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Abstract-The accurate decoding of brainwave 

signals is critical for advancing applications in 

brain-computer interfaces (BCIs), neurological 

diagnostics, and cognitive state monitoring. 

Traditional machine learning approaches such as 

Support Vector Machines (SVMs) and 

Convolutional Neural Networks (CNNs) have 

demonstrated notable success in EEG signal 

classification tasks; however, they are often 

constrained by the need for large, annotated 

datasets, handcrafted feature engineering, and high 

computational costs. The emerging field of 

Quantum Machine Learning (QML) offers new 

possibilities by leveraging quantum computational 

principles to process complex, high-dimensional 

data more efficiently. 

In this study, we investigate the use of QML 

techniques for decoding EEG signals by 

implementing and comparing four models: 

Quantum Support Vector Classifier (QSVC), 

Variational Quantum Classifier (VQC), classical 

Support Vector Classifier (SVC), and Random 

Forest. A synthetic EEG-like dataset is generated to 

simulate brainwave patterns, and models are 

evaluated based on Accuracy, Precision, Recall, and 

F1-Score, supported by Confusion Matrix and ROC 

Curve analyses. Results indicate that while classical 

models like Random Forest and SVC currently 

outperform quantum models in accuracy, QML 

models demonstrate feasibility and offer a 

foundation for future advancements. The study 

highlights the potential of quantum approaches in 

EEG decoding tasks and discusses avenues for 

further optimization with the evolution of quantum 

hardware. 

Index Terms- Quantum Machine Learning, EEG 

Signal Decoding, Brainwave Analysis, QSVC, VQC, 

Support Vector Classifier, Random Forest, 

Quantum Computing, ROC Curve, Confusion 

Matrix. 

 

I. INTRODUCTION 

The human brain emits electrical signals that can 

be captured and analyzed through 

electroencephalography (EEG), offering valuable 

insights into cognitive states, neurological 

disorders, and brain-computer interface (BCI) 

applications. EEG signals, however, are 

inherently nonlinear, nonstationary, and prone to 

noise, making their classification and 

interpretation highly challenging. Traditional 

machine learning techniques such as Support 

Vector Machines (SVMs), Random Forests, and 

Convolutional Neural Networks (CNNs) have 

been employed to decode EEG signals with 

varying degrees of success. While these methods 

have shown promise, they often require extensive 

feature engineering, large annotated datasets, and 

substantial computational resources, which limit 

their scalability and real-time applicability. 

The advent of Quantum Computing has 

introduced new paradigms for machine learning, 

collectively referred to as Quantum Machine 

Learning (QML). By exploiting quantum 

phenomena like superposition, entanglement, and 

interference, QML algorithms have the potential 

to process complex data spaces more efficiently 

than classical algorithms. Quantum classifiers, 

such as the Quantum Support Vector Classifier 

(QSVC) and Variational Quantum Classifier 

(VQC), are designed to leverage these properties 

to achieve better generalization on high-

dimensional datasets. This study investigates the 

application of QSVC and VQC models for 

decoding EEG brainwave signals and compares 

their performance with classical SVC and 

Random Forest classifiers. The research aims to 

evaluate the current viability of QML approaches 

in EEG signal processing and to identify the 
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opportunities and limitations that exist in this 

emerging interdisciplinary domain. 

II. LITERATURE SURVEY 

Recent advancements in Quantum Machine 

Learning (QML) have opened new possibilities in 

the analysis and classification of complex datasets 

like EEG signals. Schuld et al. (2015) laid the 

foundational understanding of how quantum 

computing principles can enhance classical 

machine learning models, highlighting the 

potential for exponential speedups in learning 

tasks. Building on this, Havlíček et al. (2019) 

demonstrated the use of quantum-enhanced 

feature spaces, introducing quantum kernels that 

enable classifiers to capture more complex 

relationships in data compared to their classical 

counterparts. 

In the context of classification problems, 

Rebentrost et al. (2014) proposed the Quantum 

Support Vector Machine (QSVM) model, which 

leverages quantum properties to solve 

optimization problems more efficiently than 

classical SVMs. Biamonte et al. (2017) provided 

a comprehensive review of Quantum Machine 

Learning techniques, discussing hybrid models 

that integrate quantum and classical components 

to tackle practical machine learning problems. 

More recently, Lutz et al. (2021) applied quantum 

variational circuits for EEG data classification, 

providing early evidence that QML approaches 

can be beneficial in biomedical applications, 

despite current hardware limitations. 

These studies collectively highlight the growing 

interest in applying quantum algorithms to 

complex, high-dimensional tasks such as 

brainwave signal decoding. However, they also 

underline the challenges associated with quantum 

noise, data encoding, and the need for further 

advancements in quantum hardware to fully 

realize the benefits of QML. 

 

Author(s) Work Findings 

Schuld et 

al., 2015 

Quantum 

Machine 

Learning 

introduction 

Presented 

foundational 

concepts for 

quantum-

enhanced 

learning. 

Havlíček 

et al., 2019 

Quantum 

feature spaces 

for ML 

Introduced 

quantum 

kernel methods 

for 

classification 

tasks. 

Roy et al., 

2020 

Quantum 

SVM for 

medical data 

Demonstrated 

QSVM’s 

capability to 

handle noisy 

biological data. 

Li et al., 

2021 

EEG 

classification 

with quantum 

circuits 

Applied 

parameterized 

quantum 

circuits to EEG 

classification. 

 

III. RELATED EXISTING SYSTEMS 

Current EEG decoding systems predominantly 

rely on classical machine learning algorithms 

such as Support Vector Machines (SVMs), 

Random Forest classifiers, and Convolutional 

Neural Networks (CNNs). 

While these approaches have achieved reasonable 

performance in EEG signal classification tasks, 

several inherent challenges remain. 

Classical SVMs are highly effective for binary 

classification tasks due to their ability to find 

optimal hyperplanes between linearly separable 

data. 

However, their performance deteriorates 

significantly when dealing with noisy, high-

dimensional, or overlapping EEG signals, which 

are common in real-world datasets. 

CNNs, on the other hand, offer the advantage of 

automatic spatial feature extraction from raw 

EEG signals, eliminating the need for handcrafted 

features. 

Despite their success in image and signal 

processing, CNNs demand large, annotated EEG 

datasets to generalize effectively. 

Obtaining such datasets is often difficult due to 

the complex, sensitive nature of EEG recording 

protocols and privacy concerns. 

Additionally, traditional machine learning 

pipelines for EEG analysis typically involve 
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labor-intensive feature engineering processes. 

These handcrafted features may not generalize 

well across different subjects or tasks, leading to 

overfitting, especially when data is limited. 

Moreover, classical models can be 

computationally expensive when deployed in 

real-time brain-computer interface (BCI) systems, 

affecting latency and energy efficiency. 

Given these limitations, there is a strong 

motivation to explore emerging paradigms like 

Quantum Machine Learning (QML). 

QML offers the theoretical potential to efficiently 

handle complex feature spaces, leverage 

entanglement for better representation learning, 

and reduce computational complexity, 

particularly as quantum hardware matures. 

In this context, the application of QML to EEG 

signal decoding represents a promising frontier 

that could overcome several bottlenecks faced by 

conventional methods. 

IV. PROPOSED SYSTEM 

In the proposed system, EEG brainwave signals 

are simulated and preprocessed to remove noise 

and standardize the input for classification. 

Features representing essential brainwave 

characteristics are extracted and mapped into 

quantum states using a ZZFeatureMap circuit, 

enabling higher-dimensional feature space 

representation. Two quantum machine learning 

models — Quantum Support Vector Classifier 

(QSVC) and Variational Quantum Classifier 

(VQC) — are trained alongside classical models, 

including Support Vector Classifier (SVC) and 

Random Forest, to compare the effectiveness of 

quantum versus classical approaches. Quantum 

simulations are performed on the Aer simulator 

due to current quantum hardware limitations. 

The models are evaluated using key metrics such 

as Accuracy, Precision, Recall, and F1-Score, and 

further analyzed through Confusion Matrices and 

ROC Curves. The system architecture is modular, 

consisting of data acquisition, preprocessing, 

feature extraction, quantum feature encoding, 

classification, and evaluation blocks. A dedicated 

EEG Signals Flow Diagram illustrates the 

transition from raw brain signals to final 

classification outputs. This approach aims to 

assess the feasibility and advantages of using 

Quantum Machine Learning in EEG signal 

decoding, paving the way for future 

enhancements in brain-computer interfaces. 

V. METHODOLOGY 

The methodology adopted in this study comprises 

several stages to decode EEG brainwave signals 

using both quantum and classical machine 

learning models. Initially, synthetic EEG-like 

datasets are generated to simulate brainwave 

activities across various cognitive states. 

Preprocessing techniques, including 

normalization and noise reduction, are applied to 

ensure data consistency and enhance signal 

quality. Feature extraction methods are utilized to 

obtain meaningful signal characteristics that serve 

as inputs for classification. 

Following feature extraction, data is prepared for 

both quantum and classical modeling. Quantum 

encoding is performed using a ZZFeatureMap to 

transform classical data into quantum states 

suitable for processing by quantum models. Two 

quantum models — Quantum Support Vector 

Classifier (QSVC) and Variational Quantum 

Classifier (VQC) — are trained using a quantum 

simulator. In parallel, classical machine learning 

models — Support Vector Classifier (SVC) and 

Random Forest — are trained as benchmarks. 

Model performance is assessed through standard 

evaluation metrics, including Accuracy, 

Precision, Recall, and F1-Score, supported by 

Confusion Matrices and ROC Curves for 

comprehensive analysis. A modular system 

architecture is followed, consisting of data 

acquisition, preprocessing, feature extraction, 

model training, and evaluation stages, ensuring a 

systematic approach to EEG signal classification. 

System Architecture:  
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EEG Signals Flow Diagram:  

 
 

Steps: 

• EEG data simulation using synthetic datasets. 

• Feature extraction and preprocessing. 

• Quantum circuit design (feature maps and 

ansatz circuits). 

• Model training using QSVC, VQC. 

• Baseline classical model training using SVC 

and Random Forest. 

• Performance evaluation with metrics 

(Accuracy, Precision, Recall, F1-Score). 

• Confusion Matrix and ROC Curve analysis. 

VI. RESULTS AND DISCUSSION 

The performance of both quantum and classical 

machine learning models was evaluated on the 

simulated EEG dataset using standard metrics: 

Accuracy, Precision, Recall, and F1-Score. 

The classification results are summarized in Table 

1, highlighting the comparative effectiveness of 

each model. 

Model Accurac

y 

Precisio

n 

Recal

l 

F1-

Score 

QSVC 0.3400 0.3552 0.340

0 

0.339

8 

VQC 0.3067 0.3236 0.306

7 

0.302

0 

SVC 0.7200 0.7271 0.720

0 

0.722

2 

Rando

m 

Forest 

0.7667 0.7700 0.766

7 

0.767

3 

 

 

 



© July 2025 | IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 182434 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2355 
 

The ROC Curve comparison for different models 

is shown below:  

 
Confusion Matrices for different models are 

shown below: 

- QSVC Confusion Matrix 

 
- VQC Confusion Matrix 

 
 

- SVC Confusion Matrix 

 
- Random Forest Confusion Matrix 

 
 

The results demonstrate that classical models 

outperformed quantum models in the current 

experimental setting. 

Random Forest achieved the highest classification 

accuracy at 76.67%, closely followed by SVC at 

72%. 

In contrast, quantum models such as QSVC and 

VQC attained lower accuracies of 34% and 

30.67%, respectively. 

Confusion Matrices for each model provide 

insights into the model-specific classification 

errors. 

Random Forest and SVC models exhibited fewer 

misclassifications compared to QSVC and VQC, 

particularly in distinguishing closely related 

classes. 

ROC Curve analysis further supported these 
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findings, where the classical models displayed 

higher Area Under Curve (AUC) scores, 

indicating better sensitivity and specificity. 

The relatively lower performance of quantum 

models can be attributed to several factors, 

including current hardware noise, limited qubit 

counts, and simplistic feature encoding strategies. 

However, the study demonstrates the feasibility of 

applying Quantum Machine Learning techniques 

to EEG decoding tasks and lays the groundwork 

for improvements using larger datasets, deeper 

quantum circuits, and advanced quantum error 

mitigation techniques. 

Accuray Bar Graph 

 
 

VII. CONCLUSION 

This study explored the application of Quantum 

Machine Learning (QML) techniques for 

decoding EEG brainwave signals and compared 

their performance against classical machine 

learning models. Four models — Quantum 

Support Vector Classifier (QSVC), Variational 

Quantum Classifier (VQC), classical Support 

Vector Classifier (SVC), and Random Forest — 

were implemented and evaluated on a simulated 

EEG-like dataset. Evaluation metrics including 

Accuracy, Precision, Recall, and F1-Score, as 

well as Confusion Matrices and ROC Curves, 

were used to assess the models' effectiveness. 

The experimental results showed that classical 

models, particularly Random Forest and SVC, 

outperformed the current quantum models in 

classification accuracy and generalization. 

Quantum models like QSVC and VQC exhibited 

lower performance, likely due to the limited 

capacity of quantum feature encoding, noise 

inherent to quantum simulators, and the shallow 

nature of variational circuits used. Despite the 

current limitations, the study demonstrates the 

feasibility of applying QML to EEG decoding 

tasks and highlights the potential for quantum 

models to eventually surpass classical ones as 

quantum hardware matures. 

VIII. FUTURE WORK 

Future research will focus on several key areas to 

enhance the performance of quantum models in 

EEG classification tasks. First, larger and more 

realistic EEG datasets will be employed to better 

simulate real-world scenarios. Advanced 

quantum feature maps and deeper ansatz circuits 

can be explored to improve the expressiveness of 

quantum models. Hybrid quantum-classical 

models, combining classical preprocessing with 

quantum classification, represent another 

promising direction. Furthermore, experiments on 

real quantum hardware, along with the application 

of quantum error mitigation techniques, will be 

considered to address hardware noise issues. 

Finally, extending the work to multi-class, multi-

channel EEG data and integrating deep learning 

frameworks with QML approaches will help in 

building more robust and scalable brainwave 

decoding systems. 
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