0084𝑎2𝑏2 − 0.001𝑎3𝑏 + 0.00004𝑏4] 

 

 

Using the inverse differential transform, we get 

𝑁(𝑡) = ∑ 𝑡𝑘𝑁1(𝑘)

∞

𝑘=0

 

 

⇒  𝑁(𝑡) = 𝑁1(0) + 𝑡𝑁1(1) + 𝑡2𝑁1(2) + 𝑡3𝑁1(3) + 𝑡4𝑁1(4) + ⋯ 
 

⇒  𝑁(𝑡) = 0.1 + 𝑡(0.1𝑏 − 0.01𝑎) +
𝑡2

2
(0.1𝑏2 − 0.03𝑎𝑏 + 0.002𝑎2)

+
𝑡3

3
(0.05𝑏3 − 0.035𝑎𝑏2 + 0.006𝑎2𝑏 − 0.0003𝑎3)

+
𝑡4

4
(0.017𝑏4 − 0.0254𝑎𝑏3 + 0.0084𝑎2𝑏2 − 0.001𝑎3𝑏

+ 0.00004𝑎4) + 
 

 

Results and Discussion:  

The numerical solutions obtained by using the DTM and LADM are compared with the exact 

solution (for single-species). Table 1 shows comparison among the DTM, 3-term LADM and 

the exact solution for the single species in the case 𝑏 =  1, 𝑎 =  3 and 𝑁 (0) =  0.1, ℎ = 0.1. 

The results show error free calculation between exact solution and DTM whereas there are 

some amount of error in the calculation between exact solution and LADM.  
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Table 1: Numerical Comparison when initially we have 𝑵(𝟎) = 𝟎. 𝟏, 𝒂 = 𝟑, 𝒃 = 𝟏. 

 

t           Exact Sol. DTM        LADM           EDTM                ELADM 

      (3-iteration) 

0 0.1 0.10000000 0.10000000 0.00E+00 0.00E+00 

0.1 0.10713679 0.10713678 0.10714000 1.00E-08 -3.21E-06 

0.2 0.11453291 0.11453279 0.11456000 1.20E-07 -2.71E-05 

0.3 0.12216385 0.12216320 0.12226000 6.50E-07 -9.61E-05 

0.4 0.13000114 0.12999876 0.13024000 2.38E-06 -2.39E-04 

0.5 0.13801261 0.13800583 0.13850000 6.78E-06 -4.87E-04 

0.6 0.1461629 0.14614634 0.14704000 1.66E-05 -8.77E-04 

0.7 0.15441399 0.15437778 0.15586000 3.62E-05 -1.45E-03 

0.8 0.16272591 0.16265327 0.16496000 7.26E-05 -2.23E-03 

0.9 0.1710575 0.17092148 0.17434000 1.36E-04 -3.28E-03 

1 0.17936718 0.17912667 0.18400000 2.41E-04 -4.63E-03 

1.1 0.18761383 0.18720869 0.19394000 4.05E-04 -6.33E-03 

1.2 0.19575756 0.19510298 0.20416000 6.55E-04 -8.40E-03 

1.3 0.2037605 0.20274054 0.21466000 1.02E-03 -1.09E-02 

1.4 0.21158743 0.21004799 0.22544000 1.54E-03 -1.39E-02 

1.5 0.21920638 0.21694750 0.23650000 2.26E-03 -1.73E-02 

1.6 0.22658907 0.22335684 0.24784000 3.23E-03 -2.13E-02 

1.7 0.23371122 0.22918937 0.25946000 4.52E-03 -2.57E-02 

1.8 0.24055276 0.23435402 0.27136000 6.20E-03 -3.08E-02 

1.9 0.24709782 0.23875530 0.28354000 8.34E-03 -3.64E-02 

2 0.25333471 0.24229333 0.29600000 1.10E-02 -4.27E-02 

      
EDTM → Error term of DTM 

ELADM → Error term of LADM. 
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Figure 1: Evaluation between the exact solution and the solutions obtained by using LADM and 

DTM methods for model I. 

Conclusions: 

This paper aims to present the numerical solution of Lotka – Voltera model by virtue of a popularly 

techniques called DTM. The solution obtained by this technique show high accuracy in compare to 

previously available solution. The obtained solution is also compared with exact solution for a limiting case 

(single species case) and the LADM solution. The above observation establishes the reliability and accuracy 

of DTM technique for the solution of linear and no-linear population models. The solution obtained by 

DTM also reasonably accurate after sufficiently large time. Secondly DTM techniques not require 

evaluation of Adomian polynomials, which is needed for the case of LADM. Hence it provides an efficient 

numerical solution. 
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