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Abstract- This research introduces an innovative 

architecture for real-time crop monitoring that combines 

edge artificial intelligence (AI) with wireless sensor 

networks (WSNs) to facilitate precision agriculture. The 

suggested system tackles the significant issues of latency, 

bandwidth constraints, and energy efficiency in 

agricultural monitoring by local data processing at edge 

nodes. Our design integrates distributed sensor networks 

with lightweight machine learning models implemented 

at the edge, facilitating real-time decision-making for 

crop health evaluation, irrigation control, and yield 

forecasting. Experimental findings indicate a 78% 

decrease in data transmission overhead, a 45% increase 

in response time, and a 67% improvement in energy 

efficiency relative to conventional cloud-based methods. 

The system attains 92.3% accuracy in crop health 

categorization and 89.7% precision in anomaly 

identification, rendering it appropriate for extensive 

agricultural implementation. 

Index Terms- Edge AI, Wireless Sensor Networks, 

Precision Agriculture, Crop Monitoring, IoT, Machine 

Learning 

I. INTRODUCTION 

The ever-increasing global population, the effects of 

climate change, and the requirement for 

environmentally responsible farming practices present 

modern agriculture with difficulties that have never 

been seen before. When it comes to farming, 

traditional methods frequently involve the use of 

generalist treatment procedures and periodic manual 

inspections. This results in inefficient utilization of 

resources and yields that are less than optimal. A 

game-changing solution for precision agriculture has 

developed in the form of the integration of technology 

related to the Internet of Things (IoT), wireless sensor 

networks (WSNs), and artificial intelligence (AI) [1]. 

Despite the fact that cloud-based agricultural 

monitoring systems have demonstrated promising 

results, they are plagued by a number of restrictions, 

such as excessive latency, bandwidth constraints, 

issues over data privacy, and a need on dependable 

internet connectivity [2]. In rural agricultural settings, 

where network infrastructure may be poor or 

unreliable, these issues are especially obvious and 

difficult to overcome.A paradigm shift that puts 

compute and data storage closer to the data source, 

edge computing addresses many of the restrictions that 

are associated with cloud-based systems [3]. Edge 

computing has evolved as a paradigm shift with this 

purpose. We are able to accomplish the creation of a 

solution for real-time crop monitoring that is resilient, 



© July 2025 | IJIRT | Volume 12 Issue 2 | ISSN: 2349-6002 

IJIRT 182766 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3218 
 

efficient, and scalable by merging edge artificial 

intelligence with wireless sensor networks. 

This paper contributes the following: 

1. A comprehensive edge AI framework for 

real-time crop monitoring using WSNs 

2. An optimized lightweight machine learning 

model suitable for edge deployment 

3. A novel data fusion algorithm that combines 

multiple sensor modalities 

4. Experimental validation demonstrating 

superior performance compared to traditional 

approaches 

5. A practical implementation guide for large-

scale agricultural deployment 

 

II. RELATED WORK 

A. Traditional Crop Monitoring Systems 

The first crop monitoring systems mostly used manual 

observation and soil testing every so often. Smith et al. 

[4] built one of the earliest automated monitoring 

systems that used simple sensors to measure how wet 

the soil was. But these systems weren't smart enough 

to make their own choices and needed help from 

people all the time. 

B. IoT-Based Agricultural Monitoring 

IoT technologies changed the way we monitor 

agriculture in a big way. Johnson and Lee [5] came up 

with a complete IoT framework for precision 

agriculture that included sensors for soil moisture, 

temperature, humidity, and pH, among other things. 

Their method made a big difference in agricultural 

productivity, but it had problems with high data 

transmission costs and long delays. 

C. Cloud-Based AI Solutions 

Recent advancements in cloud computing and 

machine learning have facilitated the creation of 

advanced agricultural monitoring systems. Zhang et 

al. [6] created a cloud-based AI platform that attained 

87% accuracy in detecting crop diseases through deep 

learning models. Nevertheless, their technology 

necessitated continuous internet access and 

encountered substantial delays in crucial decision-

making situations. 

D. Edge Computing in Agriculture 

The implementation of edge computing in agricultural 

settings is a relatively new phenomenon that is 

undergoing rapid development. For the purpose of 

livestock monitoring, Kumar and Singh [7] introduced 

an edge-based system that reduced the amount of data 

transfer by sixty percent. On the other hand, the 

majority of their effort was devoted to animal 

husbandry rather than crop monitoring. 

III. SYSTEM ARCHITECTURE 

A. Overall Framework Design 

There are four primary parts to the system design we 

suggest: (1) Distributed Sensor Network, (2) Edge 

Computing Nodes, (3) Local Gateway, and (4) Cloud 

Interface. The design of the architecture is meant to 

make the most of local processing while still allowing 

access to cloud services for advanced analytics and 

long-term data storage. 
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B. Sensor Network Design 

There are several sensor clusters spread out across the 

agricultural area that make up the sensor network. 

There are:  

1. Soil Sensors: These measure the amounts of 

moisture, pH, temperature, electrical conductivity, and 

nutrients in the soil.  

2. Environmental Sensors: They measure things like 

air temperature, humidity, atmospheric pressure, and 

wind speed.  

3. Light Sensors: light intensity, the UV index, and 

photosynthetically active radiation (PAR)  

4. Visual Sensors: RGB cameras for taking pictures 

of crops and multispectral sensors for studying plants 

 

C. Edge Computing Nodes 

Edge computing nodes are deliberately positioned 

across the area to reduce communication distances and 

guarantee dependable data collecting. Each edge node 

comprises:  

• Processing Unit: ARM Cortex-A72 quad-core 

processor with 4GB RAM  

• Storage: 64GB eMMC flash memory for local data 

storage  

• Communication Modules: LoRa, ZigBee, and WiFi 

for multi-protocol support 

 • Power Management: Solar panel with battery 

backup for sustainable operation 

 • AI Accelerator: Neural Processing Unit (NPU) for 

efficient machine learning inference 
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D. Communication Protocols 

The system uses a hierarchical way of communicating:  

 

1. Sensor-to-Edge: I2C, SPI, and UART for 

connecting sensors directly  

2. Edge-to-Gateway: LoRa for low-power, long-

range connectivity  

3. Gateway-to-Cloud: 4G/5G cellular or WiFi to 

connect to the cloud 

 

 

IV. EDGE AI ALGORITHM DESIGN 

A. Lightweight Machine Learning Model 

We created a bespoke lightweight neural network that 

works best when deployed at the edge. The structure 

of the model includes:  

1. Feature Extraction Layer: Handles data from 

several sensors  

2. Attention Mechanism: Only looks at the important 

features for making decisions  

3. The Prediction Layer shows the health of the crops 

and suggests what to do next. 
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B. Data Fusion Algorithm 

The data fusion algorithm combines information from 

multiple sensor modalities to improve prediction 

accuracy and reduce false alarms. The algorithm uses 

a weighted ensemble approach: 

Algorithm 1: Multi-Modal Data Fusion 

Input: Sensor readings S = {s_soil, s_air, s_light, 

s_visual} 

Output: Fused feature vector F 

 

1. Initialize weight matrix W = {w_soil, w_air, 

w_light, w_visual} 

2. For each sensor modality i: 

   a. Normalize sensor data: s_i' = normalize(s_i) 

   b. Extract features: f_i = feature_extractor_i(s_i') 

   c. Apply attention: a_i = attention_mechanism(f_i) 

3. Compute weighted fusion: F = Σ(w_i × a_i) 

4. Apply feature selection: F' = 

select_top_k_features(F, k=128) 

5. Return F' 

C. Anomaly Detection 

The system incorporates an anomaly detection module 

that identifies unusual patterns in sensor data that may 

indicate equipment malfunction or extreme 

environmental conditions: 

Algorithm 2: Real-time Anomaly Detection 

Input: Current sensor reading x_t, Historical data H 

Output: Anomaly score a_t 

 

1. Compute moving average: μ_t = 

moving_average(H, window=24) 

2. Compute standard deviation: σ_t = std_deviation(H, 

window=24) 

3. Calculate z-score: z_t = (x_t - μ_t) / σ_t 

4. Apply threshold: a_t = |z_t| > threshold ? 1 : 0 

5. Update historical data: H = H ∪ {x_t} 

6. Return a_t 

V. IMPLEMENTATION DETAILS 

A. Hardware Configuration 

The edge nodes are implemented using Raspberry Pi 

4B with the following specifications: 

• CPU: ARM Cortex-A72 quad-core 1.5GHz 

• RAM: 4GB LPDDR4-3200 

• Storage: 64GB MicroSD Card (Class 10) 

• Communication: WiFi 802.11ac, Bluetooth 

5.0, LoRa Module (SX1276) 

• Power: Solar panel (20W) with LiPo battery 

(10000mAh) 

• Sensors: DHT22 (temperature/humidity), 

DS18B20 (soil temperature), soil moisture 

sensor, pH sensor, light sensor (BH1750), 

camera module (Pi Camera V2) 

 

B. Software Stack 

The software implementation utilizes: 

• Operating System: Ubuntu 20.04 LTS 

(ARM64) 

• Programming Language: Python 3.8 

• ML Framework: TensorFlow Lite 2.8 

• Communication: MQTT for message 

passing 

• Database: SQLite for local data storage 

• Web Interface: Flask for local dashboard 

C. Model Optimization 

The neural network model is optimized for edge 

deployment using: 

1. Quantization: Convert from FP32 to INT8 

precision 

2. Pruning: Remove redundant connections 

(30% sparsity) 

3. Knowledge Distillation: Transfer 

knowledge from larger teacher model 

4. Layer Fusion: Combine consecutive 

operations to reduce memory access 

 

VI. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The system was evaluated on a 5-hectare experimental 

farm with the following configuration: 

• Crop Type: Tomato (Solanum 

lycopersicum) 

• Number of Edge Nodes: 12 

• Sensor Density: 1 sensor cluster per 0.4 

hectares 

• Evaluation Period: 6 months (March - 

August 2024) 

• Baseline Systems: Traditional cloud-based 

monitoring, manual inspection 

B. Performance Metrics 

The system performance was evaluated using the 

following metrics: 
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1. Classification Accuracy: Percentage of 

correct crop health classifications 

2. Precision and Recall: For each health 

category 

3. Response Time: Time from sensor reading 

to decision output 

4. Energy Efficiency: Power consumption per 

operation 

5. Data Transmission Overhead: Amount of 

data sent to cloud 

 

 

C. Results Analysis 

1. Classification Performance 

Metric Our System Cloud-Based Manual Inspection 

Accuracy 92.3% 87.1% 78.5% 

Precision 91.7% 85.3% 76.2% 

Recall 90.8% 84.7% 75.8% 

F1-Score 91.2% 85.0% 76.0% 

2. System Performance 

Metric Our System Cloud-Based Improvement 

Response Time 2.3s 4.2s 45.2% 

Energy Consumption 4.2W 6.8W 38.2% 

Data Transmission 15MB/day 68MB/day 77.9% 

Uptime 99.2% 94.7% 4.7% 

3. Detection Performance by Category 
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D. Cost-Benefit Analysis 

The deployment of our edge AI system resulted in: 

• Installation Cost: $2,400 per hectare 

• Annual Operating Cost: $180 per hectare 

• Yield Improvement: 18.3% increase in crop 

yield 

• Resource Savings: 23% reduction in water 

usage, 15% reduction in fertilizer usage 

• ROI: 2.3 years payback period 

 

VII. DISCUSSION 

A. Advantages of Edge AI Approach 

The experimental results demonstrate several key 

advantages of our edge AI approach: 

1. Reduced Latency: Local processing 

eliminates the need for cloud communication 

for routine decisions, reducing response time 

by 45%. 

2. Improved Reliability: The system maintains 

functionality even when internet connectivity 

is limited or unavailable. 

3. Enhanced Privacy: Sensitive farm data 

remains on-premises, addressing privacy 

concerns. 

4. Lower Operational Costs: Reduced data 

transmission costs and cloud computing 

expenses. 

5. Scalability: The distributed architecture 

allows for easy expansion to larger 

agricultural areas. 

B. Challenges and Limitations 

Despite the promising results, several challenges 

remain: 

1. Initial Investment: Higher upfront costs 

compared to cloud-based solutions may deter 

adoption. 

2. Maintenance Complexity: Distributed edge 

nodes require more maintenance effort. 

3. Limited Processing Power: Complex AI 

models may still require cloud processing for 

advanced analytics. 

4. Environmental Factors: Outdoor 

deployment exposes equipment to harsh 

conditions. 

C. Future Enhancements 

Several enhancements are planned for future versions: 

1. Advanced Computer Vision: Integration of 

drone imagery for larger area coverage. 

2. Weather Integration: Incorporation of 

weather prediction models for proactive 

management. 

3. Multi-Crop Support: Extension to support 

multiple crop types simultaneously. 

4. Blockchain Integration: Implementation of 

blockchain for secure data sharing and 

traceability. 

 

VIII. CONCLUSION 

This paper presented a comprehensive framework for 

real-time crop monitoring using edge AI and wireless 

sensor networks. The proposed system addresses the 

critical limitations of traditional cloud-based 

approaches by bringing intelligence closer to the data 

source. Experimental results demonstrate significant 

improvements in response time, energy efficiency, and 

data transmission overhead while maintaining high 

accuracy in crop health classification. 

The integration of lightweight machine learning 

models with distributed sensor networks enables real-

time decision-making that is crucial for precision 

agriculture. The system's ability to operate 

independently of cloud connectivity makes it 

particularly suitable for rural agricultural 

environments where internet infrastructure may be 

limited. 

Future work will focus on expanding the system's 

capabilities to support multiple crop types, integrating 

weather prediction models, and developing more 

sophisticated AI algorithms for complex agricultural 

decision-making. The successful deployment of this 

system demonstrates the potential for edge AI to 

transform agricultural practices and contribute to 

sustainable food production. 
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