
© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1327

Technical paper for Customer purchase behavior analysis

project using PySpark on Databricks

Aditya Ajay Gupta

6th Semester Bachelor of Computer Engineering Student, Pillai College of Engineering, Affiliated to

Mumbai University, Internship at Fermion Infotech Private Limited, Navi Mumbai, Maharashtra, India

Abstract. I am hereby presenting a technical paper on

design and implementation of end-to-end, data

engineering pipeline project, for Customer purchase

behavior analysis, using PySpark on Databricks

platform, Python for writing transformation logic , SQL

for querying processed data with Delta Lake storage

layer offering ACISD transactions over Apache Parquet

files

I INTRODUCTION

The usage of customer behavior purchase &

operational patterns in developing business strategies

and informed decisions, motivated me to study and

understand largescale data processing and ETL

pipelines.

Implementation of above academic studies done in

this project wherein following customer purchase &

operational patterns were identified:

• Customer bought airpods after buying iPhone.

• Customers bought iPhone and air pods, but

thereafter did not purchase any other product.

• Locations based purchase behavior.

Aforesaid trends can help the company to make

business decisions like following:

• Promote air pods to iPhone buyers based on

sequential purchase behaviors

• Offer iPhone plus air pods combo deals to

increase average order value.

• Promotions based on location purchase trends

• Reward customers who only buy iPhone and air

pods to boost retention

Key learnings and future enhancements elaborately

explained in this paper.

II RELATED WORKS

A scalable and flexible basket analysis system for big

transaction data in Spark [7].

Xudong Sun, Alladoumbaye Ngueilbaye, Kaijing Luo,

Yongda Cai, Dingming Wu, Joshua Zhexue Huang

https://doi.org/10.1016/j.ipm.2023.103577

We referred many articles and found article [7] as a

Related work. Both, aforesaid article [7] and my

project, has used Apache Spark as the core distributed

processing engine. Both analyze transactional datasets

to uncover product purchase patterns, and follows an

ETL-based approach; extract transactional data,

transform/filter it for business logic, and load/store the

results. Similarly, both aim to extract actionable

insights from consumer purchase behavior to assist in

decision-making or targeted recommendations.

Article [7] presents a scalable and modular framework

for analyzing large-scale, diverse transactional

datasets, whereas my project focuses on a specific

pattern identification (Customers who bought AirPods

after iPhone, and Customers bought iPhone and air

pods, but thereafter did not purchase any other

product) within a controlled dataset using a fixed ETL

pipeline. My project uses Delta Lake to ensure ACID

compliance and reliable data storage whereas Article

[7] relies on Spark’s native storage layers without

explicit mention of transactional guarantees. Article

[7] provides an abstract and modular design whereas

my project is fully executable, visually traceable, and

deployable in Databricks notebooks, making it ideal

for learning, demonstration, or prototyping.

III FRAMEWORKS AND PROGRAMMING

LANGUAGES

• PySpark

• Python

• SQL

• Delta Lake

• Databricks

• Apache Parquet.

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1328

IV SYSTEM ARCHITECTURE

This project follows a classic ETL architecture

consisting of three main layers—Extract, Transform,

and Load—executed using PySpark [1] on Databricks

[5], and backed by Delta Lake [4] for storage and

querying. System architecture illustrated in Figure 1

which is enclosed herewith.

System components described as follows:

A. Extract Layer

 The Extract phase ingests structured data from

multiple sources using a flexible, abstracted interface:

• Sources: CSV files (Transaction_Updated.csv)

and Delta tables (customer_delta_table).

• Implemented using a data source factory pattern,

which supports multiple file formats (CSV,

Parquet, Delta, ORC).

• Data is loaded into Spark Data Frames using

PySpark's [1] spark.read operations.

Fig. 2 having Snapshots of Extract layer are enclosed

herewith for ready reference.

B. Transform Layer

The Transform layer performs the core logic of

identifying customer purchasing patterns using

PySpark's [1] distributed processing:

• Implements business logic like "who bought

AirPods after buying iPhone" using window

functions.

• Identifies customers who purchased only AirPods

and iPhones, using groupBy + collect set + array

filters.

• Joins customer profiles with transaction data

using broadcast joins.

• Transformation logic is modular and reusable,

implemented with abstract transformer classes.

• Enables scalable pattern identification and

evaluation.

Fig. 3.1 and 3.2 having Transform Layer enclosed

herewith for ready reference.

C. Load Layer

The Load phase stores the transformed data into

persistent, query able formats:

• Delta Lake [4] tables are used to store the final

outputs(airpodsAfterIphone,

onlyAirpodsAndIphone) for reliable querying and

versioning.

• DBFS output in Parquet [6] format is optionally

supported using a sink factory.

• Data is accessible using both PySpark [1] and

SQL [3] from within Databricks [5] notebooks.

Refer enclosed Fig. 4 having snapshot of this Load

Layer.

V IMPLEMENTATION

A. Data Extraction

Transactional data was extracted from CSV files using

PySpark’s [1] Data Frame API within the Databricks

[5] notebook environment. Customer data was

retrieved from a Delta Lake [4] table preloaded into

the default schema. The structured extraction process

used parameterized functions, enabling seamless

ingestion from different sources including DBFS and

Delta tables.

B. AirPods After iPhone Pattern Detection

To identify customers who purchased AirPods after

buying an iPhone, a windowing specification was

applied using PySpark’s [1] Window and lead()

functions. The transaction data was partitioned by

customer ID and ordered by transaction date to

retrieve the next product purchased. Customers who

had an “iPhone” as the current product and “AirPods”

as the next product were filtered. These records were

then joined with customer data using a broadcast join

for optimized performance. The final output was saved

as a Delta table (airpodsAfterIphone) in the

workspace.default catalog.

C. Only iPhone and AirPods Buyers

The system also identified customers who had

purchased only AirPods and iPhones, and no other

products. This was implemented using PySpark [1]

transformations including groupBy() and collect_set()

to collect all unique product names per customer. The

result was filtered for those containing exactly two

items: “iPhone” and “AirPods”. The filtered dataset

was then joined with customer details to generate a

consolidated report. The output was stored in DBFS

for downstream consumption and reporting.

D. Transformation Pipeline and Modularity

The ETL logic was structured using object-oriented

programming principles. Separate transformer classes

were defined for each transformation goal, enhancing

modularity and reuse. The pipeline was orchestrated

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1329

using custom workflow classes, enabling step-wise

execution from extraction to transformation and

loading. The use of broadcast joins, window functions,

and filtering operations in PySpark [1] ensured

scalability and performance on large datasets.

Refer enclosed Fig. 3.1, 3.2, 5, 6 and 7.

E. Data Storage and Output

Final outputs were saved in Delta format for ACID

compliance and query optimization. In addition to

Delta tables, selected outputs were written to DBFS in

Parquet format to support further analysis, sharing, or

visualization. This hybrid output strategy allowed both

structured querying via SQL [3] and flexible file-based

access.

F. Usage in Real-World Scenarios

This project simulates real-world use cases such as

product affinity analysis, post-purchase behaviour

tracking, and user segmentation based on purchase

patterns. The system could be easily extended to

support additional product sequences, real-time

updates, or integration with recommendation engines.

VI LEARNINGS

A. Data Engineering Learnings

• Understood the core components of building an

ETL pipeline using PySpark [1] within Databricks

[5]. Worked with Databricks [5] as a unified data

analytics platform to build and test scalable ETL

pipelines.

• Gained hands-on experience with Window

functions and analytical operations like lead() for

sequence-based filtering.

• Applied Data Frame transformations including

filtering, grouping, joining, and aggregation using

PySpark [1] APIs.

• Used broadcast joins to optimize performance

during customer-product dataset merges.

• Performed schema inspection and data validation

using SQL [3] in Databricks [5] notebooks.

• Developed custom transformers using Python [1]

OOP principles for modular and reusable ETL

logic.

• Explored different storage formats (Delta Lake

[4] and Parquet[6]) and learned how to manage

data versioning and ACID properties using Delta

Lake[4].

• Created partitioned output using collect_set,

array_contains, and size-based filtering for

identifying customer segments.

B. Platform & Tooling Learnings

• Managed Delta tables and file paths using DBFS

and Databricks [5], and SQL [3] commands.

• Utilized %sql [3] and python [2] cells for

seamless integration of SQL [3] validation and

PySpark [1]code within notebooks.

• Learned how to persist Data Frames as managed

Delta tables using saveAsTable() for downstream

querying.

• Understood partitioning logic and schema-based

write operations for efficient data storage.

• Integrated modular extract-transform-load logic

with clear class responsibilities, enhancing code

readability and extensibility.

VII RESULTS & CONCLUSION

Successfully implemented a data analytics pipeline

using PySpark [1] on the Databricks platform to

identify customer purchasing patterns, specifically

those who bought AirPods after purchasing an iPhone,

and those who bought only airpods and iphone.

Utilized Delta Lake for scalable data storage and SQL

for verification. This project demonstrates how

distributed processing frameworks like Spark can

extract meaningful insights from structured

transactional data.

VIII FUTURE ENHANCEMENTS

• Incorporate real-time stream processing using

Spark Structured Streaming.

• Integrate visualization tools like Power BI or

Tableau for dashboarding.

• Generalize the pipeline for multiple product

pattern analyses using configurable logic.

• Deploy as a reusable ETL module for various

business datasets.

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1330

IX ACKNOWLEDGEMENTS

The author thankfully acknowledges guidance and

contribution of his mentor Mr. Satish Satre at M/s.

Fermion Infotech Pvt. Ltd., Vashi, Navi Mumbai,

India.

REFERENCE

[1] PySpark Apache Spark: PySpark Documentation.
https://spark.apache.org/docs/latest/api/python/
(Accessed July 1, 2025)

[2] Python Software Foundation. Python Language

Reference, version 3.x.

https://www.python.org/doc/(Accessed July 1,

2025)

[3] ISO/IEC 9075:2016. Information technology —

Database languages — SQL. ISO Standard, 2016.

[4] Delta Lake. Delta Lake Documentation.

https://docs.delta.io/latest/index.html (Accessed:

July 1, 2025)

[5] Databricks. Unified Data Analytics Platform.

https://www.databricks.com/ (Accessed: July 1,

2025)

[6] The Apache Software Foundation. Apache

Parquet. https://parquet.apache.org/ (Accessed:

July 1, 2025)

[7] A scalable and flexible basket analysis system for

big transaction data in Spark. Information

Processing and Management 61 (2024) 103577

https://doi.org/10.1016/j.ipm.2023.103577

XII ANNEXURE

Following System architecture, and Snapshots of the

code snippets enclosed:

Fig. 1 System architecture

Fig. 2 Extract Layer code snippet

Fig. 3.1 and 3.2 Transform Layer code snippets

Fig. 4 Load Layer code snippet

Fig. 5 Reader Factory code snippet

Fig. 6 Loader Factory code snippet

Fig. 7 Workflow, Analysis code and output snippet

Annexure: System architecture and Code snippets

“Fig. 1” System architecture

https://spark.apache.org/docs/latest/api/python/
https://www.python.org/doc/
https://www.databricks.com/
https://parquet.apache.org/

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1331

“Fig. 2” Extract Layer code snippet

 “Fig. 3.1” Transform Layer code snippet

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1332

 “Fig. 3.2” Transform Layer code snippet

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1333

“Fig. 4” Load Layer code snippet

“Fig. 5” Reader Factory code snippet

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1334

“Fig. 6” Loader Fctory code snippet

© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IJIRT 182229 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1335

“Fig.7” Workflow, Analysis code and output snippet

