
InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002 

and System Design 

182985 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 46 

InRACS 2025 

Interpretable Deep Learning for Biological Age 

Prediction: A Counterfactual Approach to Personalized 

Health Insights 
 

 

Bhavana Nare 

 

Abstract—The accurate estimation of biological age 

from physical activity data has the potential to 

revolutionize personalized health monitoring and early 

disease detection. However, existing deep learning 

models often lack interpretability, limiting their 

practical application in real-world healthcare settings. 

In this study, we propose an Explainable Time Series 

Regression (XTSR) framework that integrates deep 

learning with counterfactual reasoning to enhance 

model transparency and user trust. Our approach 

employs a hybrid Time Series Extrinsic Regression 

(TSER) model, trained on large-scale wearable sensor 

data, to predict biological age while simultaneously 

generating counter- factual explanations. By 

identifying the most influential activity patterns 

contributing to aging predictions, our system offers 

actionable recommendations for personalized health 

optimization. Experimental results demonstrate that 

our model outperforms traditional regression methods, 

achieving higher accuracy and interpretability. This 

research bridges the gap between predictive analytics 

and human-centered AI, paving the way for intelligent 

and user-friendly health monitoring systems that 

provide action- able insights based on individual 

behavior patterns. 

 

Index Terms—Deep Learning, Time Series, Extrinsic 

Regression, Counterfactuals, Explanations. 

 

I. INTRODUCTION 

 

Healthcare costs are globally increasing due to an 

aging population, technological advancements, 

medication errors, and a rise in annual spending on 

medicines (1; 2). The aging population, poor diet, 

physical inactivity, and tobacco use (including 

secondhand smoke) (3) contribute to the prevalence 

of chronic diseases, which are a major cause of 

deaths among the populations (4). Digital health 

(5) can fulfill the need for healthcare accessible 

to everyone, regardless of location or time, while 

also improving the quality of care and reducing 

costs. The use of portable edge devices with sensing 

capabilities allows for the remote monitoring of 

patient health data, which can be particularly helpful 

for those with chronic conditions (6). With wearable 

sensors, mobile phones, or other edge devices, 

patients can easily record physiological and 

behavioral data, which can be aggregated to create 

digital biomarkers that explain, influence, or predict 

health-related outcomes. Passively measured data 

such as vital signs, physical activity, and other 

health-related data allows patients to monitor their 

health condition without visiting a healthcare 

provider (7). These real-time and remote monitoring 

capabilities not only improve patient outcomes but 

can also reduce healthcare costs by minimizing the 

need for frequent visits with clinicians. 

 

Processing huge amounts of sequence data typically 

requires versatile, high-performing, and highly 

generalizing DL mod- els. However, most existing 

studies have concentrated on tertiary prevention (8), 

which aims to prevent disease recurrence or 

complications. Tertiary prevention only deals with 

diseases that have already occurred and does not 

proactively reduce the burden on healthcare systems. 

Therefore, it is crucial to shift the focus towards the 

early detection of diseases (secondary prevention) or 

even preventing diseases from occurring in the first 

place (primary prevention) (9). Both primary and 

secondary prevention can be very beneficial in 

preventing the onset of serious health concerns. 

Research in this field has been limited due to 

uncertainty about which factors to examine. In 

general, it is difficult to evaluate the overall health 

condition of a healthy individual in the absence of 

disease symptoms. 

 

One potential method to determine the general health 

state of a person is by using the concept of biological 

age. Prior work has shown that it is possible to use 

deep learning models to predict a person’s 

biological age non-invasively using physical activity 

data (10; 11). Nevertheless, existing methods of 

predicting biological age lack an explanation about 

what a person can do to improve their health state in 
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general. It is widely known that general 

recommendations such as taking a minimum number 

of steps each day (12), maintain- ing good sleeping 

habits (13), and engaging in recreational activities 

(14) have a significant impact on health outcomes. 

However, specific recommendations tailored to the 

individual’s needs are currently lacking, making it 

difficult to identify what changes to make at a 

personal level. In order to provide these 

recommendations, the individual needs to 

understand how the model assesses their health 

status. 

 

Despite achieving great performance, ai models are 

limited due to being seen as a black box, resulting in 

low practical use, especially in healthcare. xai helps 

developers, domain experts, and users understand 

how DL models work and how they make predictions 

(15). Many state-of-the-art tools for explaining DL 

models rely on visually highlighting important input 

data areas, which is useful for developers or domain 

experts but hard for patients to understand. 

Counterfactual ex- planation systems (16) aim to 

support counterfactual reasoning by modifying the 

input data to lead to a different prediction by the 

model. That way, the users of counterfactual 

explanation systems are provided with a fully 

diverse type of illustrative information that complies 

with the gdpr(17) and are easy for humans to 

understand (18). There is a tremendous potential for 

counterfactual explanations in the mobile health 

setting (19). Yet, many of the xai techniques 

predominantly deal with images or texts; time 

series data has attracted less interest, and the few 

techniques developed for time series are focused on 

tasks such as classification or forecasting (20). 

Especially in medical contexts, where relevant 

information often consists of time-dependent 

information, high-quality time series coun- 

terfactuals have the potential to give meaningful 

insights into 

decision processes. 

With our work, we make the following 

contributions: 

• We present a novel approach for generating 

counterfactual explanations for time series 

extrinsic regression. 

• We use our approach to adjust four 

counterfactual methods for time series 

classification to time series extrinsic regression. 

• We compare both qualitatively and 

quantitatively generated counterfactual 

explanations in a mobile health setting to 

estimate biological age from physical activity 

data. 

• We illustrate how counterfactual explanations 

can be used to generate expressive text 

recommendations and provide continuous health 

supervision, thus reducing the need for external 

supervision and, consequently, healthcare costs. 

 
 

II. RELATED WORK 

 

This section discusses concepts related to 

Explainable Time Series Extrinsic Regression. First, 

we examine previous work done in this field. Next, 

we explore the available options to explain 

regression models. Finally, we take a closer look at 

Counterfactuals, a user-oriented explainable method 

that is extremely useful in mobile health monitoring. 

 

A. Time-Series Extrinsic Regression 

tser describes the task of predicting a continuous 

external variable from a time series. The term 

Extrinsic refers to the variable not being inherently 

part of the time series distribution. Instead, the time 

series serves as input to a model, which then infers 

an additional variable, such as a score. For example, 

tser can be used for hr estimation using ppg sensors 

(21). tser is closely related to tsc and tsf . The goal 

of tsc is to understand the relationship between a time 

series and a categorical variable. For instance, tsc 

learns how the shape of an ecg signal changes during 

diseases such as myocardial infarction or atrial 

fibrillation (22). tsf consists of analyzing a signal 

and predicting the future values of the same signal. 

For example, tsf is useful in finance when forecasting 

the closing price of a stock each day (23). Tan et 

al. (24) formalized the definition of tser and assessed 

popular regression techniques such as Support Vector 

Machine (25), Linear Regression, and Residual 

Networks (26) on a new archive consisting of 

nineteen tser datasets (27). More recently, Guijo et 

al. (28) extended the dataset archive (27) of tser 

problems and implemented new tser algorithms 

based on tsc methods, FreshPRINCE and DrCIF. The 

first is a robust pipeline algorithm that performs 

regression using two key components - the TSFresh 

feature extraction algorithm and the Rotation Forest 

(RotF) (29) estimator. The TSFresh algorithm 

transforms the input time series data into a feature 

vector fed to the RotF estimator for model training 
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and label prediction. DrCIF is a type of tree ensemble 

that generates features by analyzing summary 

statistics over random intervals. 

 

B. Prior work on explainable time-series analysis 

Using findings of prior work by Rojat et al. (30) as a 

starting point, we investigated numerous explainable 

methods for time series data published in recent 

literature. Many methods have been developed for 

this purpose, and to choose the most suitable 

method for a specific use case, a few criteria need 

to be considered. First, it is crucial to understand 

what the method aims to explain. Explainable 

methods usually have one or multiple goals; they 

showcase a model’s robustness to adversarial 

attacks, stability to data noise, the trustworthiness of 

the model’s outputs, interactivity with users, 

explainability to a particular audience, or 

interpretability by the developer. Second, depending 

on what the explanation should achieve, 

explainability scopes vary, encompassing local and 

global perspectives. Local explanations provide 

insights into individual behaviors, while global 

explanations discern broader population trends. 

Another important consideration is the target 

audience for the explanation. Some explanations are 

designed for developers, while others target experts 

in specific fields, such as healthcare. Finally, some 

explanations are intended for end-users themselves. 

Lastly, the DL model they explain has an impact. For 

example, post-hoc methods wrap an explainability 

module around the model to generate explanations. 

They can be model-specific, only usable for a certain 

model type, or model-agnostic (31), versatile across 

different models. On the other hand, there are ante-

hoc techniques that integrate the explanation module 

inside the model architecture and provide 

explanations after the model’s training phase (30). 

For that reason, they only work with specific model 

architectures. 

 

Multiple sets of methods have been presented in prior 

literature to accomplish these various objectives 

(robustness, trustworthiness, interpretability, target 

audience, scope, etc): 

• Backpropagation-based methods (26; 32; 

33; 34; 35; 36; 37; 38; 39; 40) allow for network 

explanations through a single forward and backward 

pass. They are post-hoc model-specific methods, 

meaning they depend on the mo-del architecture. 

They use the cam (41), a post-hoc method that shows 

which part of the input is responsible for the 

classifier output. 

 

TABLE I: Mean and variance of the scores obtained by each counterfactual generation technique on five 

evaluation metrics for CNN. 

Method Validity ↑ Proximity ↓ Sparsity ↓ Plausibility ↑ Time ↓ 

TSEvoR 0.37±0.48 159.99±274.71 0.04±0.09 0.39±0.25 8m01s±2m52s 

NUNR 0.99±0.08 4740.66±1149.04 0.98±0.02 0.47±0.20 0m01s±0m01s 

DBAR 0.10±0.31 2499.74±702.91 0.99±0.03 0.02±0.11 9m28s±4m58s 

Wachter 0.00±0.00 0.00±0.00 1.00±0.00 0.00±0.00 1m01s±0m28s 

 

TABLE II: Mean and variance of the scores obtained by each counterfactual generation technique on five 

evaluation metrics for ConvLSTM. 

Method Validity ↑ Proximity ↓ Sparsity ↓ Plausibility ↑ Time ↓ 

TSEvoR 0.08±0.27 450.75±445.8 0.07±0.10 0.46±0.29 47m36s±11m21s 

NUNR 0.99±0.08 3944.03±796.31 0.98±0.02 0.59±0.25 0m01s±0m01s 

DBAR 0.09±0.29 1898.02±328.64 1.00±0.02 0.04±0.15 11m33s±4m32s 

Wachter 0.02±0.12 0.00±0.00 0.99±0.02 0.14±0.27 6m32s±1m48s 

 

TABLE III: Mean and variance of the scores obtained by each counterfactual generation technique on five 

evaluation metrics for TCN. 

Method Validity ↑ Proximity ↓ Sparsity ↓ Plausibility ↑ Time ↓ 

TSEvoR 0.39±0.49 147.37±242.41 0.04±0.09 0.41±0.26 10m01s±1m14s 

NUNR 0.99±0.08 4740.66±1149.04 0.98±0.02 0.51±0.23 0m01s±0m01s 

DBAR 0.10±0.30 2344.37±639.02 1.00±0.02 0.01±0.07 12m03s±5m54s 

Wachter 0.00±0.00 0.00±0.00 1.00±0.00 0.00±0.00 1m09s±0m03s 
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• Perturbation methods (42; 43; 44; 45; 46; 47; 

48) make direct changes to the input by either 

masking, transform- ing, or mutating certain 

parts of it. After modifying a part of the input, a 

forward pass is performed to calculate the 

difference with the initial input. If the difference 

is high, it indicates that the modified part 

significantly impacts the model’s decision. 

These methods are useful because they are 

model-agnostic. They treat the model as a black 

box and offer flexibility across arbitrary DL 

architectures. 

• Attention-based methods (49; 50; 51; 52; 53; 

54; 27; 55; 56; 57) use the weights of the 

attention layer that represents the importance 

that the mechanism assigns to different parts 

of the input. For instance, Gao et al. 

(57) used the attention weights to visualize the 

feature contribution to the model output as a 

line plot and the temporal contribution as a 

heatmap. Attention-based methods are an 

example of ante-hoc model-specific meth- ods. It 

is worth noting that Attention-based 

explanations are currently a matter of debate in 

the research field. In the context of nlp tasks, 

Jain et al. (58) have claimed that attention 

weights do not explain predictions clearly. 

However, Wiegreffe et al. (59) have disagreed 

with this claim. It is important to mention that 

this debate is not limited to nlp tasks alone. Bibal 

et al. (60) have analyzed the debate for various 

data modalities. 

• Fuzzy-logic & sax methods (61; 62; 63; 64) are 

specific to time series data. sax (61; 62) 

transforms the time series into informative 

segments, which are then assigned to a symbol, 

allowing the detection of recurrent patterns in the 

data. Fuzzy logic (63; 64) is a type of logic that 

deals with approximate rather than precise 

reasoning. It allows for the inclusion of 

uncertainty in decision-making processes. By 

assigning degrees of membership to different 

features or classes, fuzzy membership functions 

can help explain why a certain decision was 

made 

• Shapelets methods (65; 66; 67) identify 

discriminative subsequences, called shapelets, 

that can be used to classify the time series. 

Shapelets are patterns derived from a group of 

time series or learned to minimize a specific 

objective function. There are various methods 

available to discover the shapelets. One method 

(68) involves training a classifier first and then 

extracting the shapelets to explain it. However, 

this approach can be computationally expensive 

but offers the flexibility of a model-agnostic 

method. Other approaches (69) involve learning 

the shapelets representations while simultane- 

ously training the model. This results in an 

effective, ante-hoc, explainable approach. 

• Prototypes methods, such as Gee et al. (70) 

and Li et al. (71), use the latent space created 

by deep learning models to understand the 

impact of meaningful represen- tations on the 

decision-making process. These methods treat 

prototypes as representative individuals of a 

class, where a prototype represents a concept 

learned by the model, such as how the model 

represents a cat or a dog. According to Obermair 

et al., (72), a concept is defined as explanatory 

data containing all the relevant properties 

humans require to make the same decisions as 

the black box model. 

• Counterfactual methods (17; 73; 74; 75; 76) and 

pertur- bation methods are two techniques that 

involve changing the input data to study the 

behavior of machine learning models. However, 

they differ in their goals. Perturbation methods 

identify the input features that contribute to 

the model’s decision. In contrast, 

counterfactuals aim to produce a modified input 

that the model classifies differently by changing 

these important input features. To achieve this 

objective, counterfactuals search for the smallest 

possible alteration in the input data that could 

result in a different model output. 

 

In tsxai, to understand a model’s decision-making 

process, the methods based on backpropagation or 

attention rely on the classifier’s model architecture, 

and the same goes for most methods using sax, 

Fuzzy Logic, and prototypes. Many machine 

learning methods can be adopted from tsc and be 

applied to tser as well (77). However, adapting the 

model- specific explanation method for tser is not 

always possible, as the method was mostly designed 

for classification tasks only. On the other hand, 

model-agnostic methods can be more easily adopted 

to explain tser tasks, as they do not depend on the 

model itself. This argument makes model- agnostic 

methods advantageous over model-specific methods. 

Model-agnostic approaches, such as perturbation-
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based meth- ods, generate explanations intended for 

the model developer but not the user. The user here 

refers to someone who would act or make decisions 

based on the models’ output, e.g., a doctor giving 

treatment recommendations. Perturbation-based 

methods, like DynaMask (46), give explanations in 

the form of a heatmap, which can typically be 

understood by a model developer but cannot be 

converted into recommendations or explanations for 

the user. In the case of a univariate time series, the 

heatmap highlights the important segments of the 

time series for the classifier. Still, it does not provide 

information on the actionability of these segments, 

i.e., it does not explain how changing timestamps 

affects the model’s output. cfe typically explain the 

latter, demonstrating how the model’s output 

changes if discriminative timestamps are modified. 

Recent research indicates (18) that counterfactuals 

are easy to understand, making them an 

advantageous model-agnostic approach that targets 

the user for their explanations. 

 

C. Counterfactual Explanations 

Wachter et al. (17) introduced counterfactual theory 

in 2018 and established key definitions and 

methodologies, such as the Wachter equation, which 

is given by 

 
counterfactuals. Wachter et al. (17) suggest using 

the Man- hattan distance weighted feature-wise with 

the inverse mad to generate sparse and outlier-robust 

solutions to the equation 1. In practice, maximization 

over λ is done by iteratively solving for x′ and 

increasing λ until a sufficiently close solution is 

found. Wachter’s method, however, imposes no 

constraint on the plausibility of the obtained 

counterfactual and does not necessarily find an 

optimal λ. This lack of constraint leads to 

counterfactuals that might be out of distribution, 

i.e., not representative of the underlying data 

distribution or simply unrealistic in real-world 

scenarios. 

To resolve the plausibility issue, Delaney et al. 

(75) introduced Native Guide in 2021. Similar to 

some cfe for other data modalities, such as 

images, tabular or text data (78; 79; 76; 80; 81), 

Native Guide leans on existing instances in the 

training data to generate in-distribution 

counterfactual explanations. The method works in 

two steps. First, it retrieves the NUN s from the 

dataset. The NUNs are the closest instances in the 

dataset that are classified differently than the original 

data point. Then, using the weights of the last layer 

of the classification model, the algorithm perturbs 

one of the NUNs to move it closer to the decision 

boundary of the model. More recently, in 2022, 

tsevo (76) used various properties of time series 

transformations as introduced by Guilleme´ et al. 

(43) and Mujkanovic et al. (48). Guilleme´ et al. (43) 

tailored lime (82) and shap (83) for time series 

data. Mujkanovic et al. (48) extended Guilleme´ et 

al.’s work by creating mappings that utilize the time 

and frequency domains and the statistical properties 

of time series. By employing these integrated time 

series transformations, Ho¨llig et al. (76) could 

generate different types of counterfactuals, 

outperforming other time series counterfactual 

approaches in both uni-and multivariate settings. 

 

III. METHODS 

 

Despite progress in counterfactual explanations for 

tsc or tsf (20; 30), Table ?? indicates a notable gap in 

addressing tser tasks. In fact, to the best of our 

knowledge, there currently does not exist any method 

for (deep learning) based explainable extrinsic 

regression. This work introduces novel methods for 

explainable tser. We begin by precisely defining tser 

(cf. Section III-A). Afterward, we showcase our 

reasoning behind the choice of counterfactuals to 

explain tser. Furthermore, we outline a framework 

for the transformation of explainable counterfactual-

based methods from classification to extrinsic 

regression (cf. Section III-B) and introduce 

definitions for desired properties for counterfactuals 

in tser (cf. Section III-A) adopted from prior work 

(75). We apply this framework to adopt four tsc 

methods for tser (Section III-C), namely 

1) wachter (Section III-C1) 

2) NUNr (Section III-C2) 

3) dbar (Section III-C3) 

4) tsevor ( Section III-C4) 

Lastly, we evaluate the four methods on the task of 

biological age estimation to derive recommendations 

for individuals to improve their health (cf. Section 

III-D). 

 

A. tser and User Explainability 

tser is a regression task that learns the mapping from 

time series data to a scalar value (24). We formally 
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define tser by Definition 3.1. 

Definition 3.1: Let x = [x1, . . . , xT ] ∈ RN×T be a 

uni- or multivariate time series, where T is the 

number of time steps, and N is the number of 

features. Let xi,t represent input feature i at time t, 

and y denote the output. Then, the regression 

model f : x → y returns an extrinsic continuous 

variable, with f considered a ”black box” — i.e., 

no access to the inner workings of the model is 

available, and only the result y is observable. 

In Section II, we discovered numerous techniques for 

ex- plaining time series data. Perturbation-based, 

backpropagation- based, and attention-based 

methods have one thing in com- mon: They show 

which part of the time series influences the 

model’s output. While this is useful for the 

developer or a field expert, a user may not know how 

to interpret this explanation. When aiming for 

continuous health assessment, the explainability 

method should focus on actionability, i.e., it should 

be able to show the user how to change his behavior 

to improve the model’s output, meaning that the 

technique should have a local scope and target the 

user. Another criterion to consider is the model-

specificity or model-agnosticism of an explainable 

technique. Indeed, as most model-specific methods 

focus on models used for classification, and as we 

explore different black-box model architectures to 

perform biological age estimation, we considered 

only post-hoc, model-agnostic methods. Model-

agnostic methods allow us to explain existing models 

without modifying them for transparency. However, 

this approach does not come without drawbacks: 

Post-hoc methods can result in explanations based on 

misconceptions learned by the model rather than 

actual knowledge from the data (84). From the 

different already implemented techniques available 

for tsc (see Table ??), the explanation method that 

would provide local, user-targetted explanations 

while being model agnostic is called cf. The 

following subsections define how to adapt existing 

counterfactual methods for tsc to tser. 

B. Counterfactual in tser via thresholding and its 

Desired Properties 

The common goal of counterfactual approaches is to 

provide an explanation via counter-examples given 

a time series x, called a query, and a model f . In 

classification scenarios, counter-examples allow 

users to understand why a classifier- model f predicts 

a label y for data point x instead of a counterfactual 

class ycf (17). However, in the case of extrinsic 

regression, we do not have classes as we are 

predicting a continuous value and not a categorical 

value. Using only an inequation such as y ̸= ycf 

would not work since the difference between the 

query and the counterfactual labels could be 

infinitely small, providing insufficient information. 

Yet, we can enforce a minimal change required for a 

data point to be counterfactual, and this is done via 

thresholding: we assume that for each x, a 

counterfactual sample xcf can be computed that is 

close to x, but with a minimum prediction difference 

larger than a certain threshold |y − ycf | > ε1. A 

counterfactual should meet a few desired properties 

to be considered a relevant explanation for a user. 

When dealing with time-series data, we typically 

consider the following four properties (75): 

1) Validity (Def. 3.2) 

2) Proximity (Def. 3.3) 

3) Sparsity (Def. 3.4) 

4) Plausibility (Def. 3.5) 

Let x = [x1, . . . , xT ] ∈ RN×T be a uni- or multivariate 

time series or so-called query, where T is the number 

of time steps, N is the number of features, xcf a 

counterfactual, and X the input space. Then, for a 

fixed ε, the set of valid counterfactuals denoted as S 

is defined by Definition 3.2. 

Definition 3.2 (Validity of the counterfactual): We 

define the validity property for TSER as: 

S = {x ∈ X : f (x) − ε ≥ f (xcf ) ≥ f (x) − 2ε} 

This equation defines a set of accepted 

counterfactual labels for each query. It requires that 

the distance between the query label and the 

counterfactual label is larger than the threshold ε but 

does not exceed twice the ε value. The upper limit is 

because on the label axis, the threshold defines an 

area around the query where samples are not 

considered counterfactuals as they are too close 

to the query. It mimics the behavior of a class; if 

we move on the label axis from the query label 

by a distance ε, we are in the counterfactual area, 

i.e., in another class. If we move again by the same 

ε distance, we are no longer in this counterfactual 

area. We are too far from the query. The latter 

limit is set to ensure that the cfe does not differ 

too much from the original query (85). For 

example, applied to biological age estimation, if we 

let the patient query be 56 years old and ε = 3, then 

a valid counterfactual has a label between 50 and 53 

years old. A 55- year-old counterfactual is 

considered too close to the query to be relevant, 

and the lower limit ensures that a 20-year-old 

counterfactual is not suggested, as he would be too 

distant from the query. 
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Definition 3.3 (Proximity of the counterfactual): We 

characterize the proximity property for TSER as 

follows: 

 
This property ensures that the resulting xcf is a 

proximate instance to the query (86). Proximity 

refers to the distance between the query instance x 

and the counterfactual instance xcf , calculated as a 

distance measure d between x and xcf . A 

commonly used metric for the distance between 

two time series is the dtw distance (87). 

1Important note: In the specific case of biological 

age estimation, as we want to find a healthier patient, 

we are looking to decrease the ba of the patient. 

Therefore, we are only interested in counterfactuals 

whose predicted values are lower than the patients’ 

ba by a certain margin (e.g., at least three years 

younger). 

 

Definition 3.4 (Sparsity of the counterfactual): 

We define the sparsity property for TSER as 

follows: 

 
Sparsity refers to the number of changes in data 

points between x and xcf (86). This key property 

forces a cfe method to make human-interpretable 

changes. When enforcing the sparsity property, cfe 

methods strive to alter the fewest variables necessary 

to achieve user-interpretable solutions. Another 

constraint specific to time series data is that not only 

the fewest number of variables should change, but the 

changed variables should be in continuous 

subsequences of the original time series. Each 

counterfactual method implements a different 

technique to overcome this constraint. 

 

Definition 3.5 (Plausibility of the counterfactual): We 

define the plausibility property of counterfactuals in 

the context of TSER as follows: 

 
A counterfactual xcf is plausible if it could have been 

drawn from the data D (84). The plausibility property 

ensures that the post-hoc explanation method 

produces justified explanations. This property is 

verified by looking at the neighbors’ expla- nation 

labels and analyzing whether they are close to the ex- 

planation’s label. A counterfactual with a label far 

away from his neighbor’s label is considered 

unjustified. In biological age estimation, a justified 

counterfactual has neighbors in the same age range, 

i.e., the distance between the counterfactual’s label 

and the neighbor’s label is below the threshold ε. 

 

C. Adoption of methods for time-series extrinsic 

regression 

Given our prior definitions of desired properties for 

counterfactuals in tser, we describe our adoption of 

four methods of TSC to TSER. Based on its results, 

we chose tsevo first, as it seemed to be the more 

promising approach. Then we adapted Wachter, 

NUN, and dba to compare and put in perspective 

tsevo’s results. In the following sections, we present 

their adoption chronologically. 

1) wachter-cf: The first candidate for the 

adoption of cfe for tser is Wachter et al. (17) (2018). 

Wachter’s approach involves minimizing an 

equation through gradient descent that combines 

validity (cf. Definition 3.2) and proximity (cf. Def- 

inition 3.3) properties. To adapt Wachter’s method 

for tser, we replace the classifier model and 

introduce the threshold criterion (cf. Section III-B) 

while the distance function remains unchanged. 

Adapting Eq. 1 (cf. Section II-C) leads to the 

following : 

 

The main adaptations reside in that fw now denotes 

a black- box extrinsic regression model, and a 

threshold ε is introduced. 

 

2) NUNr-cf: The second candidate for cfe for tser 

is the NUN as counterfactuals (80) (2009), and later 

adapted to time series data by Delaney et al. 

(75) (2021). In a classification setup, the NUN 

method aims to find the closest instance in the 

dataset that is classified differently than the 

query. It works by 

creating a reference set containing all instances in the 

dataset with the target classification or a different 

classification than the query. Then, the NUN-cf 

algorithm computes the nns of the query that are in 

the reference set, obtaining the NUNs. The nns are 

computed using KNeighborsTimeSeries (88). We 

must only modify how the reference set is defined to 

adapt the NUN-cf algorithm to the regression setup. 

 

Definition 3.6 (Reference set): The reference set is a 
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subset of all known data D with a valid prediction 

under def. 3.2. 

 

R = {z ∈ D : f (x) − ε ≥ f (z) ≥ f (x) − 2ε} 

 

With NUNr-cf , if a NUN exists, it is guaranteed that 

the found counterfactual is in the data distribution, as 

it is an existing sample (cf. Def. 3.5) and valid (cf. 

Def. 3.2). The proxim- ity (cf. Def. 3.3) of the 

counterfactuals will be minimized among the 

existing valid samples, but as shown in previous 

work (75; 89), the NUN is not necessarily close to the 

model decision boundary, and it is possible to find 

more proximate counterfactuals by mutating the 

NUN towards the decision boundary. These 

mutations are typically done by perturbing the query 

time series on areas where the query and the NUN 

disagree. Another issue is that NUNs are not sparse; 

in the context of biological age estimation, the 

NUNr-cf algorithm locates a physical activity that 

closely resembles the query’s physical activity but is 

performed by a different individual and slightly 

varies at each timestamp. 

3) dbar-cf: The third method we consider is 

called dba- cf and was proposed by Delaney et al. 

(75) in 2021. The main idea is to bring the found 

NUN closer to the decision boundary by averaging 

between the query and the NUN. Originally, 

Forestier et al. (90) (2017) proposed dba to aug- ment 

time-series datasets. dba is used to compute the 

average between time series. The concept behind 

dba-cf is to achieve a weighted average between the 

query and the NUN, starting with all the weight on 

the query and then iteratively moving the weight 

towards the NUN until the decision boundary is 

reached. 

4) tsevor-cf: tsevo is a technique that 

combines time series perturbation approaches from 

the recent work(43) and (48) with a genetic 

algorithm for multi-objective optimization (? 

). This technique allows the creation of model-

agnostic coun- terfactual explanations for uni- and 

multivariate classification problems. 

tsevo tackles the challenge of finding a 

counterfactual that meets the four key properties 

validity 3.2, proximity 3.3, sparsity 3.4 and 

plausibility 3.5. To achieve this, tsevo treats each 

property as an objective to optimize, forming a 

multi-objective optimization problem. We define 

below how the properties are transformed into 

objectives in the setting of tser. 

 
The multi-objective optimization follows the steps 

described in the original tsevo publication (76). In 

summary, a population of n individuals is 

initialized, where each individual repre- sents a 

potential counterfactual. The individuals are 

evaluated with respect to their objectives score. For 

g generations, the evolution algorithm selects the 

best individuals in the popu- lation according to 

how they fulfill the different objectives. 

Depending on a certain probability, it performs 

crossover and/or mutates them. For the mutations, 

we used the authentic opposing information 

mutation, first introduced by Guilleme et al. (43), 

which is based on the assumption that interpretable 

values of time series can exhibit shapes (e.g., 

peaks) that are easily understandable to humans. 

To use those shapes included in a reference set R 

(cf. Def. 3.6), we draw a random sample r ∈ R. 

Both r and the selected individual λi are 

segmented with window size wi, resulting in 

S(r) and S(λi). The mutation then draws a random 

segment index s ∈ [0, |S(r)| − 1] and replaces the 

drawn slice S(λi)[s] with the slice S(r)[s] from the 

replacement time series. The concept of crossover in 

genetic algorithms is utilizing the search space by 

merging the genetic material of high-performing 

individuals 

(91). The reference set is used in the evolution 

algorithm to mutate the individuals. It ensures that 

the mutated individuals stay in the data manifold. 

Note that this is meant to achieve the plausibility 

property (cf. Def. 3.5) by design, as this property was 

not expressed as an objective. 

 

D. Experimental Evaluation 

Our work was motivated by the findings of Pyrkov 

et al. (10) and Rahman et al. (11), who showed that 

deep learning models could estimate the biological 



InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002 

and System Design 

182985 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 54 

InRACS 2025 

age of a patient from his physical activity. Once we 

predict the biological age, we can use counterfactual 

explanations to give feedback to the patient. The 

following Sections describe our efforts to 

reproduce prior work to train models for biological 

age estimation, enabling us to test our CFE 

methods. For the training and data generation, we 

followed the same steps as described in from data 

generation to providing recommendations. 

 
Fig. 1: Pipeline: From data preprocessing to physical 

activity recommendations. 

 

prior work in Pyrkov et al. (10), Rahman et al. (11), 

and Shim et al. (13). Figure 1 shows an overview of 

the whole pipeline, from data generation to providing 

recommendations. 

 

1) Physical Activity: Description We used 

physical activity data recorded during the nhanes 

from 2003 to 2004 (92) and from 2005 to 2006 (93). 

nhanes uses a complex sampling design to survey 

non-institutionalized members of the US population. 

A subset of nhanes participants recorded their 

activity data. During the survey, participants’ 

physical activity is tracked for seven continuous days 

using a physical activity monitor2 to record activity 

counts sampled every minute. The participants wear 

the monitors on the right hip using an elastic belt. The 

datasets included 14’631 participants, with 7’176 in 

2003-2004 and 7’455 in 2005-2006. Filtering The 

filtering steps are based on prior work done on 

biological age estima- tion (10; 11; 13). First, we 

removed outliers with abnormally low (< 50) or high 

(> 5000) mean activity count. Then, we removed 

patients with less than 10’080 (= 7×24×60) activity 

counts, corresponding to one measurement every 

minute for seven days. Also, we only considered 

days where the par- ticipant was active for more than 

200 minutes. Therefore, we filtered out participants 

who had less than four days of meeting this criteria. 

This filter resulted in a total of 9,591 individuals. 

Transformation To handle the noisy and outlier-

filled nature of the time-series human locomotor 

data, we first needed to apply some basic data 

transformation operations, such as smoothing. The 

physical activity intensity (paintensity) values range 

over a large magnitude and are always positive, 

so we applied log transformations to the data, as 

suggested by Rahman et al. (11). However, since the 

original data contains some 0 values, we added a 

negligible value (1) before applying log 

transformations. The first transformation is a Box-

Cox (94) transformation with λ = 1, which is 

equivalent to a simple log transformation (other 

values of λ were investigated by Rahman et al. (11)). 

Then, a second log transformation is computed. 

Since the data is a sequential time series of seven 

days, we applied moving averages on the data with 

different window sizes and an ema. 

 

2The monitor used was the ActiGraph AM-7164; 

ActiGraph, Pensacola, FL, USA 

 
2) Biological Age: We used the nhanes 2003-

2006 anthro- pometric and bio-marker datasets to 

compute each patient’s biological age (95). The 

biomarker dataset contained informa- tion on 

albumin, alkaline phosphatase, blood urea nitrogen, 

uric acid, cholesterol, creatinine (96), C-reactive 

protein (97), body mass index (98), 

glycohemoglobin (99), systolic and diastolic blood 

pressure (100), lymphocyte percentage, mean cell 

volume and white blood cell count (101). Then, we 

used the Klemera-Doubal method (102) to compute 

a mapping between the biomarkers information and 

the biological age. We retained only patients aged 

between 18 and 85. As a result, we obtained a dataset 

of 10,184 patients along with their cor- responding 

biological age. Lastly, we combined the physical 

activity dataset with the biological age datasets, 

resulting in 7’222 matched patients. Not all patients 

in the physical activity dataset were included in the 

biomarker dataset, hence the lower total number of 

patients. We split the combined dataset into training 

(65%), validation (25%), and testing (10%) sets, 

yielding 4’694, 1’805 and 723 patients, respectively. 

 

3) Deep Learning models for Biological Age 

Estimation: Using physical activity data to predict 

biological age is an example of a tser task. In our 

scenario, we trained and tested three different models 

to predict biological age from physical activity data: 

1) A cnn suggested by Pyrkov et al. for 
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biological age estimation (10) 

2) A convlstm proposed by Rahman et al. for 

biological age estimation (11). 

3) A tcn (103; 104) network. 

To the best of our knowledge, the tcn model has 

not yet been tested for biological age estimation 

in prior work. It was included in the evaluation in 

this work because recent literature indicates that tcn 

models can achieve state-of-the-art results on time 

series tasks while often being less complex than lstm 

models (104). Each model requires a different data 

representation: The cnn takes as input a flat vector of 

10’080 values, convlstm uses a complex 3D 

representation (60, 24, 7), and tcn falls in between 

the two, taking vectors of shape (7, 1440), where 

the days are treated as features. We trained all 

models on the training data for convlstm and cnn; we 

used the steps and hyperparameters described by 

Rahman et al. (11) and Pyrkov et al. (10) 

respectively. The tcn has ten layers of 128 channels 

each; we used a kernel size of 4 and a dropout of 

0.2. We trained the model for 100 epochs, with a 

learning rate 0.0001, and we chose the best model 

according to the mse loss. We recorded two other 

metrics, which are the mae, which gives a more 

intuitive comprehension of the error of the model 

than the mse, and the Pearson correlation, which 

indicates the strength of the linear association 

between the physical activity and the biological age. 

 

4) Explainable Biological Age Estimation: 

Utilizing our counterfactual adaptations wachter, 

NUNr, dbar and tsevor, we generated 

counterfactuals with threshold ε = 3 (cf. Section 

III-B) for each sample of the 723 samples in the test 

set using the three different models. For wachter, we 

defined a loss function from eq. 5: 

 
and x′ was initialised to xi (we also attempted 

random initial- ization). Using the L1-Norm as 

distance function d, we then performed a gradient 

descent using the ADAM (105) optimizer for n = 

100 iterations for each lambda λ and increased 

lambda by 0.05 if no valid (Def. 3.2) 

counterfactual is found. The valid counterfactual 

with the smallest loss (Eq. 9) is returned. If no 

valid counterfactual is found after trying out all 

lambdas, we return the counterfactual with the 

smallest corresponding loss. For NUNr, once the 

reference set is adapted (see 3.6), the remainder 

of the algorithm is the same as in a classification 

setting. For dbar, we retrieved the NUN and 

performed a weighted sum: 

 

We chose to run 10 iterations, increasing β by 0.01 

at each iteration and returning xcf as soon as it is 

valid. For tsevor, we used the genetic algorithm 

over 50 generations and ap- plied mutation to the 

individuals using the authentic opposing 

information transformer, as implemented by 

Guilleme´ et al. (43). 

 

5.) Habits recommendations: The generated 

counterfactuals depict time series plots of 

recommended physical activity data. Presenting this 

data to potential patients allows them to interpret 

what actions they should take to improve their 

biological age. However, different patients might 

interpret the counterfactuals differently. We designed 

a system that provides the patient with highly 

interpretable text feedback to give a more concrete, 

text-based recommendation. This feedback contains 

a few sentences or recommendations on how to adjust 

the activity based on the generated counterfactuals. 

Each day is separated into four parts of six hours each 

to generate a recommendation R: 

 

Night, Morning, Afternoon, and Evening. 

 

For each part p, we compute the mean value of the 

query’s physical activity meanq and the mean of the 

counterfactual’s physical activity meancf . We 

assume that the obtained means represent a 

percentage activity on a scale from No Intensity (0%) 

to Very High Intensity (100%). This representation 

allows us to interpret the difference between meanq 

and meancf as a percentage change. Concretely, 

this percent- age change (Percentagechange) is defined 

as follows, where MAX ACTIVITY INTENSITY 

denotes the maximum value of the intensity of the 

counterfactual and the query. 

 
Using our approach, we generate several maximum 

n rec- ommendations to the user and only include 

recommendations suggesting a minimal percentage 

change of at least p%, with n and p being 

configurable parameters. 

 

IV. RESULTS 

 

In the results section, we first report the performance 

of the DL models to estimate Biological Age data (cf. 

Section ??). Then, we evaluate the generated cfe 

using qualitative and quantitative criteria (cf. Section 
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IV-B). 

 

A. Biological Age Estimation with Deep 

Learning 

We set out to reproduce results presented in prior 

work (10; 11) that use DL models to estimate 

biological age from physical activity data and 

achieved the following re- sults (cf. Table IV). In 

Rahman et al. work (11), the authors reported slightly 

different results. For the convlstm, they re- ported a 

mae of 13.21 years, an mse of 282, 58 with a Pearson 

correlation of 0.62. For the cnn, they reported an mae 

of 15.49, an mse of 353.82, and a Pearson correlation 

of 0.45. 

 

TABLE IV: Performance Comparison of Models 

 
 

B. Counterfactuals for Biological Age Estimation 

In this section, we evaluate the generated 

counterfactuals in two ways. First, qualitatively, we 

plotted one patient evaluated with the four different 

counterfactual techniques. The plots al- low us to 

evaluate the user interpretability of the explanations. 

Looking at the explanations, a user should 

understand what he does well, what he could 

improve, and what impact it will have on his health. 

Then, we evaluate quantitatively using metrics based 

on the properties defined in Section III. 

1) Qualitative evaluation: Fig. 2 shows 

counterfactuals obtained for a specific patient using 

the four counterfactual methods. We highlight 

findings for each method in the fol- lowing 

subsections. 

2) wachter: Figure 2a shows the 

counterfactual result for patient 6306. It was obtained 

using the tcn model and the wachter technique. The 

model’s predicted biological labels are at the plot’s 

top. According to the tcn model, the patient’s 

biological age is 46.46. The counterfactual physical 

activity level corresponds to that of someone who is 

34.1 years old, which is not a valid counterfactual, as 

valid counterfactuals need to have a biological age 

between 40.46 and 43.46 years 

3) NUNr: Figure 2b displays the 

counterfactual outcome for patient 6306 using the tcn 

model explained with the NUNr technique. The 

NUNr biological age is 42.39, which is a valid result. 

Based on the explanation, four recommendations 

were made to improve the patient’s health; only the 

top three are shown in the plot. These include 

reducing activity levels on Wednesday and Sunday 

mornings and Saturday afternoons and increasing 

activity on Friday afternoons. 

4) dbar: Figure 2c shows the counterfactual for 

patient 6306 obtained through the tcn model with the 

dbar technique. The dbar biological age is 43.46, 

which is an optimal and valid result. It is optimal 

because 43.46 is the closest accepted label possible. 

By comparing with the NUNr plot, we can observe 

that the dbar technique averages between the 

NUNr’s physical activity and the patient’s physical 

activity to produce a similar counterfactual, with less 

important changes (percentage changes are lower) 

but still slight changes at each time stamp. Based on 

the dbar’s output, the recommender suggests only 

one recommendation to improve the patient’s 

biological age: increasing physical activity on Friday 

afternoon. It is important to note that this was already 

a recommendation from the NUNr technique. 

5) tsevor: Figure 2d shows a counterfactual for 

patient 6306, which was obtained using the tcn 

model and explained using the tsevor technique. The 

tsevor biological age is 43.46, which is an optimal 

and valid result. tsevor only had to make a few 

changes to the timestamps to arrive at a valid and 

optimal result. Based on this analysis, it then 

recommended that the patient increase their physical 

activity on Friday morning and afternoon, which is 

the same as dbar and NUNr. 

 

C. Quantitative evaluation 

We generated counterfactuals on the 723 samples 

from the test set. To generate counterfactuals, we first 

feed each sample from the test set to each of the three 

deep-learning models (cnn, tcn, and convlstm). We 

then generated counterfactuals using the four 

different counterfactual techniques (wachter, NUNr, 

dbar, and tsevor). Finally, we evaluate the 723×3×4 

= 8676 generated counterfactuals with the following 

metrics: 
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Fig. 2: Example of time series counterfactuals (pink line) of an input time series (blue line) for the biological 

estimation problem, where, given a threshold ε = 3, the counterfactual modifies the original activity so the model 

predicts a smaller biological age. Each plot represents a different counterfactual technique, and each 

corresponding text recommendation is listed below the plot. Common recommendations are in bold. 

 

TABLE V: Mean and variance of the scores obtained by each counterfactual generation technique on five 

evaluation metrics, using three different deep learning models, tested on 723 samples. 

 
 

Upon analysis, we can first observe that the best- performing explainable technique for each metric 
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remains constant across the models, which only 

impacts the time aspect. Secondly, we note that the 

NUNr technique performs best across three out of 

five metrics but falls short on the proximity and 

sparsity metrics. Compared to NUNr, dbar improves 

the proximity metric at the cost of a large drop in 

validity and plausibility. Thirdly, it is evident that all 

techniques, except for tsevor, cannot produce sparse 

counterfactuals. It is also important to note that 

tsevor ranks first or second in every metric except for 

time, where it secures third place. Moreover, when 

using tsevor, the model plays a role in the validity 

and time metrics. Indeed, the validity drops to 0.08 

when explaining the convlstm model, compared to 

0.37 for cnn and 0.39 for tcn, while being five times 

slower. 

 

V. DISCUSSION 

 

Our work introduces novel model-agnostic, user-

targeted explanation methods for tsxair applications. 

To achieve this, we adapted four counterfactual 

techniques from the do- main of time series 

classification. We outline principal find- ings (cf. 

Sec. V-A), practical implications (cf. Sec. V-C), and 

limitations (cf. Sec. V-D) below and also provide a 

comparison with prior work (cf. Sec. V-B). 

 

A. Principal findings 

With our work, we applied counterfactual theory to 

time se- ries extrinsic regression. We successfully 

adapted four existing counterfactual methods for tsc 

tasks for tser. We evaluated these four adapted 

methods, the digital health use case of biological age 

estimation. Our experiment on biological esti- 

mation demonstrates that we can generate 

meaningful counter- factual explanations for the 

univariate tser task. Specifically, in biological age 

estimation, prior works show how to collect the data, 

preprocess it, and use it to predict the biological age, 

but they could not provide recommendations. Our 

work provides the final piece of the puzzle for 

continuous health assessments using wearable 

devices. Using counterfactual applications, we can 

provide objective recommendations to participants 

on how to improve their health, which could be 

delivered, for example, via a smartphone app. 

 

B. Comparison with prior work 

Previous research tackled similar tasks in the field. 

For example, Perturbation techniques such as 

DynaMask (46) can highlight essential subsets of 

time series data, such as the most discriminative 

areas used in the model decision process. While it is 

useful for explaining tser, it does not focus on the 

user-interpretability. Counterfactual techniques have 

been developed for tsc (76; 75) and tsf (106) tasks. 

However, these techniques can not be used for tser 

tasks. To the best of our knowledge, no explainable 

technique specifically targeting users for tser models 

exists. 

 

C. Practical implications 

Our experiment of tsxair on biological age 

estimation is not limited to that particular area, as our 

approach can be applied to any DL technique that 

aims to learn a score from time series data. For 

instance, we could use Diaz-Lozano et al.’s work 

(107). They show that it is possible to use the 

evolution in the number of COVID-19 contagions to 

predict the mortality rate of people affected by this 

particularly contagious disease. With the help of 

our technique, we could understand how the 

number of contagions should vary to reduce the 

mortality rate. This could be used to take the rightful 

political measures to reduce the contamination 

number. For further usage of tsxair, it is important to 

note that the ability of NUNr, dbar, and tsevor to 

identify valid counterfactuals (as defined in 

Definition 3.2) depends on the size of the reference 

set (as defined in Section 3.6). As a matter of fact, 

the number of mutations that tsevor can attempt is 

determined by the size of the reference set. If the 

reference set is empty, it cannot identify any 

counterfactuals. In our experiment, we filtered out 

people younger than 18 years old, meaning it was 

impossible to find counterfactuals for people 

between 18 and 21, as their reference set was empty. 

 

D. Limitations 

We consider the following three points to be 

limitations of our work. First, the long computation 

times for tsevor, 8 minutes when using the cnn or 47 

minutes with the convl- stm, suggest that we could 

benefit from using parallelization strategies to speed 

up the process. Second, our reliance on deep learning 

models like tcn, cnn, and convlstm can lead to 

variable results, which raises questions about the 

fairness of comparisons and the need for more 

robust models (108) with lower mae. The plausibility 

(cf. Sec. 3.5) of the coun- terfactuals may vary 

depending on the accuracy of the DL model. Figure 

2a shows that the wachter technique utilizes DL 

models’ noise to produce a counterfactual. NUNr has 
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only around 50% of plausibility which is concerning. 

Indeed, the NUNr counterfactual, an instance of the 

dataset, has a label close to only half its neighbors. 

This implies a noisy model that predicts differently 

close instances. These two examples show the 

limitations of the DL models, but they also show that 

we can use the cfe to detect robustness failures in 

tser. Third, the threshold choice of ε = 3 is somewhat 

arbitrary and can have unexplored implications for 

the outcomes (85). In addition, our algorithms have 

primarily been tested on univariate time-series data, 

which could limit their applicability to more complex 

datasets. Finally, the effectiveness of tsevor heavily 

depends on the availability of a valid reference set, 

which means it may not be effective in scenarios 

where such data is lacking. Therefore, it is important 

to explore alternative strategies in those cases. By 

addressing these limitations, we can develop a more 

comprehensive and reliable framework for 

generating counterfactuals. 

 

VI. OUTLOOK 

 

As mentioned in the previous section, our approach 

can be applied to any DL technique to predict a 

continuous variable from time series data. In future 

work, we would like to improve our methods and 

recommendation pipeline further pipeline (cf. Fig. 1). 

We will focus on three main areas for improvement. 

Data Our current experiment uses physical activity 

data from 2003 to 2006. To improve our dataset, 

we plan to include data available until 2014. 

Additionally, we will enrich our analysis by 

incorporating diverse digital biomarkers such as 

heart rate and tension, shifting from univariate to 

multivariate time series. These enhancements are 

expected to improve the predictive power of our 

model, thereby enabling a deeper understanding of 

the four methods in various scenarios. tsxair 

Building on recent research by Letzgus et al. (109) 

and Shim et al. (13), we aim to enhance our xai 

framework. We will incorporate contextualized xai 

techniques and population clus- ters based on 

physical activity patterns, enhancing the explana- 

tion’s interpretability. Furthermore, we will explore 

alternative mutation techniques suggested in the 

tsevo paper and leverage llm or text-based models for 

automated recommendations. These improvements 

could make our approach more robust and effective. 

Recommendations We plan to improve our rec- 

ommendation system by analyzing the extensive tser 

datasets compiled by Guijo et al. (28), which will 

provide valuable insights and enable us to integrate 

expert recommendations. Additionally, we will test 

our method with diverse datasets, especially those 

with well-established outcomes, to ensure that our 

counterfactual explanations align with common 

medical understanding. This validation step is crucial 

for enhancing the credibility and applicability of our 

approach in real-world scenarios. By considering 

these improvements, we aim to refine our 

methodology and advance the field of mobile health. 

We aim to foster trust, improve accuracy, and 

enhance the interpretability of our model’s 

recommendations. 

 

ACRONYMS 

CFE Counterfactual Explanations. 7 

TSC Time-Series Classification. 6 

TSER Time Series Extrinsic Regression. 6 

Wachte W Rachter Counterfactual for Time Series 

Extrinsic Regression. 10 
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