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Abstract. I am hereby presenting a technical paper on 

design and implementation of end-to-end, data 

engineering pipeline project, for Customer purchase 

behavior analysis, using PySpark on Databricks 

platform, Python for writing transformation logic , SQL 

for querying processed data with Delta Lake storage 

layer offering ACISD transactions over Apache Parquet 

files 

I INTRODUCTION 

The usage of customer behavior purchase & 

operational patterns in developing business strategies 

and informed decisions, motivated me to study and 

understand largescale data processing and ETL 

pipelines.  

Implementation of above academic studies  done in 

this project wherein following customer purchase & 

operational patterns were identified: 

• Customer bought airpods after buying iPhone. 

• Customers bought iPhone and air pods, but 

thereafter did not purchase any other product. 

• Locations based purchase behavior. 

Aforesaid trends can help the company to make 

business decisions like following: 

• Promote air pods to iPhone  buyers based on 

sequential purchase behaviors 

• Offer iPhone plus air pods combo deals to 

increase average order value. 

• Promotions based on location purchase trends  

• Reward customers who only buy iPhone and air 

pods to boost retention 

Key learnings and future enhancements elaborately 

explained in this paper.  

II RELATED WORKS 

A scalable and flexible basket analysis system for big 

transaction data in Spark [7]. 

Xudong Sun, Alladoumbaye Ngueilbaye, Kaijing Luo, 

Yongda Cai, Dingming Wu, Joshua Zhexue Huang 

https://doi.org/10.1016/j.ipm.2023.103577 

We referred many articles and found article [7] as a 

Related work. Both, aforesaid article [7] and my 

project, has used Apache Spark as the core distributed 

processing engine. Both analyze transactional datasets 

to uncover product purchase patterns, and follows an 

ETL-based approach; extract transactional data, 

transform/filter it for business logic, and load/store the 

results. Similarly, both aim to extract actionable 

insights from consumer purchase behavior to assist in 

decision-making or targeted recommendations. 

Article [7] presents a scalable and modular framework 

for analyzing large-scale, diverse transactional 

datasets, whereas my project focuses on a specific 

pattern identification (Customers who bought AirPods 

after iPhone, and Customers bought iPhone and air 

pods, but thereafter did not purchase any other 

product) within a controlled dataset using a fixed ETL 

pipeline. My project uses Delta Lake to ensure ACID 

compliance and reliable data storage whereas Article 

[7] relies on Spark’s native storage layers without 

explicit mention of transactional guarantees. Article 

[7] provides an abstract and modular design whereas 

my project is fully executable, visually traceable, and 

deployable in Databricks notebooks, making it ideal 

for learning, demonstration, or prototyping. 

III FRAMEWORKS AND PROGRAMMING 

LANGUAGES 

• PySpark 

• Python 

• SQL 

• Delta Lake 

• Databricks 

• Apache Parquet.      
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IV SYSTEM ARCHITECTURE 

This project follows a classic ETL architecture 

consisting of three main layers—Extract, Transform, 

and Load—executed using PySpark [1] on Databricks 

[5], and backed by Delta Lake [4] for storage and 

querying. System architecture   illustrated in Figure 1 

which is enclosed herewith. 

System components described as follows: 

A. Extract Layer 

 The Extract phase ingests structured data from 

multiple sources using a flexible, abstracted interface: 

• Sources: CSV files (Transaction_Updated.csv) 

and Delta tables (customer_delta_table). 

• Implemented using a data source factory pattern, 

which supports multiple file formats (CSV, 

Parquet, Delta, ORC). 

• Data is loaded into Spark Data Frames using 

PySpark's [1] spark.read operations. 

Fig. 2 having Snapshots of Extract layer are enclosed 

herewith for ready reference. 

B. Transform Layer  

The Transform layer performs the core logic of 

identifying customer purchasing patterns using 

PySpark's [1] distributed processing: 

• Implements business logic like "who bought 

AirPods after buying iPhone" using window 

functions. 

• Identifies customers who purchased only AirPods 

and iPhones, using groupBy + collect set + array 

filters. 

• Joins customer profiles with transaction data 

using broadcast joins. 

• Transformation logic is modular and reusable, 

implemented with abstract transformer classes. 

• Enables scalable pattern identification and 

evaluation. 

Fig. 3.1 and 3.2 having Transform Layer enclosed 

herewith for ready reference. 

C. Load Layer 

The Load phase stores the transformed data into 

persistent, query able formats: 

• Delta Lake [4] tables are used to store the final 

outputs(airpodsAfterIphone,  

onlyAirpodsAndIphone) for reliable querying and 

versioning. 

• DBFS output in Parquet [6] format is optionally 

supported using a sink factory. 

• Data is accessible using both PySpark [1] and 

SQL [3] from within Databricks [5] notebooks. 

Refer enclosed Fig. 4 having snapshot of this Load 

Layer. 

V IMPLEMENTATION 

A. Data Extraction 

Transactional data was extracted from CSV files using 

PySpark’s [1] Data Frame API within the Databricks 

[5] notebook environment. Customer data was 

retrieved from a Delta Lake [4] table preloaded into 

the default schema. The structured extraction process 

used parameterized functions, enabling seamless 

ingestion from different sources including DBFS and 

Delta tables. 

B. AirPods After iPhone Pattern Detection  

To identify customers who purchased AirPods  after 

buying an iPhone, a windowing specification was 

applied using PySpark’s [1] Window and lead() 

functions. The transaction data was partitioned by 

customer ID and ordered by transaction date to 

retrieve the next product purchased. Customers who 

had an “iPhone” as the current product and “AirPods” 

as the next product were filtered. These records were 

then joined with customer data using a broadcast join 

for optimized performance. The final output was saved 

as a Delta table (airpodsAfterIphone) in the 

workspace.default catalog. 

C. Only iPhone and AirPods Buyers  

The system also identified customers who had 

purchased only AirPods and iPhones, and no other 

products. This was implemented using PySpark [1] 

transformations including groupBy() and collect_set() 

to collect all unique product names per customer. The 

result was filtered for those containing exactly two 

items: “iPhone” and “AirPods”. The filtered dataset 

was then joined with customer details to generate a 

consolidated report. The output was stored in DBFS 

for downstream consumption and reporting. 

D. Transformation Pipeline and Modularity  

The ETL logic was structured using object-oriented 

programming principles. Separate transformer classes 

were defined for each transformation goal, enhancing 

modularity and reuse. The pipeline was orchestrated 
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using custom workflow classes, enabling step-wise 

execution from extraction to transformation and 

loading. The use of broadcast joins, window functions, 

and filtering operations in PySpark [1] ensured 

scalability and performance on large datasets.  

Refer enclosed Fig. 3.1, 3.2, 5, 6 and 7. 

E. Data Storage and Output  

Final outputs were saved in Delta format for ACID 

compliance and query optimization. In addition to 

Delta tables, selected outputs were written to DBFS in 

Parquet format to support further analysis, sharing, or 

visualization. This hybrid output strategy allowed both 

structured querying via SQL [3] and flexible file-based 

access. 

F. Usage in Real-World Scenarios  

This project simulates real-world use cases such as 

product affinity analysis, post-purchase behaviour 

tracking, and user segmentation based on purchase 

patterns. The system could be easily extended to 

support additional product sequences, real-time 

updates, or integration with recommendation engines. 

VI LEARNINGS 

A. Data Engineering Learnings  

• Understood the core components of building an 

ETL pipeline using PySpark [1] within Databricks 

[5]. Worked with Databricks [5] as a unified data 

analytics platform to build and test scalable ETL 

pipelines.  

• Gained hands-on experience with Window 

functions and analytical operations like lead() for 

sequence-based filtering.  

• Applied Data Frame transformations including 

filtering, grouping, joining, and aggregation using 

PySpark [1] APIs.  

• Used broadcast joins to optimize performance 

during customer-product dataset merges.  

• Performed schema inspection and data validation 

using SQL [3]  in Databricks [5] notebooks.  

• Developed custom transformers using Python [1] 

OOP principles for modular and reusable ETL 

logic.  

• Explored different storage formats (Delta Lake 

[4] and Parquet[6]) and learned how to manage 

data versioning and ACID properties using Delta 

Lake[4]. 

• Created partitioned output using collect_set, 

array_contains, and size-based filtering for 

identifying customer segments.  

B. Platform & Tooling Learnings  

• Managed Delta tables and file paths using DBFS 

and Databricks [5], and SQL [3] commands.  

• Utilized %sql [3] and python [2] cells for 

seamless integration of SQL [3] validation and 

PySpark [1]code within notebooks.  

• Learned how to persist Data Frames as managed 

Delta tables using saveAsTable() for downstream 

querying.  

• Understood partitioning logic and schema-based 

write operations for efficient data storage.  

• Integrated modular extract-transform-load logic 

with clear class responsibilities, enhancing code 

readability and extensibility. 

VII RESULTS & CONCLUSION 

Successfully implemented a data analytics pipeline 

using PySpark [1] on the Databricks platform to 

identify customer purchasing patterns, specifically 

those who bought AirPods after purchasing an iPhone, 

and those who bought only airpods and iphone. 

Utilized Delta Lake for scalable data storage and SQL 

for verification. This project demonstrates how 

distributed processing frameworks like Spark can 

extract meaningful insights from structured 

transactional data. 

VIII FUTURE ENHANCEMENTS 

• Incorporate real-time stream processing using 

Spark Structured Streaming. 

• Integrate visualization tools like Power BI or 

Tableau for dashboarding. 

• Generalize the pipeline for multiple product 

pattern analyses using configurable logic. 

• Deploy as a reusable ETL module for various 

business datasets. 
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XII ANNEXURE 

Following System architecture, and  Snapshots of the 

code snippets enclosed: 

Fig. 1 System architecture 

Fig. 2 Extract Layer code snippet 

Fig. 3.1 and 3.2 Transform Layer code snippets 

Fig. 4 Load Layer code snippet 

Fig. 5  Reader Factory code snippet 

Fig. 6 Loader Factory code snippet 

Fig. 7 Workflow, Analysis code and output snippet 

Annexure: System architecture and Code snippets 

 
“Fig. 1” System architecture 

https://spark.apache.org/docs/latest/api/python/
https://www.python.org/doc/
https://www.databricks.com/
https://parquet.apache.org/
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“Fig. 2” Extract Layer code snippet 

 

        “Fig. 3.1” Transform Layer code snippet 
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        “Fig. 3.2” Transform Layer code snippet 
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“Fig. 4” Load Layer code snippet 

 
“Fig. 5” Reader Factory code snippet 
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“Fig. 6” Loader Fctory code snippet 
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“Fig.7” Workflow, Analysis code and output snippet  


