Implementing Lean Principle in Construction of Project Management

Mohammed Hassan Uddin ¹, Dr.K.Mohammed Imthathullah khan ²

¹Student of M.E (Construction Management) in Lords Institute of Engineering and Technology

Hyderabad India

²Associate professor of civil engineering at Lords Institute of Engineering and Technology Hyderabad India

Abstract—Lean construction is a transformative approach to project management that emphasizes value creation, waste reduction, and enhanced efficiency in construction processes. This case study examines the application of lean construction principles to a large-scale urban residential tower project. By employing tools such as Value Stream Mapping (VSM), the Last Planner System (LPS), and Building Information Modelling (BIM), the project team successfully addressed challenges related to scheduling delays, material waste, and communication gaps.

This case study aims to explore the implementation of Lean principles in a construction project, examining the benefits, challenges, and lessons learned. By applying Lean tools and techniques, such as value stream mapping, Last planner system, and visual management, we seek to improve the construction process, reduce waste, and enhance customer satisfaction. This research will contribute to the growing body of knowledge on Lean Construction, providing insights and practical guidance for construction professionals seeking to adopt Lean principles in their projects.

The implementation of lean methods led to significant improvements, including a 12% reduction in project duration, a 20% decrease in material wastage, and a 15% overall cost savings. Enhanced collaboration and safety measures resulted in a 25% reduction in workplace incidents, while the integration of digital tools improved quality and reduced rework by 30%. This study highlights the transformative potential of lean construction in achieving more efficient, sustainable, and cost-effective project outcomes, offering a practical framework for future construction.

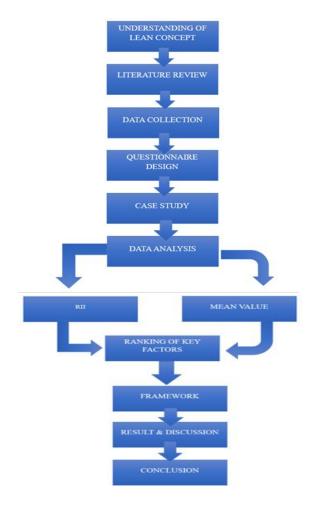
Index Terms—Lean construction, waste reduction and enhanced efficiency, employing tools, challenges, customer satisfaction, improved quality and reduced rework, sustainable, and cost-effective.

I. INTRODUCTION

Lean construction is a combination of operational research and practical development in design and construction with an adoption of lean manufacturing principles and practices to the end-to-end design and construction process. Lean Construction required the application of a robust programmatic framework to all repair, renovation, maintenance, and or new build activities. While each project may be unique, the application of LEAN fundamental should be applied consistently. Lean Construction is concerned with the alignment and holistic pursuit of concurrent and continuous improvements in all dimensions of the built and natural environment: design, construction, activation, maintenance, salvaging, and recycling. This approach tries to manage and improve construction processes with minimum cost and maximum value by considering customer needs.

- 1.1. Types of 'Waste' in the Construction:
- Defects: It includes incorrect installations, defects in fabrication and errors in punch lists. Not meeting the specified code is a further 'Waste'. Also, work on in construction isn't measured
- Overproduction: This occurs once the fabric is fictional too early or stock material is within the warehouse or at the task web site. Printing a lot of blueprints or creating more copies of a report than required is associate degree production.
- > Transportation: This 'Waste' happens once material has got to be moved round the look or from the lay-down or area to the installation purpose or when it's loaded on the truck or trailer

or when hauled to the task web site when it is dud.


- ➤ Waiting: Construction Industry has associate degree abundance of this 'Waste'. This includes workers looking ahead to directions or materials at the task web site, unused time of onsite machinery thanks to looking ahead to material to be loaded and thus payment delays.
- ➤ Over processing: This 'Waste' includes over engineering requiring extra signatures on a requisition, multiple handling of timesheets, duplicate entries on forms and obtaining the estimates multiple times from the suppliers.
- Motion: These 'treasure hunts' happen once the fabric is hold on far from the task or when the staff seek for tools, material, or data. This 'Waste' additionally happens within the subject companies or job web site trailers once searching for files, reports, reference books, drawings, contracts or merchandiser catalogues.
- ➤ Inventory: This includes uncut materials, workin-process (WIP), and finished fabrications. Some contractors claim that they need no inventory as a result of the job-cost all material. This 'Waste' includes spare components, unused tools, consumables, forms and copies, worker stashes, and private stockpiles.
- Not Utilizing Human Resources: Not considering someone's plan to boost a method or task.

II-OBJECTIVE

The performed study is aimed to Re-engineering constructions project through LEAN principles. In terms to fulfil the aim of study objectives are:

- a. To study LEAN methodology, its principles and application of the same in the project.
- b. To identify the affecting factors for implementing LEAN technology in Infrastructure projects.
- c. To design mechanism for the effective implementation of LEAN in Infrastructure projects.
- d. To suggest various ways to implement effective lean construction in construction project.

III. METHODOLOGY

3.1Questionnaire Survey

The structure of this questionnaire is consists of 32 questions and it's categorized under four criteria according to its type of waste. Totally 80 responses are taken from both, fresher's as well as experienced people from the industry. Freshers are selected because they are aware of the lean principle and experienced knows well about the kind of wastage and its reasons. People who have experience working with primary contractors and have participated in Civil residential projects are the participants in the survey. Data was gathered via an online survey. The design of questionnaire was prepared by using 5point Likert scale. Using a five-point Likert scale with one denoting strongly disagree, second denoting disagree, third denoting Neutral, fourth denoting agree, and fifth denoting strongly agree, the respondents were asked to indicate the Limited degree of the elements.

3.2 Identifying factors affecting the lean principle in construction project

The process of developing a structured set of questions that are used to collect data from groups of participants in a research project is referred to as questionnaire design

- a) Frequency of factor disturbing project cost
- b) Frequency of factors disturbing project time
- c) Frequency of factors disturbing project quality
- d) LEAN awareness

3.3 DATA ANALYSIS

Data Analysis will be done using the relative importance index to find imperative factors and rank them accordingly, Reliability Analysis, Cronbach alpha conducted using SPSS.

3.4 RII value:

The Relative Importance Index (RII) is calculated for each indicator and ranked accordingly. It summarizes the importance of each factor as follows:

$$(\mathbf{RII}) = \frac{\sum W}{A * N}$$

W = The weight assigned by each respondent on a Likert scale ranging from 1 to 5, where:

- 1 Strongly Disagree 2 Disagree 3- Neutral
- 4-Agree 5- Strongly Agree
- A =The highest possible weight (in this case, 5)
- N =The total number of respondents in the sample

Factors No.	QUESTIONS	RII
F1	Change of orders throughout Unqualified hands Low productivity of labours	0.812
F2	Repetition of labour because of errors	0.698
F3	Inadequate website management and supervising	0.875
F4	Communication and coordination issue	0.907
F5	Ineffective designing and planning	0.895
F6	Mistakes in documents	0.812
F7	Inadequate details in drawings	0.779
F8	Insufficient information assortment and survey before style	0.674
F9	Delay in material delivery	0.894
F10	Changes in material kind and	0.851

	specification throughout		
	construction		
F11	Execution Low productivity	0.618	
	and potency of kit		
F12	Unqualified hands	0.676	
F13	Low productivity of labours	0.803	
F14	Material Availability and	0.791	
	Procurement:	0.771	
F15	Labor issues	0.883	
F16	Design and Documentation	0.912	
F17	Project Scope and Complexity	0.872	
F18	Financial factors	0.832	
F19	External factors	0.721	
F20	Unacceptable construction	0.753	
Γ20	methods	0.733	
F21	Unfortunate skill of labours	0.681	
F22	Mistake in documents	0.784	
F23	Insufficient drawing details	0.831	
F24	Low productivity	0.692	
F25	Insufficient Training and	0.875	
F23	Education	0.873	
F26	Leadership and Management	0.823	
F20	Support	0.823	
F27	Lack of Employee	0.790	
ΓΖ/	Engagement	0.790	
F28	Organizational culture	0.765	
	How frequently are Lean		
F29	Construction principles 0		
	applied in your projects?		
	How effective have Lean		
F30	Construction practices been in	0.873	
1.30	improving project outcomes	0.873	
	(cost, time, quality)?		
	Clear job contents, work time,		
	material requirements, among		
F31	other information are prepared	0.735	
	before releasing a work task to		
	a crew		
	Has your company		
F32	implemented Lean	0.893	
	Construction methods?		
Table No. 1 represent RII values of all the factors			

Table No. 1 represent RII values of all the factors 3.5 Mean Value:

The mean score is calculated for each factor by summing all responses and dividing by the number of respondents. It provides a direct measure of central tendency and is useful for comparing average perceptions.

Formula: Mean= $\sum X \setminus N$

Where: • $\sum X = \text{Sum of all Values} \cdot N = \text{Number of } X$

Values

Group	Key Factors	Mean
	,	/ RII
A. Project	Communication gaps,	Mean:
Cost	Planning errors, Material	0.805
Disturbance	delays, Labour quality	
B. Project	Labour issues, Design and	Mean:
Time	documentation gaps,	0.835
Disturbance	Procurement issues	
C. Project	Drawing issues, Low	Mean:
Quality	productivity, Mistakes in	0.748
Disturbance	documents	
D. Lean	Training gaps, Management	Mean:
Awareness	support, Cultural issues,	0.805
	Adoption of lean methods	

Table No. 2 represent mean value of all the factors Reliability Analysis

Reliability analysis is a statistical technique used to assess the consistency and internal reliability of a measurement scale or instrument. It helps researchers determine the extent to which the items or questions in a survey or test measure the same construct or attribute consistently.

Reliability Statistics		
Cronbach's Alpha No. of Items		
0.805	32	

Table No. 3 represent reliability Statistics.

Cronbach's alpha	Internal consistency
1	·
a>0.9	Excellent
0.9 > a > 0.8	Good
0.8> a >0.7	Acceptable
0.7> a>0.6	Questionable
0.6> a>0.5	Poor
0.5 > a	Unacceptable

Table No. 4 Represent Cronbach's alpha

SPSS

SPSS (Statistical Package for the Social Sciences) is one of the most widely used statistical software packages in the world. Originally developed by IBM, SPSS is designed for data management, statistical analysis, and reporting. It has become an essential tool in various fields such as social sciences, health research, market research, education, and government, where data analysis is crucial for

decision-making. SPSS offers a user-friendly interface combined with powerful analytical tools, making it accessible to both beginners and advanced users. Its versatility in handling large datasets, performing complex statistical tests, and generating detailed reports makes it a preferred choice for researchers and analysts. SPSS supports a wide range of statistical procedures, from basic descriptive statistics to complex multivariate analyses, which helps users extract meaningful insights from their data.

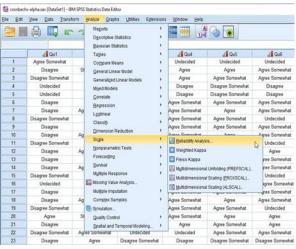
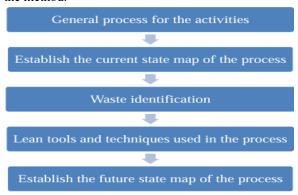



Fig.SPSS Interfaces

LEAN construction framework LEAN construction framework

This chapter introduces a projected framework for the implementation of lean principles to inflate the Indian construction project performance. This framework was enforced to a Case Study to examine the possible enhancements that lean can do. the most purpose of the case study is to indicate a true current process for the prepared combine concrete works at a construction web site in Asian nation and to analyse the method.

© July 2025 | IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

IV. RESULTS

The obtained data from all the places were analyzed by using Statistical Methods and each waste parameter were given grading depending upon their impact, in this study, an ordinal measurement scale 1 to 5 was used to determine the effect level. Respondents were asked to rank the factors affecting quality performance.

Factors	QUESTIONS	RII	RANK
No.			
F1	Change of orders	0.812	16
	throughout Unqualified		
	hands Low productivity		
	of labours		
F2	Repetition of labour	0.698	26
	because of errors		
F3	Inadequate website	0.875	7
	management and		
	supervising		
F4	Communication and	0.907	2
	coordination issue		
F5	Ineffective designing	0.895	3
	and planning		
F6	Mistakes in documents	0.812	15
F7	Inadequate details in	0.779	21
	drawings		
F8	Insufficient information	0.674	31
	assortment and survey		
	before style		
F9	Delay in material 0.894 4		4
	delivery		
F10			11
	kind and specification		
	throughout construction		
F11	Execution Low 0.618 32		32
	productivity and		
	potency of kit		
F12	Unqualified hands	0.676	30
F13	Low productivity of	0.803	17
	labours		
F14			18
	and Procurement:		
F15	Labor issues	0.883	6
F16			1
	Documentation 0.312 1		1
F17			10
	Complexity	0.072	
F18	Financial factors	0.832	12
F19	External factors	0.721	25
F20			
Г20	Unacceptable	0.753	23

	construction methods		
F21	Unfortunate skill of	0.681	29
	labours		
F22	Mistake in documents	0.784	20
F23	Insufficient drawing	0.831	13
	details		
F24	Low productivity	0.692	27
F25	Insufficient Training	0.875	8
	and Education		
F26	Leadership and	0.823	14
	Management Support		
F27	Lack of Employee	0.790	19
	Engagement		
F28	Organizational culture	0.765	22
F29	How frequently are	0.684	28
	Lean Construction		
	principles applied in		
	your projects?		
F30	How effective have	0.873	9
	Lean Construction		
	practices been in		
	improving project		
	outcomes (cost, time,		
	quality)?		
F31	Clear job contents,	0.735	24
	work time, material		
	requirements, among		
	other information are		
	prepared before		
	releasing a work task to		
	a crew		
F32	Has your company	0.893	5
	implemented Lean		
	Construction methods?		

Table No. 5 RII value and Ranking Material Waste Percentages and Causes

S.No	Material	Material Waste (%)	Material Waste Causes
1	Cement	10%- 12%	Poor supervisory system, Improper handling Bad storage Frequent transportation Lack of on-site material management
2	Concrete	10%-	Poorly

		1.50/	1
		15%	constructed
			formwork
			Poor
			supervisory
			system
			Improper
			handling
			Lack of
			management
			team & labor
			awareness
			Lack of quality
			management
			system
			Poor technology
	Ready		Poor
3	mix	5%-8%	construction
	plaster		techniques
-			Oversized
	Sand	10%-	building
4		15%	_
		1370	components
			Bad storage
			Improper
_			handling
5	Bricks	5%-10%	Poor
			supervisory
			system
			Unsuitable
	Blocks	8%-12%	cutting
			Lack of skilled
6			workers &
			subcontractors
			Damage during
			transportation
			Cutting and
			bending waste
			Unsuitable
			cutting
			Lack of proper
7	Steel	4%-8%	supervision
			team
			Poor
			construction
			techniques
			Unsuitable
	Tiles	5%-6%	
8	Tiles, Granite		cutting
			Lack of skilled
			workers &

			1 , ,
			subcontractors
			Manufacturing
			defects
			Forced cutting
			Selection of
			low-quality
			materials
9	Wood	5%-7%	Cutting waste
9	wood	370-770	Decay woods
10	Gypsum	30%- 40%	Poor technology
			Improper
			handling
			Lack of labor
			awareness
11	Paint	5%-8%	Rework due to
			workers' errors
			Selection of
			low-quality
			materials
12	Electrical wires	2%-4%	Cutting waste
			Cutting waste
13	Plumbing	70/ 90/	Poor handling
13	fittings	7%-8%	Unsuitable
			cutting
			Packaging waste
			of tiles
14	D1:	30%-	Plumbing
14	Packaging	40%	fittings
			Electrical
			fittings, etc.
Table N	Ia 6 Matarial	Wasta Dana	entages and Causes

Table No. 6 Material Waste Percentages and Causes Key Observations:

- High Waste Materials: Gypsum and packaging have the highest waste percentages (30%-40%).
- Common Causes: Poor supervision, improper handling, unsuitable cutting, and lack of skilled workers are recurring causes across different materials.
- Material Specific Issues: Some materials have specific issues, such as decay for wood, or manufacturing defects for tiles and granite.

V. CONCLUSION

This study has demonstrated the practical value and transformative potential of Lean Construction

principles in improving the performance of infrastructure projects in India. By applying Lean methodologies such as Value Stream Mapping (VSM), the Last Planner System (LPS), and Building Information Modelling (BIM), along with tools like the 5S Methodology and Six Sigma, the research has highlighted their impact in minimizing waste, improving scheduling, and enhancing communication.

The analysis of two case studies revealed significant improvements across key performance metrics. Implementation of Lean practices resulted in a 12% reduction in project duration, 20% decrease in material wastage, 15% cost savings, and a 25% reduction in workplace incidents. Furthermore, quality was improved, with a 30% decrease in rework. These findings validate the role of Lean tools in achieving sustainable, cost-effective, and timely project delivery.

Despite these benefits, the study also identified several barriers to Lean adoption, including lack of awareness, insufficient training, organizational resistance, and poor communication. The data collected via surveys and analyzed using the Relative Importance Index (RII) and Mean Value methods emphasized that ineffective planning, communication gaps, and unqualified labor are among the most critical issues impacting project outcomes.

The proposed Lean Construction Framework offers a structured approach for implementing Lean practices effectively. For broader adoption in India, it is imperative to invest in workforce training, promote industry awareness, and foster a culture of continuous improvement. This research serves as a guide for construction professionals aiming to embrace Lean methodologies to enhance project performance and align with global best practices.

In conclusion, Lean Construction is not just a set of tools, but a cultural shift that promises enhanced efficiency, value delivery, and long-term sustainability in the Indian construction sector.

REFERENCES

[1] Dave Brown and Julia Tell (2025), "Lean Construction: Principles, Implementation & Benefits" https://www.procore.com/library/lean-construction

- [2] Abdelazim Ibrahim, Tarek Zayed (2025), "Bridging barriers to lean construction adoption in megaprojects" https://link.springer.com/article/10.1007/s10668-025-06424-9#Sec8
- [3] Mrinmoyee Bhattacharya, (2025), "Reinventing Lean: An Optimized and Adaptive Approach to ConstructionEfficiency" https://www.irjet.net/arc hives/V12/i5/IRJET-V12I5132.pdf
- [4] Yetty Dwi Lestari (2024), "Implementation of Lean Construction to Reduce Waste with the Value Stream Analysis Tools (VALSAT) Method"

 https://ejournal.unair.ac.id/SABR/article/view/62
 011https://www.getpowerplay.in/resources/blogs/lean-construction/
- [5] Vinayak Pavate, Sayali Thorushe, Siddhi Dharmadhikari, Gayatri Dalavi (2024), "A Review Factors Affecting on Time, Cost and Quality of Construction" https://www.ijraset.com/research-paper/a-review-factors-affecting-on-time-cost-and-quality-of-construction
- [6] Rajparsad j, Pagadala Saimohan Reddy (2022), "Implementation of Lean Techniques in ConstructionProjects" https://www.researchgate.n et/publication/357949327 Implementation of Lean Techniques in Construction Projects
- [7] Sina Moradi and Piia Sormunen (2023), "Implementing Lean Construction: A Literature Study of Barriers, Enablers, and Implications" https://doi.org/10.3390/buildings13020556
- [8] Nikhitha Adepu, Apurva Pamidimukkala, K Loganathan (2023), "Analysing the factors affecting construction project schedules" https://www.sciencedirect.com/science/article/pii/ S2666721523000212
- [9] Shakil Ahmed and Iffat Haq (2020), "Implementation of lean construction in the construction industry in Bangladesh: awareness, benefits and challenges", https://www.researchgate.net/publication/340358 885_Implementation_of_lean_construction_in_th e_construction_industry_in_Bangladesh_awarene ss benefits and challenges
- [10] O. Babalola and O. Ibem (2019), "Implementation of lean practices in the construction industry",

© July 2025 | IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002

https://www.sciencedirect.com/science/article/abs/pii/S0360132318306760

[11] Mohammad Darabseh (2019), "Lean Applications in Construction"https://www.researchgate.net/publication/337643725_Lean_Applications_in_Construction