

Role of Microbial Consortia in Enhanced Bioremediation of Organic Pollutants and Heavy Metals

¹Srilatha S, ²Kezia Earlin Praisy.B, ^{*3}Bharathi B, ⁴Deepa C.Philip

^{1,2} IIM Sc Medical lab technology, MMM College of health sciences

^{*3}Associate Professor, Microbiology, MMM College of health sciences

⁴Principal, MMM College of health sciences

Abstract: Microbial bioremediation is a sustainable method to reduce environmental pollution from organic contaminants and heavy metals using microorganisms like bacteria, archaea, and fungi. While single strains have limited efficiency, engineered microbial consortia—developed via top-down or bottom-up approaches—offer enhanced degradation rates, stress resilience, and substrate range. These consortia, through metabolic cooperation and cross-feeding, can effectively break down pollutants such as PAHs, atrazine, 2,4-D, Cr(VI), Cd, and lindane. For example, consortia of *Mycobacterium*, *Novosphingobium*, *Ochrobactrum*, and *Bacillus* tripled pyrene degradation compared to individual strains. Biofilm formation aids in heavy metal binding, while co-cultures like *E. coli* and *P. putida* can target both organic and inorganic pollutants. The approach shows promise, and future research should focus on improving scalability, cost-efficiency, and understanding of microbial interactions.

Keywords: Microbial consortia, bioremediation, heavy metals, polycyclic aromatic hydrocarbons (PAHs), metabolic cooperation.

1. INTRODUCTION

Microorganisms are present everywhere, including in the air, soil, water, and within both animals and plants [Whitman *et al.*, 1998]. They are essential in maintaining global biogeochemical cycles and significantly influence human survival, health, and advancement. Numerous microbial strains capable of breaking down organic pollutants and altering or neutralizing heavy metals have been successfully isolated in laboratories [Kanaly & Harayama, 2000]. The remarkable nutritional adaptability of microbes makes them ideal candidates for pollutant degradation. This process, known as bioremediation, relies on the ability of certain microbes to convert, modify, and

utilize harmful substances to gain energy and support biomass production [Tang *et al.*, 2007]. Bioremediators refer to biological agents—primarily bacteria, archaea, and fungi—that are employed to remediate contaminated environments [Strong & Burgess, 2008]. Microorganisms play a critical role in eliminating pollutants from soil, water, and sediments, offering distinct advantages over conventional remediation techniques. They help restore the natural state of the environment and prevent further contamination [Demnerová *et al.*, 2005]. The efficiency of bioremediation can be significantly enhanced by optimizing various environmental factors such as pH, temperature, moisture levels, oxygen concentration, and nutrient availability [Kebede *et al.*, 2021]. These microorganisms can either be native to the contaminated area or introduced from other environments. Through their metabolic processes, they are capable of transforming hazardous compounds into less toxic forms. Often, the degradation of contaminants is not accomplished by a single species but is instead a collective effort involving multiple microbial organisms [Ahmed & Hoque, 2018].

Reports suggest that approximately 1000 new chemical substances are created each year, and over 450 million kilograms of toxins are annually discharged into the atmosphere and aquatic systems according to data from the Third World Network [Singh & Tiwari, 2014]. Among industrial contributors, the pulp and paper sector ranks as the sixth largest environmental polluter [Hossain & Ismail, 2015]. Heavy metal contamination poses a particularly severe risk to both public and ecological health due to its toxic nature, resistance to degradation,

and potential to accumulate within living organisms [Guo *et al.*, 2010].

Polyaromatic hydrocarbons (PAHs) are particularly hazardous due to their mutagenic and carcinogenic characteristics [Balaji *et al.*, 2014]. The widespread presence of such contaminants disrupts ecological balance and presents an urgent global concern [Kour *et al.*, 2021]. Microbial biotechnology has emerged as a powerful and versatile discipline offering numerous solutions to environmental challenges. Utilizing microbes for bioremediation is seen as a cost-effective, eco-friendly, and highly stable approach. It is generally well-accepted by the public and minimally disruptive to natural ecosystems [Singh *et al.*, 2020]. In contrast to physicochemical methods, which can further harm the environment and generate secondary

pollution, bioremediation provides a more sustainable solution. It is applicable to the decontamination of a variety of polluted media, including water bodies, soil, sludge, and various waste streams [Boopathy, 2000; Kaur *et al.*, 2021].

2. ROLE OF MICROBIAL CONSORTIA IN ENHANCED BIOREMEDIATION

2.1 Engineering Microbial Consortia to Enhance Bioremediation

Recent advancements have led to the strategic design of microbial consortia to investigate their potential in degrading organic pollutants and eliminating heavy metals. These engineered microbial communities have demonstrated remarkable efficiency in cleaning up polluted sites, as summarized in Table 1.

Pollutants	Microorganism	Bioremediation Efficiency	References
Pyrene	<i>Mycobacterium</i> spp. PO1 and PO2, <i>Novosphingobium pentaromaticivorans</i> PY1, <i>Ochrobactrum</i> sp. PW1, <i>Bacillus</i> sp. FW1	Achieved a degradation rate three times higher than any single strain	[Singh <i>et al.</i> , 2000]
Atrazine	<i>Arthrobacter</i> sp. DNS10, <i>Bacillus subtilis</i> DNS4, <i>Variovorax</i> sp. DNS12, <i>Arthrobacter</i> sp. DNS9	100% atrazine removal at 100 mg/L initial concentration; faster than individual strains	[Balaji <i>et al.</i> , 2014]
PAHs	<i>Rhodococcus</i> sp., <i>Acinetobacter</i> sp., <i>Pseudomonas</i> sp.	100% degradation of fluorene (Fl) and phenanthrene (Phe) in liquid medium within four weeks	[Boopathy R., 2001]
Cr(VI) and Lindane	<i>Streptomyces</i> sp. A5, A11, M7, MC1	86% Cr(VI) removal at 50 mg/kg soil; 46% lindane removal at 25 mg/kg soil	[Ahmed, A. A., & Hoque, H. 2018]
Cd and 2,4-D	<i>Bacillus</i> sp. strain H9, <i>Ralstonia eutropha</i> JMP134	42% phenanthrene removal at 24 mg/L; 100% 2,4-D removal at 500 mg/L	[Kebede, A., <i>et al.</i> (2021)]

2.2 Bioremediation of Organic Pollutants

Organic contaminants, particularly high molecular weight polycyclic aromatic hydrocarbons (PAHs), are challenging to degrade using a single microbial strain [Faust & Raes, 2012; Li *et al.*, 2011]. A synthetic microbial consortium assembled through bottom-up engineering has proven more effective. For instance, a five-member bacterial consortium significantly

enhanced the degradation of pyrene, achieving rates three times higher than any individual strain [Wanapaisan *et al.*, 2018]. In this system, *Mycobacterium* initiated pyrene breakdown, while *Novosphingobium pentaromaticivorans* PY1, *Bacillus* sp. FW1, and *Ochrobactrum* sp. PW1 further metabolized the breakdown products. Additionally, *Bacillus* sp. FW1 produced a biosurfactant that

increased pyrene solubility, facilitating its degradation [Wanapaisan *et al.*, 2018].

Top-down engineering approaches also yielded promising results. In another study, a synthetic microbial consortium composed of three bacterial species achieved complete degradation of fluorene (Fl) and phenanthrene (Phe) in four weeks [Yu *et al.*, 2005]. Although top-down strategies are widely used, they generally involve enriching native consortia from environmental samples—a process that is time-intensive and often yields site-specific consortia with limited adaptability. Thus, the future of bioremediation lies in advancing bottom-up engineered consortia with defined microbial compositions and predictable performance [Wanapaisan *et al.*, 2018].

2.3 Bioremediation of Heavy Metals

Engineered microbial consortia are also highly effective in removing heavy metals. In one study, microbial consortia improved the remediation of acid mine drainage by forming biofilms with heterotrophic acidophiles, which in turn slowed the dissolution of metal ions [Brune & Bayer, 2012]. Biofilms play a central role in metal removal by shielding the microbial cells from harsh conditions and facilitating the binding of heavy metals through extracellular polymeric substances such as polysaccharides [Mosharaf *et al.*, 2018]. Despite their promise, the intricate interactions within biofilm-associated consortia remain poorly understood and warrant further investigation.

Particularly for chromium remediation, sulfate-reducing microbial consortia demonstrated efficacy in converting toxic hexavalent chromium (Cr(VI)) into its less harmful trivalent form (Cr(III)) [Smith, 2001]. These interactions likely promote the growth of Cr(VI)-reducing strains, enhancing overall remediation efficiency [Dhal *et al.*, 2013]. However, to expand the practical use of these systems, cost considerations and scalability must be addressed in future research.

2.4 Addressing Complex Pollution

Recent studies show that microbial consortia gain resilience in complex polluted environments through metabolic cross-feeding and cooperation [Li *et al.*, 2011]. For instance, *Escherichia coli* ATCC 33456 and *Pseudomonas putida* DMP-1 degraded phenol and reduced Cr(VI) simultaneously [Shen & Wang, 1995], while a consortium of *Streptomyces* spp. and *Amycolatopsis tucumanensis* removed 69.5% of Cr(VI) and 54.7% of lindane [Polti *et al.*, 2014]. These findings support the superior performance of engineered consortia in degrading diverse pollutants [Li *et al.*, 2011; Shen & Wang, 1995], including pyrene via cooperation among *Mycobacterium*, *Novosphingobium*, *Ochrobactrum*, and *Bacillus* [Wanapaisan *et al.*, 2018].

Similarly, a combination of *Arthrobacter*, *Bacillus subtilis*, and *Variovorax* strains achieved complete atrazine removal at 100 mg/L [Zhang *et al.*, 2012]. Another consortium degraded 100% of both fluorene and phenanthrene in a sediment-free medium within a month [Yu *et al.*, 2005]. For heavy metal pollution, consortia capable of forming biofilms successfully removed 86% of Cr(VI) and 46% of lindane from contaminated soils, illustrating their resilience to toxic stress and environmental variability [Smith, 2001; Dhal *et al.*, 2013; Polti *et al.*, 2014]. Furthermore, microbial partnerships such as those between *E. coli* and *P. putida* enabled concurrent detoxification of phenol and Cr(VI) [Shen & Wang, 1995], while another group involving *Streptomyces* and *Amycolatopsis* strains achieved substantial dual removal of Cr(VI) and lindane [Polti *et al.*, 2014].

3. FUTURE DIRECTIONS AND INNOVATIONS

- Future work will focus on improving engineered microbial consortia.
- CRISPR and other genome editing tools will enhance metabolic traits.
- Bottom-up design will create more predictable and adaptable consortia.
- Biofilm engineering will help microbes survive harsh conditions.
- Biosensors and IoT devices will allow real-time monitoring in the field.

- Efforts will be made to scale up lab findings to real-world applications.
- Cost-effective and site-specific solutions will be prioritized.
- AI tools and microbial databases will guide better consortium design.
- Strong regulations and public awareness will ensure safe use.

4. CONCLUSION

In conclusion, both top-down and bottom-up strategies in engineering microbial consortia significantly enhance degradation efficiency, environmental stress resistance, and substrate range. These qualities establish microbial consortia as a potent and versatile solution for remediating diverse and complex environmental pollutants.

REFERENCE

[1] Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. *Proceedings of the National Academy of Sciences of the United States of America*, 95(12), 6578–6583.

[2] Kanaly, R. A., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. *Journal of Bacteriology*, 182(8), 2059–2067.

[3] Tang, C. Y., Criddle, C. S., & Leckie, J. O. (2007). Effect of flux and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. *Environmental Science & Technology*, 41(6), 2008–2014.

[4] Strong, P. J., & Burgess, J. E. (2008). Treatment methods for wine-related and distillery wastewaters: A review. *Bioremediation Journal*, 12(2), 70–87.

[5] Demnerová, K., Macková, M., Špeváčková, V., Beranová, K., & Kochánková, L. (2005). Two approaches to biological decontamination of groundwater and soil polluted by aromatics: Characterization of microbial populations. *International Microbiology*, 8(3), 205–211.

[6] Kebede, A., et al. (2021). Bioremediation of heavy metals using microbial consortia: A review.

[7] Ahmed, A. A., & Hoque, H. (2018). Microbial consortia for bioremediation of agricultural pollutants. *Indian Farming*, July, 27.

[8] Singh, S., & Tiwari, G. (2014). Application of bioremediation on solid waste management: A review. *Journal of Bioremediation & Biodegradation*, 5, 1942.

[9] Hossain, K., & Ismail, N. (2015). Bioremediation and detoxification of pulp and paper mill effluent: A review. *Research Journal of Environmental Toxicology*, 9(3), 113–124.

[10] Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., et al. (2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium *Bacillus* sp. L14. *Bioresource Technology*, 101(22), 8599–8605.

[11] Balaji, V., Arulazhagan, P., & Ebenezer, P. (2014). Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum-contaminated soil and oil seeds. *Journal of Environmental Biology*, 35(3), 521–529.

[12] Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., et al. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. *Environmental Science and Pollution Research*, 28, 24917–24939.

[13] Singh, C., Tiwari, S., Singh, J. S., & Yadav, A. N. (2020). *Microbes in Agriculture and Environmental Development*. CRC Press.

[14] Boopathy, R. (2000). Factors limiting bioremediation technologies. *Bioresource Technology*, 74(1), 63–67.

[15] Kaur, T., Devi, R., Kour, D., Yadav, A., Yadav, A. N., Dikilitaş, M., et al. (2021). Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. *Biologia*, 76, 2687–2709.

[16] Faust, K., & Raes, J. (2012). Microbial interactions: From networks to models. *Nature Reviews Microbiology*, 10(8), 538–550.

[17] Wanapaisan, P., Laothamteep, N., Vejarano, F., Chakraborty, J., Shintani, M., Muangchinda, C., et al. (2018). Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. *Journal of Hazardous Materials*, 342, 561–570.

[18] Zhang, Y., Cao, B., Jiang, Z., Dong, X., Hu, M., & Wang, Z. (2012). Metabolic ability and individual characteristics of an atrazine-degrading consortium DNC5. *Journal of Hazardous Materials*, 237–238, 376–381.

[19] Yu, S. H., Ke, L., Wong, Y. S., & Tam, N. F. Y. (2005). Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. *Environment International*, 31(2), 149–154.

[20] Polti, M. A., Aparicio, J. D., Benimeli, C. S., & Amoroso, M. J. (2014). Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. *International Biodeterioration & Biodegradation*, 88, 48–55.

[21] Roane, T. M., Josephson, K. L., & Pepper, I. L. (2001). Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. *Applied and Environmental Microbiology*, 67(7), 3208–3215.

[22] Li, H. J., Yang, C. Y., Tan, Y., Liu, G. H., & Zhang, T. L. (2011). Using population dynamics analysis by DGGE to design the bacterial consortium isolated from mangrove sediments for biodegradation of PAHs. *International Journal Biodeterioration & Biodegradation*, 65(2), 269–275.

[23] Brune, K. D., & Bayer, T. S. (2012). Engineering microbial consortia to enhance biomining and bioremediation. *Frontiers in Microbiology*, 3, 1–6.

[24] Mosharaf, M. K., Tanvir, M. Z. H., Haque, M. M., Haque, M. A., Khan, M. A. A., Molla, A. H., *et al.* (2018). Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers. *Frontiers in Microbiology*, 9, 1–17.

[25] Smith, W. L. (2001). Hexavalent chromium reduction and precipitation by sulphate-reducing bacterial biofilms. *Environmental Geochemistry and Health*, 23(4), 297–300.

[26] Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. *Journal of Hazardous Materials*, 250–251, 272–291.

[27] Shen, H., & Wang, Y. T. (1995). Simultaneous chromium reduction and phenol degradation in a coculture of *Escherichia coli* ATCC 33456 and *Pseudomonas putida* DMP-1. *Applied and Environmental Microbiology*, 61(8), 2754–2758.