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Abstract— Finding the roots of transcendental equations 

is a fundamental problem in numerical analysis. There 

are many methods to solve transcendental equations. 

These methods have different approaches with 

advantages and disadvantages. In this article, a new 

method for finding the roots of equation is introduced. 

This method uses tangents at the end points of the 

intervals and the intersection of these tangents. This 

point of intersection gives the subsequent approximation 

for root. The convergence and order of the method is also 

discussed.  In special case this method reduces to 

Bisection method. 

Index Terms— Numerical method, Transcendental 

equations, Convergence, Order of method, Bisection 

method, Roots of equation. 

I. INTRODUCTION 

Numerical methods are extensively used for finding 

approximate roots of transcendental equations. These 

methods are popular as it provides approximate roots 

with required accuracy.  In this article the new method 

is introduced to find the roots of the algebraic and 

transcendental equations. The order of the method is 

also obtained. This method is tested for different 

algebraic and transcendental equations. Few solved 

examples are also included in this article.  

II. PRELIMINARY 

In the numerical methods, the convergence and the 

order of the method is more important. To prove the 

convergence of the method, some standard theorems 

are required. These theorems are given below.  

Cantor Intersection Theorem [4]: 

Let In = [an, bn],  n ∈ N, be a non-empty closed and 

bounded interval on R such that {In} is a nested 

sequence satisfying lim
n→∞

(bn − an) = 0  then  ⋂ In
∞
n=1  

contains exactly one point. 

Existence Theorem [4]: 

If f  is a continuous function on closed interval [a, b] 

where 𝑓(𝑎) ≤ 0 ≤ 𝑓(𝑏) or 𝑓(𝑎) ≥ 0 ≥ 𝑓(𝑏), then 

𝑓(𝑥) = 0 has at least one root in the interval [a, b]. 

Intermediate Value theorem [4]: 

If 𝑓(𝑥) is continuous function defined on (𝑎 , 𝑏) then 

𝑓(𝑥) takes every value between 𝑓(𝑎) and   𝑓(𝑏).  

Bisection Method [1, 2, 3, 5]: 

Let 𝑓(𝑥) = 0 be a transcendental equation defined in 

interval (𝑎, 𝑏) such that 𝑓(𝑎). 𝑓(𝑏) < 0 then the 

approximate solution to the root of 𝑓(𝑥) = 0 is given 

by 𝑥 =
𝑎+𝑏

2
.  

III. PROPOSED METHOD 

In this section, a new method is introduced to find a 

root of algebraic and transcendental equation 𝑓(𝑥) =

0 in interval (𝑎, 𝑏) such that 𝑓(𝑎). 𝑓(𝑏) < 0. Without 

loss of generality, assume that 𝑓(𝑎) < 0 < 𝑓(𝑏). 

Tangents are drawn to the curve 𝑓(𝑥) at the 

points (𝑎, 𝑓(𝑎))  and (𝑏, 𝑓(𝑏)) . The intersection of 

two tangents is obtained say(𝑥0,𝑦0). This is the first 

approximation to the root of 𝑓(𝑥) = 0. 

Suppose root lies in interval (a, 𝑥0) i.e. f(a). f(𝑥0) <

0. The tangent has been drawn at points (𝑥0, 𝑓(𝑥0)) 

which intersects the tangent at point (𝑎, 𝑓(𝑎))  say (𝑥1,

𝑦1). Continuing this procedure, we get the sequence of 

intersection points of tangents as 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛), …. The 

sequences of x coordinates of these intersection points 

{𝑥𝑛} and the sequence of its images {𝑓(𝑥𝑛)} is 

obtained. The sequence {𝑥𝑛} converges to the root of 

the equation. Its convergence and order is discussed in 

next section.  

Since the intersections of tangents is used to 

approximate the roots. So, this method can be called 
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as Tangent Intersection Method (TIM) or Patil-Dasre-

Gujarathi Method. 

 

Fig (1) Tangent Intersection Method 

Tangent Intersection Method (TIM):  

Let 𝑓(𝑥)  be a differentiable function in (𝑎, 𝑏) such 

that  𝑓(𝑎). 𝑓(𝑏) < 0 then the root lies in (𝑎, 𝑏). 

To find the root of the equation 𝑓(𝑥) = 0 by using 

Tangent intersection method, the tangent 𝑇1 is drawn 

to the curve at point  (𝑎, 𝑓(𝑎))  is given by, 

𝑇1 ≡  𝑦 = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎)        

    … (1) 

and the tangent 𝑇2 is drawn to the curve at point  

(𝑏, 𝑓(𝑏))  is given by, 

𝑇2 ≡  𝑦 = 𝑓(𝑏) + 𝑓′(𝑏)(𝑥 − 𝑏)       

    … (2) 

Let (x, y) be the intersection point of two tangents. 

The x coordinate of tangents is calculated by solving 

equation (1) and (2) as 

  𝑥 =
[𝑓(𝑏)−𝑏𝑓′(𝑏)]−[𝑓(𝑎)−𝑎𝑓′(𝑎)]

𝑓′(𝑎)−𝑓′(𝑏)
  … (3) 

Let 𝑥0 = 𝑥 be the first approximation to the root of 

the equation (𝑥) = 0 . 

If 𝑓(𝑥0) ≠ 0 then a tangent at point (𝑥0, 𝑓(𝑥0 )) is 

drawn and is given by, 𝑇3 ≡  𝑦 = 𝑓(𝑥0) +

𝑓′(𝑥0)(𝑥 − 𝑥0).  

If 𝑓(𝑎)𝑓(𝑥0) < 0  then the tangent 𝑇3  will intersect 

tangent 𝑇1 and if 𝑓(𝑥0)𝑓(𝑏) < 0  then tangent 𝑇3 will 

intersect tangent 𝑇2. The x coordinate of the 

intersection of two tangents is calculated by equation 

(3) and its x coordinate will be obtained say 𝑥1. 

On continuing this way, the sequence of x 

coordinates of intersection points of tangents 

 𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛 , … is generated. 

The convergence of the sequence of intersection 

points of tangents is discussed in the following 

theorem. 

Theorem: Let 𝑓(𝑥)  be a differentiable function in 

(𝑎, 𝑏) and 𝑓(𝑎) ⋅ 𝑓(𝑏) < 0 . The sequence of x 

coordinates {𝑥𝑛}  of intersection of tangents 

generated by Tangent intersection Method [1] is 

converges and is the root of the equation 𝑓(𝑥) = 0 

Proof:  Let 𝐼0 = (𝑎, 𝑏) be the given interval. Then 

there are three cases as discussed below. 

Case 1: Suppose  𝑓(𝑥𝑖) ∈ [𝑓(𝑎), 0], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 and 

0 < 𝑓(𝑏). 

The sequence {𝑓(𝑥𝑛)}   is generated as 𝑓(𝑎) <

𝑓(𝑥0) < 𝑓(𝑥1) < 𝑓(𝑥2) < ⋯ < 0 < 𝑓(𝑏). The 

sequence of intervals where the root lies is given by,  

𝐼0 = [𝑎, 𝑏],  𝐼1 = [𝑥1, 𝑏] , 𝐼2 = [𝑥2, 𝑏], ….. 𝐼𝑛 =

[𝑥𝑛 , 𝑏]… such that  𝐼0 ⊇ 𝐼1 ⊇ 𝐼2 ⊇ ⋯ ⊇ 𝐼𝑛 ⊇ ⋯ 

Since, 𝑓 is differentiable function hence we have  

𝑓(𝐼0) ⊇ 𝑓(𝐼1) ⊇ 𝑓(𝐼2) ⊇ ⋯ ⊇ 𝑓(𝐼𝑛 ) ⊇ ⋯ 

Therefore, by Cantor Intersection Theorem, ⋂ 𝐼𝑛
∞
𝑛=1  

is a singleton point say 𝜂  i.e. ⋂ 𝐼𝑛
∞
𝑛=1 = {𝜂} and as  

0 ∈ 𝑓(𝐼𝑛), ∀ 𝑛 ∈ 𝑁 hence ⋂ 𝑓(𝐼𝑛)∞
𝑛=1  will be a 

singleton point 0. 

Therefore 𝑓(𝜂) = 0 and hence 𝜂 is a root of the 

equation 𝑓(𝑥) = 0 

Case 2: Consider 𝑓(𝑥𝑖) ∈ [0, 𝑓(𝑏)], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖  and  

𝑓(𝑎) < 0.   

The sequence {𝑓(𝑥𝑛)}   is generated as 𝑓(𝑎) < 0 <

⋯  𝑓(𝑥𝑛) < ⋯ 𝑓(𝑥2) < 𝑓(𝑥1) < 𝑓(𝑥0) < 𝑓(𝑏). The 

sequence of intervals where the root lies is given by, 

𝐼0 = [𝑎, 𝑏],    𝐼1 = [𝑎, 𝑥1], 𝐼2 = [𝑎, 𝑥2],  … 𝐼𝑛 =

[𝑎, 𝑥𝑛] such that  𝐼0 ⊇ 𝐼1 ⊇ 𝐼2 ⊇ ⋯ ⊇ 𝐼𝑛 ⊇ ⋯ Since, 

𝑓 is differentiable function hence we have  𝑓(𝐼0) ⊇

𝑓(𝐼1) ⊇ 𝑓(𝐼2) ⊇ ⋯ ⊇ 𝑓(𝐼𝑛 ) ⊇ ⋯ 

Therefore, by Cantor Intersection Theorem, ⋂ 𝐼𝑛
∞
𝑛=1  

is a singleton point say 𝜂  i.e. ⋂ 𝐼𝑛
∞
𝑛=1 = {𝜂} and as  
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0 ∈ 𝑓(𝐼𝑛), ∀ 𝑛 ∈ 𝑁 hence ⋂ 𝑓(𝐼𝑛)∞
𝑛=1  will be a 

singleton point 0. 

Therefore 𝑓(𝜂) = 0 and hence 𝜂 is a root of the 

equation 𝑓(𝑥) = 0 

Case 3: 𝑓(𝑥𝑛) ∈ [𝑓(𝑎), 𝑓(𝑏)], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. Such that 

𝑓(𝑎) < 0 < 𝑓(𝑏) 

The sequence {𝑓(𝑥𝑛)} such that 𝑓(𝑎) < 𝑓(𝑥𝑛) <

𝑓(𝑏) ∀ 𝑛 ∈ 𝑁. This sequence can be divided into two 

sub sequences as follows {𝑓(𝑥𝑛𝑖
)}  𝑎𝑛𝑑 {𝑓 (𝑥𝑛𝑗

)}  

Such that 𝑓(𝑎) < 𝑓(𝑥𝑛𝑖
) < 0 < 𝑓 (𝑥𝑛𝑗

) < 𝑓(𝑏). 

By Case 1, the sequence  {𝑓(𝑥𝑛𝑖
)}   → 0 and from 

Case-2, {𝑓 (𝑥𝑛𝑗
)} → 0. Since both the subs-

sequences  {𝑓(𝑥𝑛𝑖
)}  𝑎𝑛𝑑 {𝑓 (𝑥𝑛𝑗

)}  of the sequence 

{𝑓(𝑥𝑛)} are convergent and converges to 0. Therefore 

{𝑓(𝑥𝑛)}  → 0. 

Since 𝑓 is continuous on [𝑎, 𝑏] hence the sequence 

{𝑥𝑛} will also converge. 

Let sequence {𝑥𝑛} →  𝜂 𝜖 (𝑎, 𝑏)  

Therefore {𝑓(𝑥𝑛)} → 𝑓(𝜂) but {𝑓(𝑥𝑛)}  → 0. 

Therefore 𝑓(𝜂) = 0 which proves that 𝜂 is a root 

𝑓(𝑥) = 0 in (a, b). 

Corollary: If 𝑓(𝑥) = 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0, 𝑝 ≠ 0 be 

any quadratic polynomial with root in [a, b] such that 

𝑓(𝑎) ⋅ 𝑓(𝑏) < 0  then Tangent Intersection Method 

(TIM) reduces to bisection method. 

Proof: Let 𝑓(𝑥) = 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0, 𝑝 ≠ 0  be any 

quadratic polynomial𝑓′(𝑥) = 2𝑝𝑥 + 𝑞  

At 𝑥 = 𝑎, 𝑓(𝑎) = 𝑝𝑎2 + 𝑞𝑎 + 𝑟 = 0     and    

𝑓′(𝑎) = 2𝑝𝑎 + 𝑞  

At 𝑥 = 𝑏, 𝑓(𝑏) = 𝑝𝑏2 + 𝑞𝑏 + 𝑟 = 0     and    

𝑓′(𝑏) = 2𝑝𝑏 + 𝑞  

By Tangent Intersection Method (TIM), 

𝑥

=
[𝑝𝑏2 + 𝑞𝑏 + 𝑟 − 2𝑝𝑏2 − 𝑞] − [𝑝𝑎2 + 𝑞𝑎 + 𝑟 − 2𝑝𝑎2 − 𝑞]

2𝑝𝑎 + 𝑞 − 2𝑝𝑏 − 𝑞
 

                           = 
−𝑝𝑏2+𝑟+𝑝𝑎2−𝑟

2𝑝𝑎−2𝑝𝑏
 

                           = 
𝑝𝑎2−𝑝𝑏2

2𝑝(𝑎−𝑏)
 

                    𝑥 =
𝑎2−𝑏2

2(𝑎−𝑏)
=

𝑎+𝑏

2
  which leads to the 

formula of Bisection Method. 

In other words, TIM is generalization of Bisection 

Method. 

Order of Tangent Intersection method: 

Let 𝜉 be the root of the equation 𝑓(𝑥) = 0 so 

𝑓(𝜉) = 0 

Let 𝜖𝑘 be the error in the kth iteration i.e.  

𝜖𝑘 = 𝑥𝑘 − 𝜉 

∴ 𝑥𝑘 =  𝜉 + 𝜖𝑘  and  𝑥𝑘+1 =  𝜉 + 𝜖𝑘+1 , 

 𝑥𝑘−1 =  𝜉 + 𝜖𝑘−1,   where 𝜖𝑘+1𝑎𝑛𝑑 𝜖𝑘−1 are the 

errors in (k+1)th and (k-1)th iteration respectively. 

𝑓(𝑥𝑘) = 𝑓(𝜉 + 𝜖𝑘)   , 𝑓(𝑥𝑘−1) = 𝑓(𝜉 + 𝜖𝑘−1)   and 

′(𝑥𝑘) = 𝑓′(𝜉 + 𝜖𝑘) ,  𝑓′(𝑥𝑘−1) = 𝑓′(𝜉 + 𝜖𝑘−1) 

Expanding all above functions by using Taylor’s 

Series, 

𝑓(𝑥𝑘) = 𝑓(𝜉 + 𝜖𝑘) = 𝑓(𝜉) + 𝜖𝑘𝑓′(𝜉) +
𝜖𝑘

2

2!
𝑓′′(𝜉) +

𝜖𝑘
3

3!
𝑓′′′(𝜉)+. ..       

𝑓(𝑥𝑘−1) = 𝑓(𝜉 + 𝜖𝑘−1) = 𝑓(𝜉) + 𝜖𝑘−1𝑓′(𝜉) +
𝜖𝑘−1

2

2!
𝑓′′(𝜉) +

𝜖𝑘−1
3

3!
𝑓′′′(𝜉)+. ..     

and  

𝑓′(𝑥𝑘) = 𝑓′(𝜉 + 𝜖𝑘)   

= 𝑓′(𝜉) + 𝜖𝑘𝑓′′(𝜉) +
𝜖𝑘

2

2!
𝑓′′′(𝜉)+. .. 

𝑓′(𝑥𝑘−1) = 𝑓′(𝜉 + 𝜖𝑘−1)    

 = 𝑓′(𝜉) + 𝜖𝑘−1𝑓′′(𝜉) +
𝜖𝑘−1

2

2!
𝑓′′′(𝜉)+. .. 

Consider, 
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 𝑓(𝑥𝑘) − 𝑥𝑘𝑓′(𝑥𝑘) = [𝑓(𝜉) + 𝜖𝑘𝑓′(𝜉) +
𝜖𝑘

2

2!
𝑓′′(𝜉) +

𝜖𝑘
3

3!
𝑓′′′(𝜉)+. . . ] − [𝑥𝑘𝑓′(𝜉) + 𝜖𝑘𝑥𝑘𝑓′′(𝜉) +

𝜖𝑘
2

2!
𝑥𝑘𝑓′′′(𝜉)+. . . ]     

𝑓(𝑥𝑘) − 𝑥𝑘𝑓′(𝑥𝑘) 

= 𝑓(𝜉) + (𝜖𝑘 − 𝑥𝑘)𝑓′(𝜉) 

+ (
𝜖𝑘

2

2
− 𝜖𝑘𝑥𝑘) 𝑓′′(𝜉)+. …   (1) 

Similarly,  

 𝑓(𝑥𝑘−1) − 𝑥𝑘−1𝑓′(𝑥𝑘−1) = [𝑓(𝜉) + 𝜖𝑘−1𝑓′(𝜉) +

𝜖𝑘−1
2

2!
𝑓′′(𝜉) +

𝜖𝑘−1
3

3!
𝑓′′′(𝜉)+. . . ] − [𝑥𝑘−1𝑓′(𝜉) +

𝜖𝑘−1𝑥𝑘−1𝑓′′(𝜉) +
𝜖𝑘−1

2

2!
𝑥𝑘−1𝑓′′′(𝜉)+. . . ]     

𝑓(𝑥𝑘−1) − 𝑥𝑘−1𝑓′(𝑥𝑘−1)  

= 𝑓(𝜉) + (𝜖𝑘−1 − 𝑥𝑘−1)𝑓′(𝜉)

+ (
𝜖𝑘−1

2

2

− 𝜖𝑘−1𝑥𝑘−1) 𝑓′′(𝜉)+. . .       … (2) 

Subtracting equation (2) from (1) 

We get,   

[𝑓(𝑥𝑘) − 𝑥𝑘𝑓′(𝑥𝑘)] − [𝑓(𝑥𝑘−1) − 𝑥𝑘−1𝑓′(𝑥𝑘−1)] 

= [(𝜖𝑘 − 𝑥𝑘) − (𝜖𝑘−1 − 𝑥𝑘−1)]𝑓′(𝜉)

+ [
𝜖𝑘

2

2
− 𝜖𝑘𝑥𝑘 −

𝜖𝑘−1
2

2

+ 𝜖𝑘−1𝑥𝑘−1] 𝑓′′(𝜉) + ⋯ 

 

[𝑓(𝑥𝑘) − 𝑥𝑘𝑓′(𝑥𝑘)] − [𝑓(𝑥𝑘−1) − 𝑥𝑘−1𝑓′(𝑥𝑘−1)]

= (𝜉 − 𝜉)𝑓′(𝜉)

+ [
𝜖𝑘

2

2
−

𝜖𝑘−1
2

2
− (𝜖𝑘 + 𝜉)𝜖𝑘

+ (𝜖𝑘−1 + 𝜉)𝜖𝑘−1] 𝑓′′(𝜉) + ⋯ 

= [
𝜖𝑘

2

2
−

𝜖𝑘−1
2

2
− 𝜖𝑘

2 − 𝜉𝜖𝑘 + 𝜖𝑘−1
2

+ 𝜉𝜖𝑘−1] 𝑓′′(𝜉) + 

= [−
𝜖𝑘

2

2
+

𝜖𝑘−1
2

2
− 𝜉𝜖𝑘 + 𝜉𝜖𝑘−1] 𝑓′′(𝜉) + ⋯     

= [−
𝜖𝑘

2

2
+

𝜖𝑘−1
2

2
− 𝜉𝜖𝑘 + 𝜉𝜖𝑘−1] 𝑓′′(𝜉) + ⋯     

=[
1

2
(𝜖𝑘−1 − 𝜖𝑘)(𝜖𝑘−1 + 𝜖𝑘) + 𝜉(𝜖𝑘−1 −

𝜖𝑘)] 𝑓′′(𝜉) + ⋯ 

=(𝜖𝑘−1 − 𝜖𝑘) [
1

2
(𝜖𝑘−1 + 𝜖𝑘) + 𝜉] 𝑓′′(𝜉) +

⋯         ………..(3) 

𝑓′(𝑥𝑘−1) − 𝑓′(𝑥𝑘) 

= (𝑓′(𝜉) + 𝜖𝑘−1𝑓′′(𝜉) +
𝜖𝑘−1

2

2
𝑓′′′(𝜉))

− (𝑓′(𝜉) + 𝜖𝑘𝑓′′(𝜉)

+
𝜖𝑘

2

2
𝑓′′′(𝜉)) 

= (𝜖𝑘−1 − 𝜖𝑘)𝑓′′(𝜉) +
1

2
(𝜖𝑘−1

2 − 𝜖𝑘
2)𝑓′′′(𝜉) + ⋯             

= (𝜖𝑘−1 − 𝜖𝑘)𝑓′′(𝜉) [1 +
1

2
(𝜖𝑘−1 + 𝜖𝑘)

𝑓′′′(𝜉)

𝑓′′(𝜉)
] +.. (4)      

Now dividing equation (3) and (4) we get, 

 𝑥𝑘+1 =
[𝑓(𝑥𝑘)−𝑥𝑘𝑓′(𝑥𝑘)]−[𝑓(𝑥𝑘−1)−𝑥𝑘−1𝑓′(𝑥𝑘−1)]

𝑓′(𝑥𝑘−1)−𝑓′(𝑥𝑘)
=

(𝜖𝑘−1−𝜖𝑘)[
1

2
(𝜖𝑘−1+𝜖𝑘)+𝜉]𝑓′′(𝜉)+⋯ 

(𝜖𝑘−1−𝜖𝑘)𝑓′′(𝜉)[1+
1

2
(𝜖𝑘−1+𝜖𝑘)

𝑓′′′(𝜉)

𝑓′′(𝜉)
]+⋯

 

              Therefore,   

 𝜉 + 𝜖𝑘+1 =
1

2
(𝜖𝑘−1+𝜖𝑘)+𝜉

[1+
1

2
(𝜖𝑘−1+𝜖𝑘)

𝑓′′′(𝜉)

𝑓′′(𝜉)
+⋯ ]

 

𝜉 + 𝜖𝑘+1 = [
1

2
(𝜖𝑘−1 + 𝜖𝑘)

+ 𝜉] [1 +
1

2
(𝜖𝑘−1 + 𝜖𝑘)

𝑓′′′(𝜉)

𝑓′′(𝜉)

+ ⋯ ]

−1

 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 
 

IJIRT 182388 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1687 

𝜉 + 𝜖𝑘+1 = [
1

2
(𝜖𝑘−1 + 𝜖𝑘) + 𝜉] [1

−
1

2
(𝜖𝑘 + 𝜖𝑘−1)

𝑓′′′(𝜉)

𝑓′′(𝜉)

+
1

4
(𝜖𝑘−1 + 𝜖𝑘)2

𝑓′′′(𝜉)

𝑓′′(𝜉)
+ ⋯ ] 

𝜉 + 𝜖𝑘+1 =
1

2
(𝜖𝑘−1 + 𝜖𝑘) + 𝜉

−
1

4
(𝜖𝑘 + 𝜖𝑘−1)2

𝑓′′′(𝜉)

𝑓′′(𝜉)
+ ⋯ 

𝜖𝑘+1 =
1

2
(𝜖𝑘 + 𝜖𝑘−1) + ∅(𝜖𝑘)     

Discarding higher power terms of 𝜖𝑘 

We get,  𝜖𝑘+1 =
1

2
(𝜖𝑘 + 𝜖𝑘−1) 

𝜖𝑘+1 =
1

2
𝜖𝑘 (1 +

𝜖𝑘−1

𝜖𝑘
)   

𝜖𝑘+1 = 𝐴𝜖𝑘 ,   where  𝐴 =
1

2
(1 +

𝜖𝑘−1

𝜖𝑘
) 

This shows that order of the Tangent intersection 

method is 1. This method is of linear order. 

IV. EXAMPLES USING TIM 

Example 1: Let  𝑓(𝑥) = 𝑒𝑥 − 3𝑥 = 0 be the function 

of x. The root 𝑓(𝑥) = 0 lies in (0,1) since 𝑓(0) =

1 > 0 and  𝑓(1) = −0.28172 < 0. The roots 

obtained by TIM are as given in table which are 

correct up to 10−4 

Sr. 

No.  
TIM 

Sr. 

No.  
TIM 

1 0.581976707 10 0.61825639 

2 0.805508075  11 0.618715864 

3 0.697902784   12 0.618945549 

4 0.641059399 13 0.619060377 

5 0.611808933 14 0.619117789 

6 0.626505464 15 0.619089083 

7 0.619175198 16 0.61907473 

8 0.615496587 17 0.619067554 

9 0.61733702 
  

 

 

Example 2: Let  𝑓(𝑥) = 𝑥3 − 9𝑥 + 1 = 0 be the 

function of x. The root 𝑓(𝑥) = 0 lies in (2,3) since 

𝑓(2) = −9 < 0 and  𝑓(3) = 1 > 0. The roots 

obtained by TIM are as given in table which are 

correct up to 10−4. 

Sr. 

No.  

TIM Sr. 

No.  

TIM 

1 2.533333333 10 2.943529076 

2 2.773226238 11 2.943091891 

3 2.888097741 12 2.942873282 

4 2.944403317 13 2.942763973 

5 2.916341123 14 2.942818628 

6 2.930394614 15 2.942845955 

7 2.937404533 16 2.942832291 

8 2.940905313 17 2.94282546 

9 2.942654662   
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Example 3: Let  𝑓(𝑥) = 𝑥𝑙𝑜𝑔10𝑥 − 1.2 = 0 be the 

function of x. The root 𝑓(𝑥) = 0 lies in (2,3) since 

𝑓(2) = −0.59 < 0 and  𝑓(3) = 0.23 > 0. The roots 

obtained by TIM are as given in table which are 

correct up to 10−4.  

Sr. No.  TIM 
Sr. 

No.  
TIM 

1 2.466303462 10 2.740105094 

2 2.724445065 11 2.740628126 

3 2.860010455 12 2.740889667 

4 2.791679188 13 2.740758895 

5 2.757925539 14 2.74069351 

6 2.741151225 15 2.740660818 

7 2.732789634 16 2.740644472 

8 2.736968301 17 2.740652645 

9 2.73905923 
  

Example 4: Let  𝑓(𝑥) = 𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 = 0 be the 

function of x. The root 𝑓(𝑥) = 0 lies in (2,3) since 

𝑓(2) = 1.40 > 0 and  𝑓(3) = −0.567 < 0. The roots 

obtained by TIM are as given in table which are correct 

up to 10−4.   

Sr. No.  TIM 
Sr. 

No.  
TIM 

1 2.468215642 10 2.797337732 

2 2.713499201 11 2.797869453 

3 2.848242576 12 2.798135387 

4 2.779372784 13 2.798268372 

5 2.813376565 14 2.798334869 

6 2.796274877 15 2.798368119 

7 2.80479984 16 2.798384744 

8 2.800531008 17 2.798393057 

9 2.79840137 
  

 

Example 5: Let  𝑓(𝑥) = 𝑥2 − 𝑥 − 1 = 0 be the 

function of x. The root 𝑓(𝑥) = 0 lies in (1, 2) since 

𝑓(1) = −1 < 0 and  𝑓(2) = 1 > 0. The roots 

obtained by TIM are as given in table which are correct 

up to 10−4. 

Sr. No.  TIM 
Sr. 

No.  
TIM 

1 1.5 10 1.618164063 

2 1.75 11 1.617675781 

3 1.625 12 1.617919922 

4 1.5625 13 1.618041992 

5 1.59375 14 1.617980957 

6 1.609375 15 1.618011475 

7 1.6171875 16 1.618026733 

8 1.62109375 17 1.618034363 

9 1.619140625 
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For above Ex.5, the roots obtained by TIM and 

Bisection method are exactly same for all iterations as 

the function is quadratic polynomial. The table of 

iterations is given below. This is obvious from 

corollary.  

Sr. 

No. 

TIM Bisection 

Method 

1 1.5 1.5 

2 1.75 1.75 

3 1.625 1.625 

4 1.5625 1.5625 

5 1.59375 1.59375 

6 1.609375 1.609375 

7 1.6171875 1.6171875 

8 1.62109375 1.62109375 

9 1.619140625 1.619140625 

10 1.618164063 1.618164063 

 

Comparison of TIM and Bisection Method: 

The iterations for above examples by TIM are 

compared with Bisection method (BM). 

Function  𝑓(𝑥) = 𝑒𝑥 − 3𝑥  

Iteration TIM BM 

1 0.581977 0.5 

2 0.805508 0.75 

3 0.697903 0.625 

4 0.641059 0.5625 

5 0.611809 0.59375 

6 0.626505 0.609375 

7 0.619175 0.617188 

8 0.615497 0.621094 

9 0.617337 0.619141 

10 0.618256 0.618164 

Table for Ex. 1 

Function   

Iteration TIM BM 

1 2.533333 2.5 

2 2.773226 2.75 

3 2.888098 2.875 

4 2.944403 2.9375 

5 2.916341 2.96875 

6 2.930395 2.953125 

7 2.937405 2.945313 

8 2.940905 2.941406 

9 2.942655 2.943359 

10 2.943529 2.942383 

Table for Ex. 2 

Function 𝑓(𝑥) = 𝑥𝑙𝑜𝑔10𝑥 − 1.2  

Iteration TIM BM 

1 2.466303 2.5 

2 2.724445 2.75 

3 2.86001 2.625 

4 2.791679 2.6875 

5 2.757926 2.71875 

6 2.741151 2.734375 

7 2.73279 2.742188 

8 2.736968 2.738281 

9 2.739059 2.740234 

10 2.740105 2.741211 

Table for Ex. 3 

Function   

Iteration TIM BM 

1 2.468216 2.5 

2 2.713499 2.75 

3 2.848243 2.875 

4 2.779373 2.8125 

5 2.813377 2.78125 

6 2.796275 2.796875 

7 2.8048 2.804688 

8 2.800531 2.800781 

9 2.798401 2.798828 

10 2.797338 2.797852 

Table for Ex. 4 

IV. CONCLUSION 

 

The proposed numerical method is implemented to 

find the roots of the algebraic and transcendental 

equations. The order of the proposed method is 1. The 

bisection method is the special case of this method if 

the function is quadratic equation as proven in 

corollary.  
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