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Abstract. I am hereby presenting a technical paper on
design and implementation of end-to-end, data
engineering pipeline project, for Customer purchase
behavior analysis, using PySpark on Databricks
platform, Python for writing transformation logic , SQL
for querying processed data with Delta Lake storage
layer offering ACISD transactions over Apache Parquet
files
I INTRODUCTION

The usage of customer behavior purchase &
operational patterns in developing business strategies
and informed decisions, motivated me to study and
understand largescale data processing and ETL
pipelines.

Implementation of above academic studies done in
this project wherein following customer purchase &
operational patterns were identified:

e  Customer bought airpods after buying iPhone.

e Customers bought iPhone and air pods, but
thereafter did not purchase any other product.

e Locations based purchase behavior.

Aforesaid trends can help the company to make

business decisions like following:

e Promote air pods to iPhone buyers based on
sequential purchase behaviors

e Offer iPhone plus air pods combo deals to
increase average order value.

e Promotions based on location purchase trends

e Reward customers who only buy iPhone and air
pods to boost retention

Key learnings and future enhancements elaborately
explained in this paper.

II RELATED WORKS

A scalable and flexible basket analysis system for big
transaction data in Spark [7].
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Xudong Sun, Alladoumbaye Ngueilbaye, Kaijing Luo,
Yongda Cai, Dingming Wu, Joshua Zhexue Huang
https://doi.org/10.1016/j.ipm.2023.103577

We referred many articles and found article [7] as a
Related work. Both, aforesaid article [7] and my
project, has used Apache Spark as the core distributed
processing engine. Both analyze transactional datasets
to uncover product purchase patterns, and follows an
ETL-based approach; extract transactional data,
transform/filter it for business logic, and load/store the
results. Similarly, both aim to extract actionable
insights from consumer purchase behavior to assist in
decision-making or targeted recommendations.
Article [7] presents a scalable and modular framework
for analyzing large-scale, diverse transactional
datasets, whereas my project focuses on a specific
pattern identification (Customers who bought AirPods
after iPhone, and Customers bought iPhone and air
pods, but thereafter did not purchase any other
product) within a controlled dataset using a fixed ETL
pipeline. My project uses Delta Lake to ensure ACID
compliance and reliable data storage whereas Article
[7] relies on Spark’s native storage layers without
explicit mention of transactional guarantees. Article
[7] provides an abstract and modular design whereas
my project is fully executable, visually traceable, and
deployable in Databricks notebooks, making it ideal
for learning, demonstration, or prototyping.

III FRAMEWORKS AND PROGRAMMING

LANGUAGES
e  PySpark
e Python
e SQL

e Delta Lake
e Databricks
e Apache Parquet.
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IV SYSTEM ARCHITECTURE

This project follows a classic ETL architecture
consisting of three main layers—Extract, Transform,
and Load—executed using PySpark [1] on Databricks
[5], and backed by Delta Lake [4] for storage and
querying. System architecture illustrated in Figure 1
which is enclosed herewith.

System components described as follows:

A. Extract Layer

The Extract phase ingests structured data from
multiple sources using a flexible, abstracted interface:

e Sources: CSV files (Transaction Updated.csv)
and Delta tables (customer delta_table).

e Implemented using a data source factory pattern,
which supports multiple file formats (CSV,
Parquet, Delta, ORC).

e Data is loaded into Spark Data Frames using
PySpark's [1] spark.read operations.

Fig. 2 having Snapshots of Extract layer are enclosed
herewith for ready reference.

B. Transform Layer

The Transform layer performs the core logic of

identifying customer purchasing patterns using

PySpark's [1] distributed processing:

e Implements business logic like "who bought
AirPods after buying iPhone" using window
functions.

o Identifies customers who purchased only AirPods
and iPhones, using groupBy + collect set + array
filters.

e Joins customer profiles with transaction data
using broadcast joins.

e Transformation logic is modular and reusable,
implemented with abstract transformer classes.

e Enables scalable pattern identification and
evaluation.

Fig. 3.1 and 3.2 having Transform Layer enclosed

herewith for ready reference.

C. Load Layer

The Load phase stores the transformed data into

persistent, query able formats:

e Delta Lake [4] tables are used to store the final
outputs(airpodsAfterIphone,
onlyAirpodsAndIphone) for reliable querying and
versioning.
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e DBEFS output in Parquet [6] format is optionally
supported using a sink factory.

e Data is accessible using both PySpark [1] and
SQL [3] from within Databricks [5] notebooks.

Refer enclosed Fig. 4 having snapshot of this Load
Layer.
V IMPLEMENTATION

A. Data Extraction

Transactional data was extracted from CSV files using
PySpark’s [1] Data Frame API within the Databricks
[5] notebook environment. Customer data was
retrieved from a Delta Lake [4] table preloaded into
the default schema. The structured extraction process
used parameterized functions, enabling seamless
ingestion from different sources including DBFS and
Delta tables.

B. AirPods After iPhone Pattern Detection

To identify customers who purchased AirPods after
buying an iPhone, a windowing specification was
applied using PySpark’s [1] Window and lead()
functions. The transaction data was partitioned by
customer ID and ordered by transaction date to
retrieve the next product purchased. Customers who
had an “iPhone” as the current product and “AirPods”
as the next product were filtered. These records were
then joined with customer data using a broadcast join
for optimized performance. The final output was saved
as a Delta table (airpodsAfterlphone) in the
workspace.default catalog.

C. Only iPhone and AirPods Buyers

The system also identified customers who had
purchased only AirPods and iPhones, and no other
products. This was implemented using PySpark [1]
transformations including groupBy() and collect_set()
to collect all unique product names per customer. The
result was filtered for those containing exactly two
items: “iPhone” and “AirPods”. The filtered dataset
was then joined with customer details to generate a
consolidated report. The output was stored in DBFS
for downstream consumption and reporting.

D. Transformation Pipeline and Modularity
The ETL logic was structured using object-oriented
programming principles. Separate transformer classes
were defined for each transformation goal, enhancing
modularity and reuse. The pipeline was orchestrated
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using custom workflow classes, enabling step-wise
execution from extraction to transformation and
loading. The use of broadcast joins, window functions,
and filtering operations in PySpark [1] ensured
scalability and performance on large datasets.

Refer enclosed Fig. 3.1,3.2,5, 6 and 7.

E. Data Storage and Output

Final outputs were saved in Delta format for ACID
compliance and query optimization. In addition to
Delta tables, selected outputs were written to DBFS in
Parquet format to support further analysis, sharing, or
visualization. This hybrid output strategy allowed both
structured querying via SQL [3] and flexible file-based
access.

F. Usage in Real-World Scenarios

This project simulates real-world use cases such as
product affinity analysis, post-purchase behaviour
tracking, and user segmentation based on purchase
patterns. The system could be easily extended to
support additional product sequences, real-time
updates, or integration with recommendation engines.

VILEARNINGS

A. Data Engineering Learnings

e Understood the core components of building an
ETL pipeline using PySpark [1] within Databricks
[5]. Worked with Databricks [5] as a unified data
analytics platform to build and test scalable ETL
pipelines.

e Gained hands-on experience with Window
functions and analytical operations like lead() for
sequence-based filtering.

e Applied Data Frame transformations including
filtering, grouping, joining, and aggregation using
PySpark [1] APIs.

e Used broadcast joins to optimize performance
during customer-product dataset merges.

e  Performed schema inspection and data validation
using SQL [3] in Databricks [5] notebooks.

o Developed custom transformers using Python [1]
OOP principles for modular and reusable ETL
logic.
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e Explored different storage formats (Delta Lake
[4] and Parquet[6]) and learned how to manage
data versioning and ACID properties using Delta
Lake[4].

e C(Created partitioned output using collect set,
array_contains, and size-based filtering for
identifying customer segments.

B. Platform & Tooling Learnings

e  Managed Delta tables and file paths using DBFS
and Databricks [5], and SQL [3] commands.

e Utilized %sql [3] and python [2] cells for
seamless integration of SQL [3] validation and
PySpark [1]code within notebooks.

e Learned how to persist Data Frames as managed
Delta tables using saveAsTable() for downstream
querying.

e  Understood partitioning logic and schema-based
write operations for efficient data storage.

e Integrated modular extract-transform-load logic
with clear class responsibilities, enhancing code
readability and extensibility.

VIIRESULTS & CONCLUSION

Successfully implemented a data analytics pipeline
using PySpark [1] on the Databricks platform to
identify customer purchasing patterns, specifically
those who bought AirPods after purchasing an iPhone,
and those who bought only airpods and iphone.
Utilized Delta Lake for scalable data storage and SQL
for verification. This project demonstrates how
distributed processing frameworks like Spark can
extract meaningful insights from structured
transactional data.

VIII FUTURE ENHANCEMENTS

e Incorporate real-time stream processing using
Spark Structured Streaming.

e Integrate visualization tools like Power BI or
Tableau for dashboarding.

e Generalize the pipeline for multiple product
pattern analyses using configurable logic.

e Deploy as a reusable ETL module for various
business datasets.
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“Fig. 1 System architecture
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= © databricks Q Search data, notebooks,recents, and more » credts worspacev & (@)
+ New extractor Pythonv TebsOFFv ¥t
b | »Runal | @Cluster] v | Schedule -
File Edit View Run Help Lastedit
{0 Workspace
1 a
Ol Bl | 1 e & 11 F (O
& Catalog o v class Extractor: r
2 Jobs & Fipelnes & 2
& Compute Abstract class
om
e ¢ ¢
@ Morketplace def _init_(self):
pass i
def extract(self):
pass
[ sau editor class AirpodsAfterIphoneExtractor(Extractos
I Queries Gef extract(self):
B Dashboards Tnplenent the steps for extracting or reading the dote
[% Genie o
N transactioninputDF = get_data_source(
A ety data_tys
D Query History Filepath="cbs: /F1eStore/tables/Transaction Updsted. csv™
)-get_data_frane()
@ SQL Worehouses
transactioninputOF .onder8y (*customer,_id", "transaction_Date").shou()
Osta Engineer
2= JobRuns custonerdnputDF= source(
data_type=’
98, Dela lngestion Filepath-"default.custoner_delta_table persist"
).get_data_frame()
A
# Playground
4 Experiments putFs-{
& Features “transactioninputDF": transactioninputdF,
"customerinputDf customerinputDF
F Modeis
@ Sering return inputDFs
“Fig. 2” Extract Layer code snippet
+ databricks ata, NoteDooks, recents Credits
+ New onv  TabsOFv ¥
:mns:::m‘: N: o @B »Runal || @ Clustert v
e ESt View Run Hep
) Workspace
© Recents
4 Catmog o [» . [T 1 A & 0310
& Jobs & Pipeiines & v from pyspark.sql.window import Window
from pyspark.sal taport functions as ¢ & [ Iaport functions 1ike lead from here
© Compute > from pyspark.sal. functions isport broadcast, collect_set, size, array_contains
& Marketpiace class Transformer:
def )
[ s editor orn(self, inputoFs):
[ Queries
[ Dasbourds Class AdrpadsifterIphoneTransforner(Transforner):
% Gene
2 def transforn(self, inputoFs):
L Aerts we
) Query Hstory Customize: who bought AirPods after buying the iPhone
O30 Wamnoiees transactioninputoF = InpUtDFS.get(“transactioninputoF*)
print("transaction inputdf in transform”)
Data Engineering. transactioninputoF . show()
Z= JobRuns.
# Define window based on custoner and tise of purchase
B Data ngeston windouspec « indow.partitionsy("custoser_id"), ordersy ("transaction dste")
AL # Use 1ead to get the next product name per custoner
" transformedDF = transactioninputDF . withColumn(
& Paygrouna
“next_product_nase®, F.lesd("product_nane").over (uindouspec)
4 perinents )
' Features
Y print("airpods after buying iphone”)
B Modes transformedoF .ordersy(“customer_id", “transaction date", “product_nane").shou()
@ sening
filteredoF = transformedF.filter(
(F.col("product_name") =a "iPhone") & (F.col("next_product_name") we "AirPods"’
)
filteredoF .orderty("custoner_id",“transaction_date","product_name").shou()
custonerinputdF=inputdss. get("customeringutor™)
custonerinputoF. show()
JoinDF=customerinputDF. join(
brosdcast (filtereddr),
“customer_id*
)
print(" [ Schema after join:")
JoinoF, printschesa()
print(* J0HED OF *)
$o100F . show()
# [ Save full Joined Oatafrane to a Delts table
JoinDF write, format(“delta").node( "overwrite”).saveAsTable("workspace.default.airpodsafterIphone”)

“Fig. 3.1” Transform Layer code snippet
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return joinDF.select(
"customer_id",
"customer_name",
"location”

class OnlyAirpodsandIphone(Transformer):
def transform(self, inputDFs):

Customers who have bought ONLY iPhone and AirPods — no other products
# Step 1: Get transaction data

transactioninputDF = inputDFs.get("transactioninputDF")
print("Transaction inputDF in transform")

transactioninputDF.show()

# Step 2: Group by customer and collect all products purchased

groupedDF = transactioninputDF.groupBy("customer_id").agg(
collect_set("product_name").alias("products")

)

print("Grouped DF (products per customer)")}

groupedDF . show( )

# Step 3: Filter customers who have exactly and only ['iPhone’, 'AirPods']

filteredDF = groupeddF.filter(
(array_contains(F.col("products"), "iPhone")) &
(array_contains(F.col("products”), "AirPods")) &
(size(F.col("products")) == 2)

)

print("Filtered DF (only iPhone and AirPods)")

filteredDrF.show()

# Step 4: Join with customer info
customerinputDF = inputDFs.get("customerinputDF")
print("Customer inputDF")

customerinputDF . show()

joinDF = customerinputDr.join(
broadcast(filteredor), # optimize join
"customer_id"

print("[@ Frinal Joined DF")
joinDF.shou()

# [ Return selected final columns (in correct order)
return joinDF.select(

"customer_id",

"customer_name",

"join_date",

"location”,

"products”

“Fig. 3.2 Transform Layer code snippet
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= databricks Q searc TRL+P
+ New loader Pyhonv TabsOFFv
>Rl | @ Quster®
Fle Edt Vew Run Hep L
{0 Workspace
(© Recents B
Cotaog o [ . [ 1 wen & 033 | 0
& Jobs & Ppelines s v Jirun *. /1oader. factory"
2 & e ety
O Compute s
B Marketplace
> 2
class Abstractloader:
0L e def (581, transformedds):
self transformeddFtransforneddf
™ Queries def sink(self):
B Dasnboards
pass
[ Genie
Q Aets class
D QueryHistoy def sink(self):
G SO Warehouses get_sink_source(
sink_type = “dbfs",
o = sel. transforneddF,
path = “ofs:/Fil testing analys airpodsifterphane”,
method = “overwrite”
B0 Data Ingeston d_data_frame()
o
Class OnlyatrpodsAndiPhonelcaden (sbstractLoader):
& Prayground
o ink(self):
& booinsly def sink(self)
params = {
 Features "partitiongycoluans”
5 Modess !
get_sink_source(
@ Sening sink_type = “dbfs_with_partition”,
of = self.tronsforseddF,
1/l ) sirpodsonlyTphone”,
method = “overwrite”,
parans « parass
)+10ad_dats frame()
sink_type = “gelts",
df = self. transforseddF,
path = "default.onlykirPodsendl
nethod « "overwrite”,
parans = parass
). 10ad_data_frane()
. ”» .
Fig. 4” Load Layer code snippet
= @ databricks ebook CTRL+P
+ New reader_factory Phonv TavsiOFFv ¥ B | »Runal | @ Cus
Fle Edt Vew Run Hep days 300
0 Workspace
© Recents 8
Catsog o # o, 200528 1 prron & 03
& Jobs & Pipeiines & class Datasource:
O Compute P Abstract class
£ Marketplace
def _init_(self, path):
self.path = path
B saL Egtor def get_data_frame(self):
h e
e abstract nethod
raise Valuegrror("not isplenented)
Class Cswatasource(Datasource):
de get_data_frame(self):
2 Quey Hstoy return(
spark.read. forsat("csv").option("header®, “true"). load(self.path)
(@ SQL Warehouses \
Data Engines class ParquetDatasource(Datas:
= o ae def get_data_frame(self):
return(
B0 Data Ingestion spark.read. format ("parquet” ) .option(*header”, “true®).load(self.path)
)
i €lass ORCOatasource(Datasource):
& Peygromd def get_data_frame(self):
Experiments return(

spark.read. format (“orc”) ,option(“header”, “true"),load(self.path)

o Features

% Models

class Deltadatasou
def get_data_frame(self):
table_nane-self.path

@ Senving e(Datasource):

return(

spark.read. table(table_nane)

def get_data_source(data_type, filepath):
data_type="csv"
return CsvDatasource(Filepath)
elif data_type=="parquer
return Parquetpatasource(filepath)
elif data_ty
return ORCDatasoU
€lif data_type:
return Deltadata

ata_type}”)

raise Valueg

or(*Not inpelesent for data t

“Fig. 5" Reader Factory code snippet
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= © databricks Q search
+ New loader factory Phonv TebsiOFFv ¥ B »wne
Fle Edt View Run Hep 25 now
0 Workspace
) Recents a8
& coig o [» - [Tt Python
B Jobs & Ppelines ﬂAu v :lasf“?atasmu
> Compute & Abstract class
£ Marketplace -
def _init_(self, df, path, method, parans):
self.df = df
- self.path = path
3 sql ditor self.nethod = nethod
.parans = parans
1 Queries
[ Dashboards def load_data_frame(self):
T raise Valuetrror(*1oad_data_frase() not isplemented”)
[% Genie
L Alerts
Query History ink):
- Frane(self):
@ SQL Warehouses self.df .write.node(self method) . save(self.path)
class LoadToDeltaTable(Oatasink):
i) def 10ad_data_frame(self):
B Data Ingestion
self.df write. format (*delta") .node(self nethod) . saveAsTable(sel¢. path)
at/Eayormd def get_sink_source(sink_type, df, path, method, paramsshone):
& Experiments if sink_type == “dbfs":
return LoadTcoBFS(df, path, nethod, params)
o Features
ith_partition":
£ Models on(dF, path, sethod, parass)
3 Sening
return LoadTcoeltaTable(df, path, method, parans)
else:
raise valuegrror inplenented for sink type: {sink_type}")
s »» .
Fig. 6" Loader Fctory code snippet
> v namame -
class Firstiorkrlou:
ETL Pipeline to generate the deta for all customers who have bought Airpods just after buying iPhone
def _init_(self):
pass
def runner(self):
# step 1: Extract
inputDFs = AirpodsafterIphoneExtractor().extract()
# step 2: Transforn
firstTransfornedoF = AirpodsafterIphoneTransformer(). transform(inputors)
# Step 3: Load
AirpodsafterIphoneLoader (FirstTransformedor) . sink()
> Skipped 7

class SecondworkFlow:

ETL Pipeline to generate the data for all customers who have bought only iPhone and Customers
def _init_(self):
pass

def runner(self):
# Step 1: Extract
inputDFs = AirpodsafterIphoneextractor().extract()

# step 2: Transform
onlyAirpodsandIphonedF = onlyairpodsandIphone().transform(inputors)

# Step 3: Load
onlyairpodsandIphoneLoader (onlyAirpodsandIphoneds). sink()

class wor
def _init_ (self, name):
self.name = name
ef runner(self):
if self.name == "firstworkFlow":
return Firstworkrlow().runner()
€lif self.name == "secondWorkFlow":
return secondworkFlow() .runner()
else:
raise valueError(f*not implemented for {self.name}")

owRunner:

a

name = "firstiorkFlon"

workFlowRunner = workF lowRunner (name) .runner()
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AirPods after irPhone Table

- - - - - - - - -+ - - - - - - - - —— -+
| customer_id]lcustomer_name]| join_date]lccation]| procducts|
- - - ——— - — - -+ — e —— - - - ———— - — - —— -+
| 1es] Evalzez22-e1-21|) ohio|[iPhone, AirPcds]|
| 1es] Frank|2zez22-e2-e1|) Nevada | [iPhone, AirPcds]|
SEsmomre s o S st IR TGN PTRLTOT PSR TR PR A EREIIAET S R ik AR -
class wWorkFlowRunner:
def __init__ (self, name):
self.name = name
def runner(self):
if self.name == "firstworkrlow":
return Firstworkrlow().runner()
elif self.name == "secondwWorkrFlow":
return SecondworkFlow().runner()
else:
raise valueerror(f"not implemented for {self.name}")
name = “secondiorkrlow"
workFlowRunner = WorkflowRunner(name).runner()
Only AirPods and iPhone Table
e ———— e ——— - F e ———— e ——— e -+
|customer_idicustomer_name| join_date]lccation| products|
e ———— e — - - F e ———— - — - - e -+
| 1e7] Grace|2822-e3-e1|cCoclorado|[AirPods, iPhone]]|
| 1e=] Henry|2e22-e2-21| uUtah| [AirPods, irPhone]|
- ——— - - - - - - - ———— - —— - - - - - -+

“Fig.7” Workflow, Analysis code and output snippet
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