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Abstract- The Pneumonia is an acute respiratory disease 

that occurs in the lungs. They include similarities between 

symptoms of viral and bacterial pneumonia. The disease is 

hard to diagnose, as the methods based on polymerase 

chain reaction, the most reliable ones, give results in 

several hours only, whereas they presuppose strict 

demands regarding observing the demands of the analysis 

technology and professionalism of the staff. This article 

suggested concatenated CNN model in recognising 

pneumonia with an image enhancing using fuzzy logics. 

The image enhance cement mechanism of fuzzy logic as 

proposed to new algorithms to extract the high accuracy 

pneumonia detection by deep learning approaches for the 

larger extended to capture the high precision quality of 

CRX images to analyses the pneumonia causes. The 

various datasets and key statistics helps to prevent the 

affecting of pneumonia attack. The algorithm was trained 

by means of four datasets, equipped with original and 

enhanced images that employed fuzzy entropy, standard 

deviation as well as histogram equalization. It was also 

shown that the upgraded datasets were able to 

significantly improve the performance of the CCNN and 

the fuzzy entropy-added dataset recorded the best 

performance. 

Index Terms- CRX images, Pneumonia detection, Fuzzy 

algothrims, CNN models; 

I. INTRODUCTION 

New studies have pointed out the value of deep 

learning, especially the Convolutional Neural Networks 

(CNNs) in automating the process of pneumonia 

diagnosis in chest X-rays. CNNs can map complex 

patterns directly to the images, thus there is no need in 

manual extraction of features, which additionally leads 

to increased scalability and accuracy [1]. These 

algorithms have been proved to have high sensitivity 

and accuracy hence can be applied in an actual practice 

work of clinics where radiologist experience is limited. 

Pneumonia is a case of acute lung infection causing 

lung illness. Viral and bacterial pneumonia symptoms 

are similar [2]. The disease can hardly be diagnosed 

quickly, as the most reliable, according to the method of 

polymerase chain reaction, can be detected within 

several hours, but with high demands on the technology 

analysis and professionalism of the staff. This paper 

presented a Concatenated CNN model of detecting 

pneumonia that was accompanied by a fuzzy logic 

technique of image enhancement. Further enhancements 

to image are called Fuzzy logic-based image 

enhancement process that is founded on a new 

fuzzification refinement algorithm and the ideal quality 

and accuracy of features extracted by the CCNN model 

is elevated considerably [3]. To train the algorithm, four 

datasets, original and enhanced images using fuzzy 

entropy, standard deviation, and histogram equalization 

were used. Pneumonia is a disease pathological process 

of the lungs, inflammation of the lung [4]. There is a 

great number of pathogens which lead to pneumonia: 

different viruses, bacteria, and fungi. Consequently, the 

lungs do not perform normally due to the active nature 

of the inflammatory process due to the immune 

response. The body condition is in general suppressed 

due to the lack of gas exchange leading to death (see 

Fig.1). The so-called atypical pneumonia is especially 

dangerous, which manifests much fewer symptoms, and 

secondary ones predominate sore throat, muscles, 

headache, and general weakness [5]. The most common 

cause of death of the global pandemic of 2019 was 

atypical pneumonia, whose causative agent was the 

SARS-CoV-2 coronavirus.  In the process of revealing 

the respiratory pathology when going to the first stage 

of diagnosis, the doctor will have to resolve the issue of 

what is considered to be a normal condition, and what is 

considered to be pneumonia. To do so, the patient is 

subjected to radiation diagnostics and initial data of 

radiography is used to correct the problem. 

 
Fig.1: X-ray imaging on chest in Pneumonia Detection: 

Benefits, shortcomings and improvement 
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II. LITERATURE REVIEW 

The lack of diagnostic support systems and healthcare 

professionals has posed a big problem to the sector of 

healthcare all over the world more so in the third-world 

countries where the radiologists are more likely to land 

in a foreign land or in the first-world countries where 

the healthcare workers are better remunerated. The 

shortage is especially keen on a rural side worsening the 

already challenging situation in hospitals where the 

shortage of radiologists is even more noticeable [6]. 

Consequently, separate doctors have a heavy burden of 

work and may deal with many cases that lead to wrong 

diagnosing. In an attempt to curb this problem, more 

emphasis is being put into the designing of computer 

assisted diagnostic systems. The intended use of these 

systems is that they should support healthcare providers 

in diagnosis, particularly in a circumstance where 

access to specialist medical expertise is limited. 

Research has been done in a bid to offer assistive tools 

to diagnose pneumonia effectively. Recently, Gilani [7] 

has initiated a PERCH (Pneumonia Etiology Research 

for Child Health), which is a large scale multinational 

project on the etiology of childhood pneumonia as the 

research activities were implemented by the Board on 

Science and Technology in International Development. 

Black et al. [8] expressed an opinion that more than a 

million of children die annually as a result of 

pneumonia. There has also been advocated by 

international organizations like WHO [9], a need to 

implement the system in detecting pneumonia in order 

to save the high mortality burden of pneumonia faced 

globally and they have also provided numerous 

recommendations in this regard of low-resource settings 

that focus on pneumonia amongst children below 5 

years of age. Nevertheless, the entry of the Institute for 

Health Metrics and Evaluation [10] shows that 

pneumonia is also a serious issue among children above 

age. It is estimated that pneumonia is the second most 

leading cause of death in children aged between 5 to 9 

years according to Global Burden of Disease. Recent 

research on detection of pneumonia has proposed 

different research and multiple approaches based on the 

use of machine learning. Such studies mostly employ 

the use of Chest X-ray dataset. as an example, Feng et 

al. [11] used a dataset that comprised of Chest X-ray 

images to develop a model that contained features 

specific in the easy classification of images of 

pneumonia. In this work, the study has applied Long 

Short-time Memory Models (LSTMs) to establish the 

correlations between the target labels. Feng et al. took a 

2D ConvNET as an image encoder in their strategy to 

process chest X-rays. They standardized their data to 

balance out the comparison by using the same data split 

(70 percent, 10 percent, and 20 percent were used 

during training, validation, and testing respectively) 

because there was no standard split of the data. 

Noteworthy efficiency and practical applicability were 

observed in their model that, on being trained using the 

Reasoning Algorithm having a boosting and 

discounting setting, resulted in an accuracy rate of 85 

per cent. Similar study by Rajpurkar et al. [12], using 

the Chest X-ray14 dataset, developed CheXNet, a 121-

layer convolutional neural network. This study 

compared the performance of CheXNet against a 

radiologist, during which it was measured using F1. 

This whole network could detect 14 kinds of diseases 

such as pneumonia by using the X-ray images. In the 

course of analysis of an X-ray image, in addition to the 

provision of the likelihood of the pathology, the model 

outlines certain parts of the image that relate to the 

condition. The training dataset contained 98,637 images 

(70%), validation-containing 6,351 images (20%), and 

testing-containing 430 images (10%). In the end, the 

model was able to obtain an F1 score of 0.435, which is 

higher than the obtained by the radiologist since his 

performance was 0.387.An approach extended by 

Chandra et al. [13] consists in adapting five different 

models to the problem of pneumonia detection: Alex 

Net, InceptionV3, ResNet18, DenseNet121, Google 

Net. Out of these models, Alex Net that was trained to 

the 200 iteration had an AUC of 0.9783. Nevertheless, 

ResNet18 model demonstrated the most impressive 

performance with ROC AUC of 0.9936 and testing 

accuracy of 94.23, which was the best among other 

models in the study. But amazingly, when the results of 

all the five models were added the overall result 

manifested a large ROC AUC, 0.9934, and a testing 

accuracy, 96.39 percent with a highly satisfactory 

sensitivity, 99.62 percent. The performance of this 

ensemble was better than that of the individual models 

demonstrating that it is effective to use multiple models 

in order to detect pneumonia in medical images more 

efficiently. In addition, Toga car et al. [14] also 

presented a deep feature in terms of model CNN 

including Alex Net, VGG-16, and VGG-19 at various 

parameterizations (i.e., 100-1000). Minimum 

redundancy maximum relevance algorithm was used to 

extract features in these models. The obtained features 

were consequently fed into other models, which 

included K-nearest neighbours, linear discriminant 

analysis, support vector machine and linear regression. 

The print-out of this methodology led to an impressive 

mark of accuracy of 99.41 %. This implies the strength 

and soundness of their strategy in the application of 
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deep feature CNNs alongside second models in highly 

accurate pneumonia detection based on medical images 

(see Fig.2). 

 
Fig.2: Second Models; Deep Feature CNNs in 

Pneumonia Detection: a Strength and Soundness 

Strategy 

A. Convolutional Neural Networks For CXR 

Classification 

In the past several years, two primary 

facilitators have appeared in the sphere of CXR 

classification. The scarcity of data has always been (and 

continues to be) the most common restriction to the 

effective pattern recognition in the field of biomedical 

imaging. To some extent, this issue was resolved 

introducing transfer learning to CNNs. CNNs fine-tuned 

networks have had massive potential that has even 

proved to be better than fully trained ones. CNNs used 

in a lot of applications [15],[16]. The second facilitator 

is data: a restricted number of big CXR datasets were 

available to everyone, allowing the usage of numerous 

new strategies of CXR classification [16]. Majority of 

the upcoming works have exploited one or both of these 

enablers. The topic of CXR classification has attracted 

the interest of the research community in the past years, 

but the emergence of the COVID-19 pandemic has 

further increased interest in this issue. Most of the 

recent publications on the classification of CXR only or 

partially look at COVID-19 classification. According to 

the endings, the easiest way to diagnose the COVID-19 

with the help of CXR images is to apply the current 

CNN architectures trained on the ImageNet and _ne-

tune them on the COVID-19 dataset. Such was the 

method that the authors of [18] used. They _ne-tuned 

four state of-the-art convolutional networks (ResNet18, 

ResNet50, SqueezeNet, and DenseNet-121) in order to 

detect COVID-19. In the same vein, Apostolopoulos, 

and Mpesiana [19] trained the _veother CNN 

architectures on ImageNet pretrained models and 

discovered that the VGG-19 model, and the compact 

MobileNet, network yielded the most encouraging 

outcomes. Rather than employing individual CNNs, 

other authors have made suggestions of ensemble of 

CNNs in detecting COVID-19. Pareto-based 

multiobjective optimization was used by Guarrasi et al. 

[20] to constructa CNN ensemble, and Rajaraman et al. 

[21] demonstrated that iterative pruning of the task-

speci_c models not only led to increased prediction 

performance on the test data but the number of trainable 

parameters was also reduced signicantly. Other 

researchers have attempted to streamline performance 

by creating a CNN cell that is specific to CXR classi _ 

cation. These models are motivated based on the 

architectures that are available like CoroNet [22] whose 

design is informed by the Xception architecture, 

DarkCovidNet [23] whose architecture is based on the 

Dark-Net [24] model of CNN, and COVID-CAPS [25] 

that leverage on the capsule networks that retain the 

spatial information. Unlike an existing architecture, 

Wang et al. [26] used generative synthesis to come up 

with COVID-Net a machine-designed deep CNN. A 

promising method that incorporates CNN together with 

graph CNN was proposed by Kumar et al. [27] and one 

of their models reached the classification accuracy of 

97% on the COVID dataset. Alternative directions 

involve further applying a layer of class decomposition 

to an already trained CNN or additional component of 

specific domain adaptation to a fully convolutional 

network [28],[29]. Besides the utilization of CNN only 

to classify chest CXR, certain characteristics have been 

suggested and found, with the aim of improving the 

classification performance [30]. Further, the extracted 

features may be utilized together with CNN to achieve 

stronger forecast [31]. In addition to the architecture 

improvements methodologies, there is also a range of 

approaches that instead of trying to increase specific 

architectures augmentation, they aim to improve 

archival images before feeding them into the 

architecture (such as the work of Heidari et al. 

augmenting X-ray images during its pre-processing 

[32]) or to provide data augmentation to subsequent 

passes after the architecture (such as the work of Moris 

et al. to data augmentation in COVID-19 screening 

[33]).Most of the methods described above have 

demonstrated quite promising results and high 

classification rates. But these methods cannot be taken 

too optimistically as there is a number of other factors 

that have to be taken into consideration and accepted 

before believing that a certain design will be suitable as 

a solution that can be implemented as a production 

model. To begin with, a number of the studies 
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mentioned above have been carried out by combining 

the COVID-19 dataset with other publicly available 

dataset by assembling a dataset that was used to train 

and test the model. This enhances the possibility of the 

model giving an output that is not only relevant with 

features relating to the disease but also dataset-speci_c 

elements e.g. contrast and saturation. Second, other 

works, like in [25] and [26], employed nothing more 

than the simple hold-out model validation. The 

criticisms of the past works are described in [34], where 

ones suggest the stronger alternative named COVID-

SDNet and use an additional dataset to validate it. 

Algorithmic biases in released datasets upon which the 

models that diagnose systems train are also mentioned 

in [35].There are other practical considerations of CXR 

classification that some authors have taken into account 

like the small available data sets. The solution 

suggested by Oh et al. [36] on how to address the 

absence of enough training datasets relied on a 

pertained ResNet-18 that applied CXR images via 

smaller patches. The methods developed by the source 

of [37] presented viral pneumonia detection as an 

anomaly problem. With this method, they did not have 

to train the model using large volumes of other types of 

cases of pneumonia and they could just test viral 

pneumonia. A framework to combine the information of 

the various datasets and successfully train a neural 

network to classify the diseases of the thoracic was 

proposed lastly by Luo et al. [38]. All the earlier 

methods have used backbones networks which are 

based on ImageNet up to date. Transfer learning renders 

CNNs, trained with big-scale natural pictures, 

applicable to medical ones. Nevertheless, the 

differences between X-ray images and natural images 

are really great. The performance can also be increased 

by training a CNN in a dataset of large size of X-rays 

with scratch training. The idea of self-supervised 

learning (SSL) [39], [40] was used in some early papers 

and this form of approach was confirmed as viable. 

Later, authors of [41] suggested a self-supervised 

strategy based on super sample decomposition and 

achieved 99:8% accuracy. Also, Aviles-Rivero et al. 

[42], developed a graph-based deep semisupervised 

learning strategy that requires extremely tiny labeled 

data and achieves comparative results of the supervised 

schemes. The issue of COVID-19 detection with the use 

CXR images represents a incredibly demanded sphere 

of research and fresh publications come onto the scene 

every day. This work is not comprehensive in covering 

all the new developments. We have attempted to refer 

to the various and some illustrative instances of CXR 

classification, but we hasten to refer to [43]_[44] (and 

similar) works that are more detailed reviews of the 

field (see Fig.3). These updates review the recent 

articles and offer several scopes of the latest 

developments of COVID-19 detection based on CXRs. 

 
Fig.3: Detection of COVID-19 through CXR images 

and deep learning models 

B. Contrastive Learning of Visual Representations 

The self-supervised neural networks are 

presenting unparalleled performance in computer vision 

tasks. Generative models primarily trapped in the pixel 

domain, which is not affordable or sustainable to be 

used on very large models. Conversely, contrastive 

discriminative approaches act on the augmented image 

representations of the identical picture, thereby 

obviating against a pricey build-up of the pixel fruits 

space. Moreover, contrastive discriminative techniques 

are now stateof- the- art on SSL tasks [49], [50]. Self-

supervised model training has different methods. The 

primary paradigm has changed to instance 

discriminative one with the potential of similar 

contrastive learning (SimCLR) [51], momentum 

contrast to unsupervised visual representation learning 

(MoCo) [52], and bootstrap your own latent architecture 

(BYOL) [53] showing potential hitherto unrealized (see 

Fig.4). The representations that are learned by these 

architectures are Equivalent to those learned by their 

supervised counterparts [54], [55].In perspective of 

pretext task choice, contrastive learning can be 

classified as the context-instance opposite learning and 

context-context opposite learning [56]. The former 

attempts to sever the connection between the local 

descriptors and the global identity of an entity (i.e. 

wheels and windows to a car) 
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Fig.4: BYOL, SimCL models and MoCo model 

architecture and characteristics of detecting pneumonia 

 In our opinion, the learned local features will 

ultimately assist in making a difference between the 

target categories. A jigsaw puzzle [57] is an example of 

pretext tasks operating on instances-of-context principle 

angle detection of rotation [58]. Context-context 

contrast architectures dwell on the interrelationships of 

the representations of the various samples in a global 

manner. Contrastive methods CMC [49], MoCo [52], 

SimCLR [51] as well compare positive and negative 

pairs, with positive pairs being images of the same 

instance differently augmented, and negative pairs 

being all the other images. The size of negative and 

positive pairs is only determined by the nature of self- 

supervised architecture. SimCLR and MoCo have a 

similar idea in terms of the use of positive and negative 

pairs, but differ in the way the positive and negative 

pairs are used. In SimCLR, [52], the negative pairs are 

batched together; therefore, SimCLR needs a bigger 

batch size. Representations of negative keys in MoCo 

are stored in another The queue that is encoded with a 

momentum encoder. BYOL says to have given superior 

performance to the SimCLR and MoCo without 

incorporating negative sample in the loss. Unlike 

SimCLR and MoCo, BYOL introduced a loss function 

that was a learning to eliminate L2 error rather than 

contrastive loss, yet still relied on the principle of 

momentum encoder proposed in MoCo. BYOL exploits 

two neural networks referred to as online and target 

networks that learn through the interactions between 

one another. BYOL sets the stage of optimization and 

involves a single augmented view of one image. It 

learns to accurate forecast the encoding of a different 

view of the same picture augmented differently by the 

target network. 

III. DATASET 

Machine learning has demonstrated strong 

potential in the detection of pneumonia by means of 

CXRs. Nevertheless, many practitioners are still 

uncertain about using deep learning as part of medical 

practices: the main reason is the black-box 

characteristic [60]. Human lives are involved; hence, 

there are so many issues that require to be addressed 

[61]: Can reasons as to why the correct diagnosis was 

made be explained? What can be done to work on 

further improvement of the system using these 

methods? Who do blame in case of a bad event? XAI is 

a scientific direction which is supposed to cope with 

these problems according to which the success of 

various algorithms, which are mentioned and are 

described in the literature reviewed, is determined. The 

range of the data in this category is also specifically 

dedicated to COVID and consists only of CXR images 

with this virus, whereas other datasets provide a wider 

variety of data, including not only COVID patients but 

also healthy subjects and the cases of CXRs that depict 

manifestations of virus or bacterial pneumonia. Such a 

diverse set of datasets indicates the overall purpose of 

the research community developing flexible algorithms 

that would be able to detect pneumonia out of a diverse 

group of radiographic images. In our comprehensive 

study of some of the primary data, we also provide the 

download links (the quicker ones) of some of the key 

data in Table 1, which will also facilitate researchers to 

acquire the data and enhance further research in the 

significant field. It includes a number of datasets, which 

are differentiated by numbers of images, the number of 

classes, and particular classes included in them. These 

data sets will contribute to the development and 

verification of deep learning models in the field of chest 

X-rays improving accuracy and performance of such 

analysis and help to detect pneumonia early including 

COVID-19 that is very important in medical practice. 

Table 1 shows a thorough evaluation of high-quality 

general CXR data utilized in the detection of 

pneumonia and COVID-19. The unique nature of each 

of the datasets renders them a substantial contribution 

of a deep learning researcher. The study will assist the 

researchers in the selection of the most suitable dataset 

according to the research purposes and the computing 

needs. 

IV. KEY STATISTICS 

The discussing the review that we have 

conducted in the current paper, we examined 262 

studies, which used deep learning systems to identify 

pneumonia, or specifically, differentiate between 
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COVID pneumonia, non-COVID pneumonia, or both. 

Our research was centred on convolutional neural 

networks (CNNs) (as well as different forms of CNNs, 

such as customized CNNs and transfer learning, 

ensemble models, and hybrid models). We also 

researched about the use of generative adversarial 

networks (GANs), explainable AI, and vision 

transformers, etc. Besides the several models, we 

evaluated a number of datasets concerning the 

pneumonia detection through the X-ray imaging and 

referred to a number of survey-like papers to 

comprehend the current state of things to the full extent. 

Particularly, pertaining to non-COVID and COVID 

pneumonia, 140 articles have been analysed in this 

research. Of these 140 papers, 70 of them address both 

COVID and non-COVID pneumonia, and 48 of them 

address COVID pneumonia only and 22 articles address 

non-COVID pneumonia only: 70 papers at 50 percent, 

and 48 papers and 22 papers at 25 and 15 percent, 

respectively (Table 2). Recently, COVID pneumonia is 

gaining a lot of attention and this is clearly attributed to 

the COVID- 19 pandemic. The second thing about the 

research studies reviewed is that they are founded on 

binary classification task or on multiclass classification 

or on both. Binary classification as used in this paper 

reflects the results of classifying a CXR image into 

either of the two mutually exclusive classes e.g. 

pneumonia or normal. Multiclass classification on the 

contrary describes a CXR image a part of a number of 

more than two classes. A typical notion of a multiclass 

classification task is a `` normal '' vs. `` viral '' vs. `` 

bacterial '' vs. `` COVID '' task. Another aspect of 

interests is a frequency of papers dedicated to each of 

these classification tasks which is described. It is 

possible to observe that quite a lot of the studies focus 

on both classification tasks. Since this essay intends to 

provide an extensive summary of the numerous 

methodologies adopted to diagnose the problem of 

pneumonia in chest X-ray (CXR) images, techniques 

are methodically categorised into four major tools that 

exhibits the growing number of diagnostic tools. 

According to the sources, the most frequently applied 

method that can be encountered in the given 

investigations is the employment of specially developed 

convolutional neural networks (CNNs). Such 

personalized CNNs are promising to detect some 

delicate trends in CXR images to detect pneumonia 

accurately. 

 

 

 

Table 1. Previous references of  CXR image datasets used for COVID and non-COVID pneumonia 

detection. 

Dataset Studies 

using the 

dataset 

 

Link Features 

No. of 

Images 

Classes No. of 

Classes 

Kermany’s 

Dataset 

[59] 

[62-72] https://data.mendeley. 

com/datasets/rscbjbr9sj/3 

(accessed on 2 February 

2024) 

5858 Viral pneumonia, bacterial 

pneumonia, normal lungs 

3 

RSNA 

pneumonia 

dataset [73] 

[74–80] https://www.kaggle.com/ 

c/rsna-pneumoniadetection- 

challenge 

(accessed on 3 April 2024) 

26,684 Pneumonia and 

non-pneumonia 

2 

NIH Chest X-ray 

Dataset [81] 

[82,83–91] https://www.kaggle.com/ 

datasets/nih-chest-xrays/ 

data (accessed on 24 March 

2024) 

112,000 Atelectasis, consolidation, 

infiltration, 

pneumothorax, edema, 

emphysema, fibrosis, 

effusion, pneumonia, 

pleural thickening, 

cardiomegaly, nodule 

mass, hernia, no findings 

15 

Cohen et al.’s 

COVID chest X-

ray 

dataset [92–94] 

[95–98] https: 

//github.com/ieee8023/ 

covid-chestxray-dataset 

(accessed on 22 March 2024) 

1314 COVID-19 or other viral 

and bacterial pneumonias 

(MERS, SARS, and ARDS) 

5 
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Novel COVID-

19 

Chestxray 

Repository 

[99,100] 

[100] https://www.kaggle.com/ 

datasets/subhankarsen/ 

novel-covid19-

chestxrayrepository 

(accessed on 14 March 2024) 

3975 COVID-19, pneumonia 

and normal 

3 

COVID-19 chest 

X-ray [101] 

[102] https://www.kaggle.com/ 

datasets/ahmedtronic/ 

covid-19-chest-x-ray 

(accessed on 3 April 2024) 

930 COVID-19, pneumonia 

and normal 

3 

Sait et al.’s 

curated 

CXR dataset 

[103] 

[104–106] https: 

//data.mendeley.com/ 

datasets/9xkhgts2s6/4 

(accessed on 4 April 2024) 

9208 COVID-19, normal, viral 

pneumonia and bacterial 

pneumonia. 

4 

Kumar’s 

COVID-19- 

Pneumonia-

Normal 

CXR Images 

dataset 

[107] 

[108–111] https: 

//data.mendeley.com/ 

datasets/dvntn9yhd2/1 

(accessed on 4 April 2024) 

5228 COVID-19, pneumonia 

and normal 

3 

Asraf and 

Islam’s 

COVID-19, 

Pneumonia and 

Normal Chest X-

ray 

PA Dataset [112] 

[113] https://data.mendeley. 

com/datasets/jctsfj2sfn/1 

(accessed on 3 April 2024) 

4575 COVID-19, pneumonia 

and normal 

3 

COVID-19 

Radiography 

Database [114] 

[115],95] 

[116],[119] 

https://www.kaggle.com/ 

datasets/tawsifurrahman/ 

covid19-radiographydatabase 

(accessed on 14 

March 2024) 

21,165 COVID-19, normal, lung 

opacity (non-COVID lung 

infection) and viral 

pneumonia 

4 

 

 

 
 

 

No of frequency of research articles review through 

COVID pneumonia and Non-pneumonia detections 

There is close attention paid to the implementation of 

transfer learning, which can be confirmed by the use of 

the following sources: [12]. Using Transfer learning, 

pre-trained models on large data sets are not utilized to 

train the model on the actual data of pneumonia 

detection (see Fig.5). This way plays off the amount of 

knowledge acquired during other tasks, increasing the 

efficacy of the model. 

Table 2: Comparison between binary and multiclass 

identified pneumonia causes  

Binary Classification Multiclass Classification 

“COVID-19 pneumonia” 

vs. “noncovid- 

19 interstitial 

pneumonia” [8] 

 

“COVID-19 infected 

pneumonia” vs. 

“community 

acquired no COVID-19 

infected pneumonia” vs. 

“normal” [100] 

“COVID” vs. “non-

COVID” [100] 

“COVID” vs. “no 

findings” vs. “pneumonia” 

[80] 

“COVID” vs. “normal” “COVID” vs. “normal” vs. 
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[79] 

 

“bacterial” vs. “viral” 

[71,81] 

“COVID” vs. “no 

findings” [80] 

 

“COVID-19” vs. “normal” 

vs. “viral pneumonia” 

[91] 

“pneumonia” vs. 

“normal” [83] 

“COVID” vs. “normal” vs. 

“pneumonia” [78] 

“bacterial” vs. “viral” 

[184] 

“COVID-19” vs. 

“pneumonia” vs. 

“pneumothorax” 

vs. “tuberculosis” 

vs. “normal” 

 

 

More than these major methods, other research, 

including the sources [1], explore the potential hybrid 

models. Hybrid models are combinations of other 

different models to generate increased categorization 

results. It is important to mention that these constituent 

models work together in decision making by feeding its 

results in each other, hence a synergistic effect. 

Moreover, according to the sources, its method [120-

124].This combination approach exploits the variation 

between the various models, making the predictions 

more solid and reliable. He or she will learn the 

versatility of pneumonia-detecting strategies that 

establish the popularity of the individually designed 

CNNs and the effectiveness of transfer learning, as well 

as the potential of the hybrid and ensemble settings in 

enhancing diagnostic precision. The rate of the modes 

of pneumonia identification in the chest X-ray (CXR) 

images is also represented in figure 9. Custom designed 

convolutional neural networks (CNNs) is the most often 

method with a rate of 52, showing high versatility and 

effectiveness of the method in its abilities to extract 

minor details in CXR images. Transfer learning comes 

right behind with a frequency of 39, and it implies that 

it would be popular to use it to adapt pre-trained models 

in pneumonia diagnosis. Results that involved models 

with multiple synergistic combinations show that hybrid 

models have been used 25 times, indicating an 

increased interest in such combinations in literature 

[128-130]. The ensemble method is applied 12 times 

and this shows that it contributes towards a good 

forecast because they make use of individual constituent 

models with a voting mechanism. Moreover, there 

exists a variable that is termed as the others consisting 

of a frequency of five that contains low frequency or 

other procedures, which means that the field is 

venturing new methods. This numerical research reveals 

the present tendencies and research directions in the 

detection methods of pneumonia. 

V. CONCLUSION & CHALLENGES FOR FUTURE 

STUDY 

Convolutional Neural Network (CNN) models have 

proved accurate and efficient in the diagnosis of 

pneumonia using chest X-ray and CT scans with high 

accuracy, typically better than human radiologists and 

can provide quick and automatic information to assist 

clinical decision-making. Newer developments are an 

ensemble learning, feature fusing as well as new 

activation functions, which additional enhance 

accuracy, resilience and explain ability. Nonetheless, 

there are still great obstacles that future researches may 

face. Applicability to different patient groups and 

hospital organizations is of primary concern since 

models that have performed well on in-house data are 

lower accuracy levels when applied to out-of-house data 

because of differences in disease incidence or imaging 

protocols. The lack of labelled data, class imbalance, 

imaging noise, and over-fitting are also responsible in 

obstructing the reliability of the model in paediatric and 

low-resource contexts. Transparency and 

interpretability are a key success factor to combat 

clinical adoption, which is why explainable AI, like 

Integrated Gradients, is used. The future lies in the 

further expansion of the datasets, enhancement of the 

models generalization, reducing the imbalance problem 

of provided data, making it sensible to interpret the 

models and incorporating them into the clinical reality 

of workflow and continuously validating and improving 

them. Addressing these obstacles will become critical to 

uncover the full potential of CNN-based pneumonia 

detection in the global healthcare sector. 
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