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Abstract—The Resource Recovery Optimization and 

Crisis Response Using Machine Learning and Big Data 

Tools project leverages advanced machine learning 

algorithms such as en-semble learning algorithms and 

big data analytics to enhance disaster and pandemic 

management. It focuses on improving disaster 

prediction. In pandemic scenarios, machine learning is 

utilized for predictive modeling, outbreak monitoring, 

and disease diagnosis. The project trains models using 

historical and real-time data to improve prediction 

accuracy and resource allocation efficiency. In addition, 

it addresses key challenges, including data reliability, 

infrastructure costs, and real-time processing 

constraints. By exploring synergies between machine 

learning and big data analytics, this initiative seeks to 

develop a centralized platform that supports both 

government and social efforts in effective crisis 

management and resource recovery. 

 

Index Terms—Support Vector Machine, Random Forest 

Algorithm, Voting Classifier algorithm 
 

I. INTRODUCTION 
 

Landslides pose a significant threat to life, 

infrastructure, and the environment, particularly in 

regions prone to heavy rainfall, seismic activity, and 

unstable terrain. Traditional landslide prediction 

methods often rely on limited historical data and 

localized monitoring, making them less effective in 

providing timely and accurate risk assessments. With 

advances in big data analytics and machine learning, 

there is an op-portunity to enhance landslide 

prediction through real-time data processing and 

predictive modeling. This paper presents a novel 

approach that integrates multiple data sources, 

including sensor networks, satellite imagery, historical 

records, and real-time weather updates, to develop a 

comprehensive landslide prediction system. Using 

predictive analytics and machine learning algorithms, 

the proposed system analyzes key envi-ronmental 

factors such as rainfall patterns, soil moisture levels, 

slope of the terrain, and seismic activity to 

dynamically assess landslide risks. The ability to 

process vast data sets in real time enables early 

detection and timely alerts, allowing authorities to 

implement proactive measures for disaster 

preparedness and response. This approach not only 

improves the accuracy of landslide prediction but also 

enhances decision-making by facilitating efficient 

resource allocation and risk mitigation strategies. 
 

II. LITERATURE SURVEY 
 

The integration of machine learning and big data 

analytics in disaster and crisis response has emerged 

as a vital research area, driven by the necessity for 

real-time decision-making, predictive modeling, and 

optimized resource management. With the increasing 

frequency and intensity of natural dis-asters and global 

crises such as pandemics, the reliance on technology 

to provide scalable, accurate, and timely insights has 

become more critical than ever. Existing studies 

highlight various dimensions—from data acquisition 

and model training to infrastructure scalability and 

ethical concerns—providing a broad yet intricate view 

of how these technologies intersect to support crisis 

management. 

[4] emphasized the utility of big data in disaster 

risk re-duction, leveraging real-time monitoring from 

IoT devices and insights from social media streams. 

These sources provide a continuous influx of data that, 

when processed effectively, can lead to timely alerts 

and reduced disaster impacts. Similarly, [2], [3] 

provided a comprehensive framework for incorpo-

rating big data throughout the disaster lifecycle—

including prediction, preparedness, response, and 

recovery—enabling governments and organizations to 

act with foresight rather than hindsight. offered a 

classification of data types such as satellite images, 



© July 2025| IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

 

IJIRT 182648            INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2835 

call detail records (CDRs), and crowd-sourced reports, 

and matched them with processing frameworks like 

Hadoop and Apache Spark. [5] detailed methodologies 

to ensure data cleaning, quality assurance, and real-

time responsiveness, which are essential when dealing 

with life-and-death situations. 

[5] Machine learning models, such as Random 

Forest, Support Vector Machines (SVM), and deep 

learning architectures like Convolutional Neural 

Networks (CNNs), are widely adopted for disaster 

prediction and response. [6] used ConvLSTM models 

to enhance flood prediction accuracy, showing the 

importance of time series data in sequential modeling. 

[7] in-troduced a federated learning framework to 

decentralize model training and protect sensitive data, 

particularly beneficial in collaborative, cross-border 

crisis scenarios. 

[6] Voting classifiers and ensemble methods have 

been exten-sively used to increase predictive 

performance by leveraging the strengths of multiple 

models. [8] documented their supe-riority in 

generalization and reliability, making them a prime 

candidate for resource-critical predictions. 

 
Fig. 1.  Research themes in the survey 

 

IoT devices are essential for real-time environmental 

data collection. Sensors measuring rainfall, 

temperature, soil mois-ture, and vibrations feed 

predictive systems with critical inputs. 

[9] emphasized that combining official data with 

community-sourced sensor inputs improves accuracy 

and local relevance. 

[10] examined landslide early warning systems 

powered by IoT, highlighting improved detection 

capabilities and reduced human risk. 

Despite their potential, big data systems face 

significant hurdles in disaster applications. Data 

heterogeneity, noise, missing values, and privacy 

concerns complicate real-time analytics. [11] 

described these issues in urban data contexts, while 

[12] discussed the statistical techniques required to 

pre-process unreliable data for valid outputs. 

Several successful implementations exist that 

demonstrate the practical viability of ML and big data 

in crisis contexts. 

[13] described a real-time cyclone tracking system 

that uses distributed sensors and ML models for early 

warning. [14] predicted infrastructure damage due to 

seismic activity using geospatial features and building 

metadata. [15] focused on wildfire evacuations, 

showing how real-time GPS and mobile sensor data 

can inform safe routing strategies. 

Big data frameworks such as Hadoop, Spark, and 

Apache Storm are foundational to handling high-

velocity, high-volume data streams in crisis scenarios. 

[16] praised Spark’s in-memory architecture for its 

real-time processing capabilities. 

[17] outlined the role of cloud-based platforms in 

reducing infrastructure costs while maintaining 

scalability and fault tolerance. 

Social media offers real-time, human-centric insights 

during disasters. [18] applied NLP to Twitter feeds to 

identify incident reports, affected zones, and public 

sentiment. [19] analyzed ethical and legal challenges 

related to misinformation and data usage from social 

media during crises. 

The increasing integration of big data raises ethical 

ques-tions. [20] warned of the potential for 

surveillance and privacy breaches in data-rich disaster 

systems. [21] advocated for transparency and fairness 

in AI-driven decision-making to avoid biased resource 

allocation. 

Disaster risk modeling often involves probabilistic 

methods. 

[22] used Bayesian networks to simulate risk 

propagation in landslide-prone areas. [23] integrated 

CNNs with meteorolog-ical datasets to anticipate 

multiple disaster types. [24] showed that integrating 

satellite imagery with ML improves spatial prediction 

accuracy. 

Efficient resource deployment can drastically reduce 

the impact of crises. [25] developed a deep learning 

model to predict regional resource demands during 

pandemics. [26] formulated a data-driven logistics 

optimization strategy. [27] proposed real-time 

resource distribution for smart cities based on IoT 

signals. 

Model evaluation is critical for performance 

trustworthi-ness. Metrics such as precision, recall, F1-

score, and ROC-AUC are used extensively. [28] 

emphasized robust validation techniques, and [29] 
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reviewed evaluation metric selection, especially under 

class imbalance. 

Research is expanding toward interpretable and 

collabora-tive AI. [7] proposed federated learning to 

preserve privacy in joint model training. [30] laid 

groundwork for explainable AI in disaster contexts. 

[31] suggested blockchain-based secure logging to 

ensure data integrity in sensor networks. 
 

III. PROPOSED SYSTEM 
 

The proposed system for landslide prediction using big 

data integrates multiple data sources, including sensor 

data, satellite imagery, historical records, and real-

time weather information, to create a comprehensive 

predictive model. By leveraging advanced machine 

learning algorithms and predictive ana-lytics, the 

system analyzes various environmental factors, such 

as rainfall, soil moisture, terrain slope, and seismic 

activity, to assess landslide risk in real-time. The 

system’s ability to process vast amounts of data 

enables early detection and provides timely alerts, 

facilitating proactive measures for disaster 

preparedness and response. This approach not only 

im-proves the accuracy of landslide prediction but also 

enhances decision-making, helping authorities 

allocate resources and issue warnings more effectively 

to mitigate potential damages. 

 
Fig. 2.  Architecture diagram 

A. Architecture 

The architecture diagram depicts a comprehensive 

frame-work for landslide prediction using big data 

tools. The process starts with data injection from 

existing sources, including sensor data, geological 

records, and environmental datasets. This is followed 

by a data processing phase involving cleaning, 

assembling, and transforming data into a format 

suitable for analysis. A voting classifier is then applied 

to aggregate predic-tions from multiple models and 

identify affected areas prone to landslides. Historical 

data is utilized during the model training phase to 

improve the predictive accuracy. After training, the 

model is deployed to operational environments, where 

real-time prediction results are visualized and 

presented in reports for timely decision-making. The 

architecture leverages big data tools to handle large-

scale, complex datasets, enhancing the reliability and 

efficiency of landslide prediction systems. 

 

1) Data Injection: This stage integrates raw datasets 

from multiple sources, including historical disaster 

records, sensor data, and reports from authorities and 

volunteers. The collected data serves as the foundation 

for training machine learning models, ensuring 

comprehensive coverage of disaster-related variables. 

Proper data injection facilitates the seamless flow of 

information into subsequent processing stages, 

improving model performance and decision-making 

capabilities. 

 

2) Data Processing: Data preprocessing is a 

crucial step that enhances the quality and reliability of 

the dataset. This phase involves: 

Cleaning: Removing inaccuracies, duplicates, and 

irrelevant entries to ensure consistency. 

Assembling: Merging multiple datasets into a unified 

format for streamlined analysis. 

Transformation: Converting data into a machine-

readable format compatible with machine learning 

models. Ensuring a well-processed dataset leads to 

more accurate predictions and mitigates errors caused 

by noisy data. 

 

3) Voting Classifier for Prediction: A Voting 

Classifier is an ensemble technique that aggregates 

predictions from multiple models to improve 

performance. The models used include Logistic 
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Regression, Random Forest, Support Vector Machines 

(SVM), and K-Nearest Neighbors (KNN). 

Hard Voting: Predicts based on the majority class 

selected by individual classifiers. 

 

4) Model Training: The models undergo training 

using his-torical disaster data, including past events, 

resource allocation patterns, and recovery timelines. 

Hyperparameter tuning is conducted using 

GridSearchCV to optimize parameters for each 

classifier: 

Logistic Regression: Evaluates penalty (L1, L2) and 

regu-larization strength (C values). 

KNN: Tunes the number of neighbors (k values). 

SVM: Adjusts hyperparameters such as kernel type 

and regularization. 

Random Forest: Optimizes the number of estimators 

for im-proved performance. This ensures that the best 

configurations are selected, maximizing predictive 

accuracy. 

 

5) Model Deployment: Once trained and fine-

tuned, the model is deployed into a production 

environment to facilitate real-time predictions. This 

deployment allows stakeholders to obtain timely 

insights into potential disaster-affected regions, 

assisting in proactive response and resource allocation. 

 

6) Evaluation and Performance Metrics: The 

trained model is evaluated using metrics such as 

accuracy, precision, recall, and F1-score. 

Additionally, a confusion matrix is plotted to analyze 

classification performance visually. The system’s 

effectiveness is validated through rigorous testing on 

unseen data, ensuring generalization capability for 

real-world disaster scenarios. 

This architecture emphasizes scalability, accuracy, 

and ac-tionable intelligence in resource allocation and 

disaster mit-igation. By leveraging machine learning, 

ensemble learning, and data-driven decision-making, 

the system provides robust predictions to aid disaster 

response teams and government agencies in mitigating 

the impact of disasters effectively. 

 

 

IV. COMPARATIVE STUDY 

 

The comparative analysis of various classifiers—

Logistic Regression, K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), Random Forest, and 

a Voting Classi-fier—highlights their performance 

differences based on pre-cision, recall, F1-score, and 

accuracy. Logistic Regression achieved the highest 

accuracy (0.9462) and excelled in pre-cision and recall 

for the ’yes’ class, showcasing its ability to distinguish 

between classes effectively. Random Forest followed 

closely, with strong recall for the ’no’ class (0.9692) 

and robust overall performance. KNN and SVM, while 

con-sistent, demonstrated slightly lower accuracy and 

F1-scores compared to the top performers. The Voting 

Classifier, an ensemble model, provided balanced 

results with an accuracy of 0.93, leveraging the 

strengths of its individual components. This makes the 

Voting Classifier a robust and generalizable option, 

especially for datasets with diverse patterns, even if it 

slightly lags behind Logistic Regression and Random 

Forest in accuracy. 

The comparative analysis of various classifiers—

Logistic Regression, K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), Random Forest, and 

a Voting Classi-fier—provides a comprehensive 

insight into their strengths and limitations across 

precision, recall, F1-score, and accuracy metrics. 

Logistic Regression emerged as the top-performing 

model with the highest accuracy of 94.62 percent, 

demonstrating exceptional precision (0.9833) and 

recall (0.9077) for the ’yes’ class. This highlights its 

strength in effectively distin-guishing between classes 

and handling imbalanced datasets. It is particularly 

well-suited for applications requiring high 

interpretability and consistent performance across 

both classes. 

Random Forest, with an accuracy of 93.85 percent, 

closely followed Logistic Regression. It demonstrated 

excellent recall for the ’no’ class (0.9692) and robust 

precision, making it a reliable choice for scenarios 

requiring high recall to minimize false negatives. Its 

ensemble nature and ability to handle complex, non-

linear relationships contributed to its strong 

performance. 
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Classifier Precision Recall  F1-  Accuracy Remarks 

 (No/Yes) (No/Yes) Score      

     (No/Yes)     

         

Logistic 0.9143 / 0.9846 / 0.9481 / 94.62% Achieved 

Regres- 0.9833  0.9077  0.9440   the   

sion        highest  

        accuracy; 

        excellent 

        perfor-  

        mance in 

        precision 

        and recall. 

         

K- 0.9104 / 0.9385 / 0.9242 / 92.31% Balanced 

Nearest 0.9365  0.9077  0.9219   perfor-  

Neigh-        mance but 

bors        slightly  

(KNN)        lower  

        accuracy 

        and recall 

        for  the 

        ’yes’   

        class.  

         

Support 0.8824 / 0.9231 / 0.9023 / 90.00% Consistent 

Vector 0.9194  0.8769  0.8976   but under- 

Ma-        performed 

chines        in recall 

(SVM)        for  the 

        ’yes’   

        class,  

        lowering 

        F1-scores. 

          

Random 0.9130 / 0.9692 / 0.9403 / 93.85% Strong  

Forest 0.9672  0.9077  0.9365   recall for 

        ’no’ class; 

        near-   

        optimal  

        F1-scores, 

        highly  

        reliable. 

         

Voting 0.8900 / 0.9800 / 0.9300 / 93.08% Balanced 

Classi- 0.9800  0.8800  0.9300   precision 

fier        and   

        recall;  

        robust  

        general- 

        ization  

        across  

        datasets. 
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    TABLE I      

 COMPARISON OF CLASSIFIER PERFORMANCE    

 

K-Nearest Neighbors (KNN) and Support Vector 

Machines (SVM) showed consistent but 

comparatively lower perfor-mance. KNN achieved an 

accuracy of 92.31 percent, with a balanced F1-score 

(0.9242 for ’no’ and 0.9219 for ’yes’). However, its 

reliance on the parameter n neighbors and sen-sitivity 

to data scaling slightly affected its results. SVM, with 

an accuracy of 90.00 percent, performed well in 

precision (0.8824 for ’no’ and 0.9194 for ’yes’), but its 

recall for the ’yes’ class was slightly weaker (0.8769), 

leading to lower F1-scores. This reflects the SVM’s 

sensitivity to hyperparameters like the regularization 

constant and kernel choice. 

 

Finally, the Voting Classifier, an ensemble model 

combining the strengths of individual classifiers, 

achieved an accuracy of 93.08 percent. It maintained 

balanced precision (0.8900 for ’no’ and 0.9800 for 

’yes’) and recall (0.9800 for ’no’ and 0.8800 for ’yes’), 

resulting in an F1-score of 0.9300 for both classes. 

While its accuracy was slightly lower than Logistic 

Regression and Random Forest, the Voting Classifier 

excelled in generalization and adaptability across 

diverse datasets. By integrating the decision 

boundaries of multiple classifiers, it minimized 

overfitting and performed robustly under varying 

patterns. 

 
Fig. 3.  ML comparison diagram 

 

Overall, while Logistic Regression and Random 

Forest demonstrated higher accuracy, the Voting 

Classifier stood out as a robust and reliable choice for 

datasets with heterogeneous characteristics, striking a 

balance between precision and recall. Its ability to 

generalize well across multiple classes makes it a 

valuable tool in scenarios demanding consistent and 

reliable predictions. 

 

V. CONCLUSION 

 

The project highlights the power of Big Data analytics 

and machine learning in enhancing disaster 

preparedness and response. By multiple data sources 

and utilizing advanced analytical frameworks, the 

system efficiently processes real-time data to predict 

and allocate resources where they are needed most. 

This data-driven approach ensures optimized decision-

making, reducing inefficiencies in resource distribu-

tion while improving response times during crises. 

The use of scalable Big Data frameworks allows the 

system to handle large volumes of information, 

making it adaptable to different disaster scenarios. 

While the project significantly enhances coordination 

between volunteers and government authorities, future 

improvements could focus on expanding data sources, 

refining predictive models, and improving system 

scalability to further strengthen disaster management 

efforts. Overall, the project serves as a crucial step 

toward leveraging technology for effective resource 

recovery and crisis response. 
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