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Abstract—This paper addresses the challenge of scheduling 

workflows in memory-constrained environments where 

tasks may exceed the available memory on processors. I 

propose three memory-aware HEFT-based heuristics: 

HEFTM-BL, HEFTM- BLC, and HEFTM-MM, designed 

to produce valid schedules by accounting for memory 

limitations. Experimental evaluations on default and 

memory-constrained clusters demonstrate the superiority of 

memory-aware heuristics over the baseline HEFT, which 

frequently produces invalid schedules. Among the pro- 

posed methods, HEFTM-MM achieves a 100% success rate 

for large workflows under severe memory constraints but 

at the cost of increased makespan and runtime. 

Additionally, I explore dynamic scenarios with evolving task 

parameters, highlighting the necessity of adaptive 

scheduling to prevent execution failures. The study provides 

a foundation for memory-efficient scheduling in static and 

dynamic environments and opens avenues for extending the 

model to handle heterogeneous bandwidths, task variability, 

and platform dynamics. 

Index Terms—DAG, Heterogeneous platform, Adaptive 

scheduling, Memory constraint. 

 

I. INTRODUCTION 

The analysis of massive datasets originating from fields 

such as genomics, remote sensing, or biomedical imaging 

– to name just a few – has become ubiquitous in 

science; this often takes the form of workflows, separate 

software components chained together in some kind of 

complex pipeline [1]. These workflows are usually 

represented as directed acyclic graphs (DAGs). The DAG 

vertices represent the software components (or, more 

generally, the workflow tasks), while the edges model I/O 

dependencies between the tasks [2], [3]. Large workflows 

with resource-intensive tasks can easily exceed the 

capabilities of a single computer and are, therefore, 

executed on a parallel or distributed platform. An 

efficient execution of the workflows on such platforms 

requires mapping tasks to specific processors; to increase 

utilization by reusing finished processors, one also needs 

a task schedule (a valid execution order that respects the 

dependencies) and possibly also starting times for the 

tasks. 

Modern computing platforms are often 

heterogeneous, meaning they feature varying CPU 

speeds and memory sizes. In general, having 

different memory sizes per CPUs makes it more 

challenging to compute a schedule that respects all 

memory constraints – meaning that no task is 

executed on a processor with less memory than 

needed for the task. This is, however, very 

important to avoid (possibly expensive) runtime 

failures and to provide a satisfactory user experience. 

Hence, building on previous related work [4]–[6], I 

consider a scheduling problem formulation that 

takes memory sizes as explicit constraints into 

account. Its objective is the very common makespan 

[3], which acts as a proxy for the total execution time 

of a workflow. However, to the best of my 

knowledge, the only memory-aware heuristics that 

would account for memory constraints are 

partitioning the DAG and not reusing processors once 

they have processed a part of the graph, leading to 

high values of make span compared to a finer grain 

solution that reuses processors. 

While previous work with memory constraints has 

been focusing on partitioning the graph, and not 

reusing processors during execution, a seminal list 

scheduling heuristic for workflows on heterogeneous 

platforms without accounting for the memory 

constraint, is HEFT (heterogeneous earliest finish 

time) [7]. It has two phases: (i) each task is assigned a 

priority, and (ii) the tasks in a priority-ordered list are 

assigned to processors, where the “ready” task with 

the highest priority is scheduled next on the 

processor where it would complete its execution 

first. HEFT has been extended (e.g., by Shi and 

Dongarra [8]) and adjusted for a variety of different 

scheduling problem formulations. Yet, none of them 

adhere to memory constraints as I propose – see 

discussion of related work in Section II. 

Another limitation in the practice of HEFT (and many 

other scheduling strategies) is their assumption that 

the task running times provided to them are accurate. 
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In practice, this is not the case, and deviations from user 

estimates or historical measurements are very common 

[9]. As a consequence, one should adapt the schedule 

when major deviations occur. However, the original list-

based schedulers, such as HEFT, are only defined in a 

static setting with accurate task parameters. 

The main contributions of this paper are both algorithmic 

and experimental: 

• I formalize the problem with memory constraints, 

where communication buffers are used to evict data 

from memory if it will be later used by another 

processor. 

• I design three HEFT-based heuristics that adhere to 

memory size constraints: HEFTM-BL, HEFTM-BLC, 

and HEFTM-MM (M behind HEFT for memory, BL 

for bottom level, BLC for bottom level with 

communication, and MM for minimum memory 

traversal). The difference between the new heuristics is 

the way they prioritize tasks (for processor 

assignment). 

• I implement a runtime system able to provide some 

feedback to the scheduler when task requirements (in 

terms of execution time and memory) differ from 

the initial predictions, and I recompute a schedule, 

based on the reported deviations. 

• I perform extensive simulations, first in the static case 

by comparing the schedules produced by these 

heuristics with the classical HEFT as the baseline, 

which however does not take memory sizes into 

account; while HEFT returns invalid schedules that 

exceed the processor memories and cannot execute 

correctly, the new heuristics are able to schedule large 

workflows with reasonable makespans successfully. 

• In the dynamic setting, I use a runtime system that 

allows us to simulate workflow executions, 

introducing deviations in running times and memory 

requirements of tasks that are communicated back to 

the scheduler; the scheduler can then recompute a 

schedule. Without these recomputations, most 

schedules become invalid after deviations since the 

memory constraint is exceeded for most workflows, 

hence demonstrating the necessity of a dynamic 

adjustment of the schedule. 

I first review related work in Section II. Then, I formalize 

the model in Section III and the algorithms in Section 

VI. The adaptation of the heuristics in a dynamic setting 

is discussed in Section VII, and experiment results are 

presented in Section VIII. Finally, I conclude and 

provide future working directions in Section IX. 

II. RELATED WORK 

First, I focus on HEFT-like scheduling heuristics 

from the literature that do not necessarily consider 

memory constraints. Then, I discuss memory-aware 

scheduling algorithms. Finally, I move to related 

work on dynamic or adaptive algorithms. 

A. Static list schedulers, especially HEFT-based 

algorithms 

Introduced in 2002, HEFT [7] is a list-based 

heuristic. It and all its successors consist of two 

phases: task prioritization/ordering and task 

assignment. In the first phase, the algorithms 

compute the bottom levels of the tasks based on some 

priorities (create the list) and then schedule tasks in 

the order of these priorities. The modifications of 

HEFT revolve around the way the priorities of the 

tasks are computed and the logic of the processor 

assignment. All such algorithms assume a 

heterogeneous execution environment. 

Hence, during the task prioritization phase in [10], 

the standard deviation of the computation cost 

(between processors) is computed, and added to the 

mean value to account for the differences between 

processor speeds. In the processor choice phase, the 

entry task and the longest parent tasks are duplicated 

during idle times on the processor. 

PEFT (Predict earliest finish time) [11] is a HEFT 

variant that computes an Optimistic Cost Table 

(OCT). The OCT is computed per task-processor 

pair and stores the longest shortest path from this task 

to the target task if this processor is chosen for this 

task. Ranking is based on OCT values. The processor 

choice stage minimizes the optimistic EFT, which is 

EFT plus the longest path to the exit node for each 

task. 

 The HSIP (Heterogeneous Scheduling with 

Improved task Priorities) [12] has an improved first 

step in comparison to HEFT. It combines the standard 

deviation with the communication cost weight on the 

tasks. In the second stage, the algorithm duplicates 

the entry task if there is a need for it. 

The TSHCS (Task Scheduling for Heterogeneous 

Computing Systems) algorithm [13] improves on 

HEFT by adding randomized decisions to the second 
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phase. The decision is whether the task should be 

assigned to the processor with the lowest execution time 

or to the processor that produces the lowest finish time. 

The SDC algorithm [8] considers the percentage of 

feasible processors in addition to the task’s average 

execution cost in its weight. The selected task is then 

assigned to a processor which minimizes its Adjusted 

Earliest Finish Time (AEFT) that additionally notes how 

large the communication between the current node and its 

children will be on the average, provided that it is 

scheduled on the current processor. 

HEFT can also be adapted in cloud-oriented 

environments [14] and even combined with 

reinforcement learning techniques [15]. 

 

B. Memory-aware scheduling algorithms 

Respecting processor memories adds a constraint to a 

scheduling problem. Therefore, only specifically 

memory- targeted algorithms address this issue. 

Moreover, the way processor memories are represented in 

the model has a decisive impact on the way the constraint 

is formulated and addressed in the algorithm. Different 

models of memory available on processors and memory 

requirements of tasks have been presented. 

Marchal et al. [16] assumes a memory model where each 

processor has an individual memory available. Workflow 

tasks have no memory requirements, but they have input 

and output files that need to be stored in the memory. A 

polynomial- time algorithm for computing the peak 

memory needed for a parallel execution of such a DAG is 

provided, as well as an ILP solution to the scheduling 

problem. The memory model requires deleting all input 

data upon starting the task and adding all output files 

there. 

In an assumed dual-memory systems [17], a processor 

can have access to a memory of two different kinds (red 

or blue), and each task can be executed on only one sort 

of memory. The communications happen only between 

these two kinds of processors (communications within 

each group is ignored). The authors then formulate an ILP 

solution for this problem formulation. 

Yao et al. [18] consider that each processor has its own 

internal memory and all processors share a common 

external one. The internal (local) memory is used to store 

the task files. The external memory is used to store 

evicted files to make room for the execution of a task on 

a processor. All processors, including the original one, 

can access these files. Each edge has two weights – the 

size of the files transferred along it and the time of 

communication along this edge. The tasks 

themselves have no memory requirements but need 

to hold all their incoming and outgoing files. 

In [19], there are connected processors with 

individual limited memories. The collective set of 

memories forms the global memory, to which each 

processor has access, however, the access time to 

global memory is different. Each memory access in 

the graph is modeled as a memory access token 

on the task, while the edges have no weights. The 

solved problem is how to allocate initial input data in 

processor memories so that the overall execution is 

minimized and the memories are not exceeded. The 

authors propose an integer linear programming 

model. 

In [20], the authors assume memory requirement on 

tasks represented as tiles. Each processor has 

individual memories to process the task, but only the 

shared memories store the tiles containing memory 

tiles occupied by memory tiles. 

Finally, there are some cloud-oriented models that 

include costs associated with memory usage [21]. 

Overall, there are a variety of memory models, but to 

the best of my knowledge, the only study on a 

multiprocessor platform that is fully heterogeneous, 

with individual memories, is the one from [6], but 

where a partition of the workflow is proposed, hence 

preventing processor reuse. Hence, in [6], there is no 

need of communication buffers to store data that 

should be communicated between two processors 

when tasks are ready to execute. 

C. Dynamic/adaptive algorithms 

I now review related work in a dynamic setting. With 

no variation in task parameters, DVR HEFT [22] 

rather considers that new tasks arrive in the system. 

They use an almost unchanged HEFT algorithm in 

the static step, executing three slightly varying 

variants of task weighting and choosing the variant 

that gives the best overall makespan. In the dynamic 

phase, they receive new tasks and schedule them on 

either idle processors or those processors that give 

them the earliest finish time. 

Rahman [23]’s dynamic critical path (DCP) 

algorithm for grids maps tasks to machines by 

calculating the critical path in the graph dynamically 

at every step. 
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They schedule the first task on the critical path to the most 

suitable processor and recompute the critical path. 

The heuristic also uses the same processor to schedule 

parent and children tasks, as to avoid data transfer 

between processors. The approach is evaluated on 

random workflows of the size of up to 300 tasks. 

Garg [24] proposes a dynamic scheduling algorithm for 

heterogeneous grids based on rescheduling. The 

procedure in- volves building a first (static) schedule, 

periodic resource monitoring, and rescheduling the 

remaining tasks. The resource model contains resource 

groups (small tightly-connected sub- clusters), connected 

between each other. For each resource group, there is an 

own scheduler and an overall global scheduler 

responsible for distributing tasks to groups. The static 

heuristic is HEFT, with the earliest start time as a priority. 

Upon rescheduling, a new mapping is calculated from 

scratch, and this mapping is accepted if the resulting 

makespan is smaller than the previous one. The 

experiments were conducted on a single workflow with 

10 tasks. 

Most dynamic or adaptive algorithms are formulated for 

clouds, where the execution environment is not fixed, but 

constrained by cost. 

Wang et al. [25] propose a dynamic particle swarm 

optimization algorithm to schedule workflows in a cloud. 

Particles are possible solutions in the solution space. 

However, the dynamic is only in the choice of 

generation sizes, not in the changes in the execution 

environment. Similarly, Singh et al. [26] address 

dynamic provisioning of resources with a constraint 

deadline. 

De Olivera [27] propose a tri-criteria (makespan, 

reliability, cost) adaptive scheduling algorithm for 

clouds. They solve a set of linear equations that represent 

the cost of an execution based on the criteria. The authors 

test out 4 scenarios - one preferring each criteria, and a 

balanced one. The algorithm chooses the best virtual 

machine for each next task based on the cost given by the 

model. The authors used workflows with less than 10 

tasks but repeated them so that the execution had up to 

200 tasks. 

Daniels et al. [28] formalize the concept of robust 

scheduling with variable processing times on a single 

machine. The changes in runtimes of tasks are not due to 

changing machine properties but are rather task-related 

(that means that these runtime changes are unrelated to 

each other). The authors formulate a decision space 

of all permutations of n jobs, and the optimal 

schedule in relation to a performance measure ϕ. 

Then, they proceed to formulate the Absolute 

Deviation Robust Scheduling Problem as a set of 

linear constraints. 

While several related works consider building a new 

sched- ule once some variation has been observed, I 

am not aware of work implementing a real runtime 

system that interacts with the scheduler and is tested 

on workflows with thousands of tasks, as I propose in 

this paper. Furthermore, I am not aware of any 

previous work discussing dynamic algorithms 

combined with memory constraints. 

III. MODEL 

The model for the target applications, which are large 

scientific workflows with incomplete prior 

knowledge, is introduced in Section IV. Following 

this, the execution environment is defined as a 

heterogeneous system characterized by variations in 

processor speed and memory capacity, detailed in 

Section V. Finally, the optimization problem is 

outlined in Section V-A, with key notations compiled 

in Table I. 

IV. WORKFLOW 

A workflow is represented as a directed acyclic graph 

G = (V, E), where V denotes the set of tasks 

(vertices), and E represents directed edges of the form 

e = (u, v), where u, v ∈ V, defining precedence 

constraints between tasks. Each task u ∈ V executes 

wu operations and requires memory mu for execution. 

The cost associated with each edge e = (u, v) ∈ E, 

denoted as cu,v, corresponds to the size of the 

output file generated by task u and consumed by 

task v. 

The memory requirement of a task u, represented 

as ru, is the maximum among its total memory 

demand mu, the cumulative size of input files 

received from its parent tasks, and the total size of 

output files transmitted to its child tasks: The 

parents of a task u ∈ V are the tasks that must 

complete before u can begin, forming the set: Πu = 

v ∈ V : (v, u) ∈ E. Tasks without parents are referred 

to as source tasks. Similarly, the child tasks of u are 

those directly succeeding u according to 
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precedence constraints: Cu = v ∈ V:  (u, v) ∈ E. Tasks 

TABLE I NOTATION 

 Symbol Definition

  

G = (V, E) Workflow graph with vertices (tasks) 

and edges 

Πu, Cu Parents and children of task u mu

 Memory footprint of task u 

wu Workload of task u (normalized 

execution time) 

cu,v Data transfer volume on edge (u, v) ∈ 

E F , F Partitioning function and resulting 

partition 

Vi Block number i 

S, k Computing system and processor count 

pj , proc(Vi) Processor j, processor of block Vi Mj 

, MCj , sj Memory, buffer size, and speed of pj 
 

without children are designated as target tasks. Each 

task may have multiple parent and child tasks. 

Furthermore, this work considers a scenario 

where the task parameters (wu and mu) are not 

precisely known prior 

 β Bandwidth in compute system 

lu Bottom-level weight of task u µG, µi

 Makespan of G and block Vi 

Γ = (V, E ) Quotient graph, nodes, and edges 

ru, rVi 
Memory need of task u and block Vi 

 to execution, but only estimated [23], [24]. 

Consequently, scheduling decisions rely on these 

estimated parameters and may be adjusted at runtime 

upon the task’s execution when exact parameters become 

available. 

V. EXECUTION ENVIRONMENT 

The computational workflow operates on a 

heterogeneous computing architecture, referred to as C, 

which comprises m processing units q1, . . . , qm. Each 

processor qi (1 ≤ i ≤ m) is defined by its memory 

capacity Mi, communication buffer limit MCi, and 

computational speed si. Data eviction from primary 

memory is permitted during data transfers to another 

processor, where it is temporarily held in the 

communication buffer until the transmission concludes. 

The execution duration of a task x ∈ V on processor 

qi is expressed as wx . It is assumed that all processors 

operate with a uniform bandwidth β. 

The system maintains records of the ready times for each 

processor and communication link, denoted as rti and rti,i′ 

for each processor i and all processor pairs (i, i′). 

Initially, these ready times are initialized to zero. 

Furthermore, the available memory for each 

processor and communication buffer is tracked 

using availMi and availCi, respectively. 

Additionally, PDi represents a priority queue that 

holds pending data currently occupying memory Mi 

but subject to eviction if extra memory is required on 

qi. These pending data items, corresponding to values 

cx,y, are organized in ascending order based on their 

sizes. 

The calculation of memory requirements is 

performed using the MEMDAG algorithm, introduced 

by Kayaaslan [29]. This method converts the 

workflow into a series-parallel graph and Since tasks 

are subject to variability, I aim at minimizing the 

actual makespan achieved at the end of the execution, 

while decisions may be taken building on the 

estimated task parameters. 

Note that the problem is already NP-hard, even in the 

homogeneous case and without memory constraints, 

because of the DAG structure of the application. 

Hence, I focus on the design of efficient scheduling 

heuristics. 

VI. SCHEDULING HEURISTICS 

I design variants of HEFT that account for memory 

usage and aim at minimizing the makespan. First, I 

present in Sec- tion VI-A the baseline HEFT heuristic 

that does not account for the memory (and hence, 

may return invalid schedules that will not be able to 

run on the platform by running out of memory). Then, 

Section VI-B focuses on the presentation of the novel 

heuristics, including eviction strategies to move some 

data in communication buffers in case there is not 

enough memory available on some processors. 

A. Baseline: original HEFT without memories 

Original HEFT does not consider memory sizes. The 

solutions it provides can be invalid if it schedules 

tasks to processors without sufficient memories. 

However, these solutions can be viewed as a “lower 

bound” for an actual solution that considers memory 

sizes. 

HEFT works in two stages. In the first stage, it 

computes the ranks of tasks by computing their non-

increasing bottom levels. The bottom level of a task 
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is defined as determines the optimal traversal strategy to 

minimize memory usage. 

 bl(u) = wu + max 
(u,v)∈E 

 {cu,v + bl(v)} 

A. Optimization problem 

The goal is to find a schedule of the DAG G for 

the k processors so that the makespan (total execution 

time) is minimized while respecting memory constraints. 

If a processor runs out of memory to execute a task 

mapped on it, the schedule is said to be invalid. (the max 

is zero if there is no outgoing edge). The tasks are sorted 

by non-decreasing ranks. 

In the second stage, the algorithm iterates over the 

ranks and tries to assign the task to the processor, where 

it has the earliest finish time. I tentatively assign each 

task v to each processor j. The task’s starting time stv 

is dictated by the maximum between the ready time of 

the processor rtj and all communications that must be 

orchestrated from predecessor Step 2. Next, I 

check the memory constraint on pj, by tasks u ∈/ T 

(pj). The starting time is then: computing 

Res = availMj − mv −

 

L 
{cu,v} − 

L 
{cv,w}. 

ST (v, pj ) = max {rtj, max {FT (u) + cu,v/β, rtproc(u),pj 

+ cu,v/β}} 
 u∈Π(v) 

Finally, its finish time on pj is FT (v, pj) = stv + wv . 

 u∈Π(v),u∈/T (pj ) 

 w∈Succ(v) 

Once I have computed all finish times for task v 

 sj 

, I keep the 

T (pj) is the set of tasks already scheduled on pj; by 

step 1, 

their files are already in the memory of pj. However, 

the files 

 minimum FT (v, pj) and assign task v to processor 

pj. 

Assignment to the processor. When assigning the task, I 

set the ready time rtj of processor j to be the finish 

time of the task. For every predecessor of v that has 

been assigned to another processor, I adjust ready times 

on communication buffers rtj′,j for every predecessor 

u’s processor j′: I increase them by the communication 

time c(u, v)/β. 

B. Memory-aware heuristics 

Like the original HEFT, the memory-aware versions 

of HEFT consist of two stages: first, they compute the 

task ranks, and second, they assign tasks to processors 

in the order defined in the first stage. I consider three 

variants of HEFT accounting for memory usage 

(HEFTM), which only differ in the order they 

consider tasks to be scheduled in the first stage. 

Compute task ranks. 

I design three variants of memory-aware HEFT: 

• HEFTM-BL orders tasks by non-increasing 

bottom levels, where the bottom level is defined as 

from the other predecessor tasks must be loaded in 

memory before executing task v, as well as mv and 

the data generated for all successor tasks. Res is 

then checking whether there was enough memory; 

if it is negative, it means that I have exceeded the 

memory of pj with this tentative assignment. 

In this case (Res < 0), I try evicting some data from 

memory so that I have enough memory to execute 

task v. I need to evict at least Res data. I propose a 

greedy approach, evicting the largest files of PDj 

until Res data has been evicted. A variant where the 

smallest files are evicted first has been tested, and it 

led to comparable results. While tentatively evicting 

files, I remove them from the list of pending memories 

and move them into a list of memories pending in 

the communication buffer. I keep track of the 

available buffer size, too – each time a file gets 

moved into the pending buffer, the available buffer 

size is reduced by its weight. 

If I still do not have enough memory after having 

tentatively evicted all files from PD j, or if, while 

doing so, I exceeded the size of the available 

buffer, I set the finish time to +∞ bl(u) = wu + 

max 
(u,v)∈E 

 {cu,v + bl(v)} 

 (invalid choice). 

Step 3. I tentatively assign task v on pj. Its 

starting time (the max is zero if there is no 

outgoing edge). 

• HEFTM-BLC is giving more priority to tasks with 

potentially large incoming communications, hence 

aiming at clearing the memory used by files as 
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soon as possible, stv is dictated by the maximum 

between rtj, and all communications that must be 

orchestrated from predecessor tasks u ∈/ T (pj). The 

starting time is therefore: 

 to have more free memory for remaining tasks to 

be 

 ST (v, pj ) = max {rtj, max 

u∈Π(v),u∈/T (pj ) 

 {FT (u), rtproc(u),pj 
} + cu,v/β}. 

 executed on the processor. Therefore, for each task, 

I

 

Finally, its finish time on p is FT (v, p ) = ST (v, p ) 

+ wv . 

compute a modified bottom-level accounting for 

communications: 
 j j 

Assignment of task v. 

 j sj 

 blc(u) = wu + max 
(u,w)∈E 

 {cu,w + blc(w)} + max 
(v,u)∈E 

 cv,u. 

Once I have computed all finish times for task v, I keep 

the minimum FT (v, pj) and assign task v to 

processor pj. In 

•  Finally, HEFTM-MM orders tasks in the order 

returned by the MEMDAG algorithm [29], which 

corresponds to a traversal of the graph that minimizes 

the peak memory usage. 

Task assignment. 

Then, the idea is to pick the next free task in the given 

order and greedily assign it to a processor by trying all 

possible options and keeping the most promising one. 

I first detail how a task is tentatively assigned to a 

processor by carefully accounting for memory usage. 

Next, I explain the steps to be taken to assign a task to a 

given processor effectively. 

Tentative assignment of task v on pj. 

Step 1. First, I need to check that for all predecessors u of 

v that are mapped on pj, the data cu,v is still in the 

memory of pj, i.e., cu,v ∈ PDj. Otherwise, the finish time 

is set to +∞ (invalid choice). 

 detail, we: 

• Evict the file memories that correspond to edge 

weights that need to be evicted to free the memory. 

I remove these files from pending memories PDj, 

add them to pending data in the communication 

buffer, and reduce the available buffer size 

accordingly. 

• Calculate the new availMj on the processor. I 

subtract the weights of all incoming files from 

predecessors as- signed to the same processor, and 

add the weights of outgoing files generated by the 

currently assigned task. 

• For every predecessor of v that has been assigned 

to another processor, I adjust ready times on 

communication buffers rtj′,j for the processor 

j′that the predecessor u has been assigned to: I 

increase them by the communication time c(u, v)/β. 

I also remove the incoming files from either the 

pending memories or pending data in buffers of 

these other processors and increase the available 

memories or available buffer sizes on these 

processors. 

• I compute the correct amount of available memory 

for pj (for when the task is done). Then, for each 

predecessor that is mapped to the same processor, 

I remove the pending memory corresponding to the 

weight of the incoming edge, also freeing the same 

amount of available memory (increasing availMj). 

For each successor, I would rather add the edge 

weights to pending memories and reduce availMj 

by the corresponding amount. 

VII. DYNAMIC SCENARIO 

In a workflow execution environment, the scheduling 

method interacts with the runtime environment, 

which pro- vides information such as resource 

estimates. This information may include memory 

usage, runtime, graph structures, or the status of the 

underlying infrastructure. In order to ensure that the 

information is up to date, a monitoring system 

observes the workflow execution and collects 

metrics for tasks and the underlying infrastructure. 

By incorporating dynamic monitor- ing values, e.g., 

the resources a task consumed, the runtime 

environment can incorporate the data into the 

prediction model to provide more accurate resource 

predictions. Also, the underlying infrastructure can 

change during the workflow execution. Examples are 

processor failures, node recoveries, or the acquisition 

of new nodes. However, also when the hardware of 
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the infrastructure does not change, the set of nodes 

provided as a scheduling target might change due to 

release or occupation in shared cluster infrastructures. As 

infrastructure information and resource predictions are 

dynamically updated and provided to the scheduler 

during the workflow runtime, the previous schedule 

becomes invalid, and a new one must be calculated. 

For state-of-the-art memory prediction methods, a cold-

start median prediction error for heterogeneous 

infrastructures of approximately 15% is shown [30]. 

Online prediction methods were able to significantly 

reduce the error during runtime, with the reduction 

reaching up to one-third of the cold- start error [31], 

[32]. Such a dynamic execution environment requires a 

dynamic scheduling method where the schedule can be 

recomputed during the workflow execution. 

Retracing the effects of change on an existing schedule 

After the monitoring system has reported changes, I need 

to assess their impact on the existing schedule. These 

changes can invalidate the schedule (e.g., if there is not 

enough memory for some tasks to execute anymore), they 

can lead to a later finishing time (e.g., if some tasks are 

longer and they delay other tasks), or they can have no 

effect (e.g., if new processors joined the cluster, but the 

old schedule did not account for them). To assess the 

impact, I need to retrace the schedule. 

First, I find out if at least one processor that had assigned 

tasks has exited - this instantly invalidates the entire 

schedule. I then iterate over all tasks of the workflow in a 

topological order - any of the orderings given by 

rankings BL, BLC, or MM is a topological ordering. I 

then repeat steps similar to those I did during the 

tentative assignment in the heuristics, except that I do not 

choose a processor anymore, but rather, I check whether 

the current processor assigned to the task still fits. 

For each task v, I first assess its current memory 

constraint Res using Step 2 from the heuristic. The factors 

that affect Res are possible changes in mv, in cu,v from 

predecessors u or cv,w from successors w, available 

memory availMj on the processor (due to either changed 

Mj or changed memory requirements from other tasks). If 

originally, Res was positive (no files were evicted from 

memory into the communication buffer), then it has to 

stay this way – otherwise, evicted files can invalidate the 

next tasks. If the original Res was negative, then I need 

to make sure that evicted files still fit into the 

communication buffer. If either Res is newly negative, 

or the communication buffer is not large enough, this 

invalidates the schedule. I update the availMj and 

availMCj values according to the new memory 

constraints. 

Then, I can re-calculate the finish time of the task on 

its processor, like in Step 3. The factors that affect it 

are changes in own execution time wv of the tasks, 

changed ready time of the processor (after delayed 

previous tasks), and changed communication buffer 

availability. 

Finally, after having updated the processor’s values, I 

moved on to the next task. 

VIII. EXPERIMENTAL EVALUATION 

I first describe the experimental setup in Section VIII-

A. Then, I report results on static experiments to 

assess the performance of the memory-aware 

heuristics in Section VIII-B, before discussing the 

heuristics behavior in a dynamic setting in Section 

VIII-C. Finally, I report the running times of the 

heuristics in Section VIII-D. 

A. Experimental Setup 

All algorithms were developed in C++ and compiled 

using g++ (v.8.5.0). The experimental evaluations 

were orchestrated with simexpal [33] and executed 

on high-performance work- stations featuring 192 

GB RAM, dual 12-Core Intel Xeon 6126 processors 

running at 3.2 GHz, and operating on CentOS8. To 

ensure reproducibility, the code, input datasets, and 

experiment scripts are publicly available at 

https://zenodo.org/ records/13919214 and 

https://zenodo.org/records/13919302. 

The subsequent sections describe the workflows 

utilized for evaluation and the clusters designated for 

their scheduling. 

1) Workflow Instances: Experiments were 

conducted on a dataset comprising real-world 

workflows. Specifically, work- flows from [34] were 

used, including atacseq, bacass, chipseq, eager, and 

methylseq. Additionally, their scale was extended 

using the WFGen generator [35]. 

a) Workflow Graphs: For the five real-world 

workflows, their nextflow descriptions (refer to [36]) 

were obtained from the respective repositories and 

converted into .dot format using the nextflow option 

“-with-dag.” The resulting directed acyclic graphs 

(DAGs) included multiple pseudo-tasks, which are 

https://zenodo.org/records/13919214
https://zenodo.org/records/13919214
https://zenodo.org/records/13919302
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internal representations in nextflow rather than actual 

tasks. 

These pseudo-tasks were subsequently removed to 

maintain accuracy. 

For the enlarged workflows, the WFGen generator was 

utilized to construct graphs based on a model workflow 

and a specified number of tasks. The real-world 

workflows served as models, except for bacass, which 

encountered errors in the generator. The number of tasks 

considered in this study includes: 200, 1 000, 2 000, 4 000, 

8 000, 10 000, 15 000, 18 000, 20 000, 25 000, and 30 000. 

The workflows were categorized into four size groups: 

tiny (up to 200 tasks), small (1 000 to 8 000 tasks), 

medium (10 000 to 18 000 tasks), and large (20 000 to 

30 000 tasks). 

b) Task and Edge Weights: For real-world 

workflows, historical data files provided by Bader [34] 

were employed. These files contain Linux PS statistics 

measured during the execution of a nextflow workflow, 

with each row representing a single task execution on a 

cluster node. Since the operating system does not 

differentiate between (a) RAM used for computation and 

(b) RAM allocated for storing transferred files, the 

recorded values represent the total memory consumption, 

including both computational and input/output file 

memory requirements. Similarly, historical data from 

[34] do not directly store edge weights between tasks but 

instead provide the total file sizes transmitted by each task 

to its successors. 

For each task, historical data can contain multiple values 

obtained from the runs with different input sizes. The 

same workflow can require different memory capacities 

and take different time to execute depending on the size 

of its input. I simulate these various runs by obtaining 

values corresponding to each input size. For each of 

the four families, there are five input sizes, so I run each 

workflow in five variants corresponding to these inputs 

Not all tasks have historical runtime data stored in the 

tables. In fact, for two workflows, Bader does not provide 

data for more than 50% of the tasks. For two more, around 

40% of tasks have no historical runtime data stored. 

Hence, in the absence of historical data about a task, I 

give it fixed weights. I give it an execution time of 1, a 

memory requirement of 50MB, and files written and 

received of 1KB. These values align with the findings of 

[34] about small tasks. 

2) Target Computing Systems: To leverage the 

historical dataset effectively, the primary 

experimental setup I employ is a cluster composed of 

the same six categories of real-world machines 

utilized in the performance assessment presented 

in [34]. The configuration includes 12 nodes of each 

type, resulting in a total of 72 processors. 

Each machine is characterized by its (normalized) 

CPU processing capability and available memory (in 

GB). The machines are listed with their respective 

attributes as follows: (L, 4, 16) representing low-

performance systems; (A1, 32, 32), (A2, 6, 64), (N1, 

12, 16) for mid-range machines; (N2, 8, 8) with 

minimal memory resources; and (C2, 32, 192) as a 

high- end system with superior computational power 

and extensive memory capacity (see Table II). 
  

 

 

Processor 

Name 

CPU Speed 

(GHz) 

Memory Size (GB) 

Standard Memory-Constrained 
 

L 4 16 1.6 

A1 32 32 3.2 

A2 6 64 6.4 

N1 12 16 1.6 

N2 8 8 0.8 

C2 32 192 19.2 

TABLE II CLUSTER HARDWARE CONFIGURATION. 

 

Additionally, an alternative experimental setting is 

considered where the cluster operates under 

constrained memory conditions. This setup maintains 

the same 72 nodes (12 of each category) as the 

standard configuration but with each node’s memory 

reduced to one-tenth of its original capacity. 

Consequently, the high-end C2 machine is assigned 

19.2 GB of memory instead of 192 GB, while A2 is 

allocated 6.4 GB rather than 64 GB, and so forth. 

Notably, across both cluster configurations, the 

communication buffer size is defined as ten times the 

memory allocation per node. 

3) Runtime system: To simulate the execution 

of a work- flow, I implemented a runtime system. It 

reads the historical data and builds weights for tasks, 

as explained above. In the static case, these values are 

being sent to the scheduler, which builds a schedule 

according to these weights. However, in the 

dynamic setting, the runtime system applies a 

deviation function to the values. The deviation 

function computes a normally distributed deviated 

value, where the initial value is the mean and the 

deviation is 10%. This scenario corresponds to the 

real-life scenarios identified in [34] and other works 
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dedicated to predicting runtimes of tasks [37], [38]. 

Hence, the scheduler receives deviated values and makes 

decisions based on them. This leads to several types of 

possible issues: 

• A processor is blocked by another task. If the scheduler 

underestimates the execution time of a task, it will 

block another one from starting. 

• A predecessor has not yet finished. The scheduler may 

request a task to start on its processor while some of 

the predecessors of the tasks have, in fact not yet 

completed their execution, and the task is, therefore, 

not yet ready. 

• Not enough memory. If the scheduler underestimated 

the amount of memory a task requires, this task might 

not be able to execute on a chosen processor. 

• A task took less time than expected. I only consider this 

case if a task took more than 10% less time than 

expected. In this case, I want to exploit the newly 

acquired free time by possibly starting other tasks 

earlier. 

B. Results in a static setting 

I first study the heuristics behavior when the weights do 

not change upon runtime, hence the scheduler has a 

perfect knowledge of task memory requirements and 

execution times. 

 

Fig. 1. Success rates on the default cluster. Higher is better 

 

Fig. 2. Relative makespans of heuristics normalized by 

HEFT makespan, by workflow size, on default cluster. 

Smaller is better. 

 
Fig. 3. Memory usage on default cluster, including 

invalid HEFT schedules. 

 
Fig. 4. Memory usage on default cluster, including only valid 

HEFT schedules. 

 

I have compared two eviction strategies, starting with 

large files first or small files first, and did not report 

any significant changes in terms of validity of 

schedule or makespan. Hence, I only present results 

with the eviction of the largest files first. 

1) Scheduling on the default cluster: On the 

default cluster, the three memory-aware heuristics are 

able to schedule all workflows (see Figure 1), while 

the baseline HEFT has 24.2% success rate (75.7% 

failure rate). Indeed, HEFT is only able to schedule 

small workflows, but no workflow over the size of 

4000 tasks can be scheduled correctly; some tasks run 

out of memory. As soon as I am not in a setting with 

abundant processing resources for small workflows, it 

is hence necessary to adopt a memory-aware strategy 

in order to produce valid schedules. 
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I also report in Figure 2 the relative makespan found 

by the memory-aware heuristics, normalized to the 

makespan achieved by HEFT, often through an invalid 

over-optimistic schedule that exceeds the bound on 

memory. On average, the makespans found by HEFTM-

BL are 7.8% worse than those found by the baseline, and 

the makespans of HEFTM-BLC are 8% worse, and those 

found by HEFTM-MM are 82.6% worse. These are still 

very encouraging results, in particular for HEFTM-BL 

and HEFTM-BLC, since the makespans of HEFT 

correspond to invalid schedules. 

Finally, I study the percentage of memory occupied by 

the schedule, which is another good indicator of the 

memory usage of the heuristic and its ability to produce 

valid schedules. Figures 3 and 4 show the percentage of 

memory occupied on average by the schedule produced 

by the different heuristics for different workflow sizes, 

first on all schedules (hence including HEFT schedules 

that were not valid), and then only on valid schedules 

(hence, no results for HEFT on large workflow sizes). 

HEFTM-MM continuously outperforms other heuristics 

in terms of memory usage, using from 46% less 

memory on the smallest workflows to 4 times less 

memory on the largest 30 000-task workflows. If I 

consider the invalid HEFT schedules, too, I see that they 

would require more and more memory on average, which 

explains why these schedules rapidly become invalid. 

This is because some assignments require more than 

100% of memory (which makes them invalid). I can 

assess the degree of invalidity by comparing HEFT 

memory usage with the memory usage of HEFTM- BL. 

HEFTM-BL differs from the baseline only in the sense 

that it respects available memory on the processors. For 

the largest workflows, HEFT schedules require almost 

twice the memory of HEFTM-BL. 

2) Scheduling on the memory-constrained cluster: 

On the memory-constrained cluster, HEFT could produce 

valid assignments in only 14 experiments out of 290 

(4.8% success rate). The successful schedules were 

achieved exclusively on the tiny workflows (with only 

two 200-task size-increased workflow among them). 

HEFTM-BL could successfully schedule 38% of 

workflows, HEFTM-BLC could schedule 49% of them, 

while HEFTM-MM could still schedule all the 

workflows, including even the largest ones, see Figure 5. 

As also observed on the normal cluster, HEFTM-MM 

seems to be less affected by the size of the workflow 

when scheduling it than the other heuristics. 

 
Fig. 5. Success rates on the memory-constrained cluster. Higher 

is better. 

 
Fig. 6. Relative makespans on the memory-constrained cluster. 

Smaller is better. 

 

Similarly to the default cluster, I observe that the 

relative makespan of HEFTM-MM is usually greater 

than those of HEFT (see Fig. 6), but HEFT schedules 

are almost all invalid. It is, therefore, very 

interesting to resort to HEFTM-MM for large 

workflows in a constrained cluster since tasks are 

processed in an order that minimizes the memory 

usage of the schedule. 

Memory usages on the constrained cluster are 

depicted in Fig. 7, and I observe that the memory 

footprint of HEFTM- MM remains constant with 

workflow size. 

 
Fig. 7. Memory usage on the memory-constrained cluster. 

C.  Dynamic experiments 

a) Memory-constrained cluster: The makespan, in 
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case of no recomputation, becomes invalid as soon as at 

least one task finds itself in an invalid memory size 

situation - that is if the scheduler assumed its memory to 

be smaller than it actually was and assigned it to a 

processor with not enough memory capacity. Due to an 

extremely constrained memory in this cluster, only 134 

experiments out of 1160 for all algorithm variants ended 

with a valid makespan without recomputation. In the case 

of HEFT, 14 valid initial makespans were computed. Out 

of them, 13 managed to stay valid until the end after all 

the update requests. The same 13 experiments ended with 

a valid makespan in case of no recomputation. So, these 

workflows required so few resources that there was no 

point in re-scheduling them. In the case of HEFTM-MM, 

all 290 workflows could be scheduled initially, and all the 

schedules remained valid until the end. 16 experiments 

ended with a successful makespan without 

recomputation. The rate of successful schedules without 

recomputation is, therefore, 5.5%. HEFTM-BLC could 

produce 142 valid initial schedules and keep 141 of them 

valid until the end. 50 experiments were successful 

without recomputation, too, making it 35% out of all 

successful final schedules. HEFTM-BL kept 105 

schedules valid until the end out of 110 initial valid 

schedules. 55 were able to be kept valid until the end even 

without recomputation, roughly 50% of all successes. 

HEFTM-BL and HEFTM-BLC were successful on 

smaller workflows and failed on larger ones, the success 

of the strategy without recomputation was limited to even 

the smallest of these smaller workflows. So, the strategy 

without recomputation delivered valid makespans 

(independently of the algorithm) on 56 original 

workflows with < 100 tasks, 47 200-task ones, 25 1000-

task ones and 6 2000-task ones. 

Figure 8 shows the increase in makespan in case of no 

recomputation for these experiments. With the growing 

size of the workflow, the excess makespan of not 

recomputing grows - from 13.9% to 20% for HEFTM-

BL, from 12.7% to 18.7% on HEFTM-BLC (but there is 

no data for the 2000- task workflows in this case), 

12.1% to 23.5% for HEFTM-MM. The larger 

variations for HEFT can be explained by the small 

amount of data – for instance, there were only 2 200-task 

workflows for this case. 

D. Running times of the heuristics 

To be able to answer the runtime system without holding 

it up for too long, the scheduler needs to be able to 

compute a schedule rapidly. The bottom-level-based 

heuristics HEFTM- BL and HEFTM-BLC provide 

smaller running times than HEFTM-MM, and also 

scale better with a growing workflow sizes (see Fig. 

9). Their running times are similar and grow from 

tens of milliseconds for the smallest workflows to 

25−27 seconds for the largest workflows. HEFTM-

MM, however, needs to compute a memory-optimal 

traversal of the entire workflow to compute the ranks 

of the tasks, so its running time scales from also tens 

of milliseconds for the smallest workflows to 

thousands of seconds - 1172.7 for 20 000-task 

 
Fig. 8. Relative (excess) makespan of HEFTM-BL, HEFTM-BLC 

and HEFTM-MM. Smaller is better. 

 
Fig. 9. Running times of the heuristics. The y-axis is logarithmic. 

workflows and 2994.9 seconds for the largest, 30 

000-task workflows. This increased running time is, 

though, offset by the unique 100% success rate this 

algorithm obtained when scheduling large workflows 

in difficult (memory-constrained) setups. 

IX. CONCLUSION 

I have formalized a scheduling problem in memory- 

constrained environments where tasks may exceed 

the memory available on a processor and resort to 

communication buffers to store and communicate 

data between processors. In this context, I have 

designed three memory-aware HEFT- based 

heuristics, which account for memory constraints 

while scheduling tasks. 

Two heuristics rely on an ordering of tasks based on 

the bottom level of tasks, with the objective of 
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minimizing the makespan and, hence, scheduling critical 

tasks first. The third one, HEFTM-MM, goes one step 

further and handles tasks in an order dictated by an 

efficient traversal of the graph in terms of memory 

requirements, hence reducing the memory used by the 

schedule. Experimental results on a large set of 

workflows coming from real-life applications 

demonstrate that the memory-aware heuristics are 

successfully producing valid schedules. In the most 

memory-constrained setting, HEFTM- MM succeeds in 

scheduling even the largest workflows, while other 

heuristics return invalid schedules exceeding the memory 

capacity of processors. It comes at the price of a 

makespan that is not quite as good as the one obtained by 

HEFTM-BL and HEFTM-BLC, which focuses on 

makespan by ordering tasks by bottom level. As 

expected, the baseline HEFT that is not memory aware 

returns invalid schedules in almost all settings, except for 

very small workflows. 

Another key contribution is that I have adapted these 

heuristics for a dynamic setting, where exact task 

parameters (execution times and memory requirements) 

are not known in advance. I have implemented a runtime 

system that interacts with the scheduler, returning exact 

parameter values once a task arrives in the system, 

while only estimates are known for future tasks. Some 

preliminary experiments have been conducted in this 

setting, and demonstrated that it is necessary to adapt the 

schedule on the fly in order to avoid an execution failure 

because of a shortage of memory. To the best of my 

knowledge, this is the first study of adaptive algorithms 

accounting for memory constraints. 

This work could be extended in several directions. First, 

the model could be refined to include heterogeneous 

bandwidths, while I consider a homogeneous 

communication network. More importantly, it would be 

interesting to consider other types of variability, for 

instance if new tasks appear in the graph (or disappear), 

or if there is variability in the platform, with processors 

arriving and departing. I believe that I could adopt the 

current approach by recomputing schedules on the fly, 

and I plan to perform a new set of experiments to further 

assess the impact of dynamic scheduling. 
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