
InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 66

InRACS 2025

Memory-Aware Scheduling in Constrained Environments

Bhavana Nare

Abstract—This paper addresses the challenge of scheduling

workflows in memory-constrained environments where

tasks may exceed the available memory on processors. I

propose three memory-aware HEFT-based heuristics:

HEFTM-BL, HEFTM- BLC, and HEFTM-MM, designed

to produce valid schedules by accounting for memory

limitations. Experimental evaluations on default and

memory-constrained clusters demonstrate the superiority of

memory-aware heuristics over the baseline HEFT, which

frequently produces invalid schedules. Among the pro-

posed methods, HEFTM-MM achieves a 100% success rate

for large workflows under severe memory constraints but

at the cost of increased makespan and runtime.

Additionally, I explore dynamic scenarios with evolving task

parameters, highlighting the necessity of adaptive

scheduling to prevent execution failures. The study provides

a foundation for memory-efficient scheduling in static and

dynamic environments and opens avenues for extending the

model to handle heterogeneous bandwidths, task variability,

and platform dynamics.

Index Terms—DAG, Heterogeneous platform, Adaptive

scheduling, Memory constraint.

I. INTRODUCTION

The analysis of massive datasets originating from fields

such as genomics, remote sensing, or biomedical imaging

– to name just a few – has become ubiquitous in

science; this often takes the form of workflows, separate

software components chained together in some kind of

complex pipeline [1]. These workflows are usually

represented as directed acyclic graphs (DAGs). The DAG

vertices represent the software components (or, more

generally, the workflow tasks), while the edges model I/O

dependencies between the tasks [2], [3]. Large workflows

with resource-intensive tasks can easily exceed the

capabilities of a single computer and are, therefore,

executed on a parallel or distributed platform. An

efficient execution of the workflows on such platforms

requires mapping tasks to specific processors; to increase

utilization by reusing finished processors, one also needs

a task schedule (a valid execution order that respects the

dependencies) and possibly also starting times for the

tasks.

Modern computing platforms are often

heterogeneous, meaning they feature varying CPU

speeds and memory sizes. In general, having

different memory sizes per CPUs makes it more

challenging to compute a schedule that respects all

memory constraints – meaning that no task is

executed on a processor with less memory than

needed for the task. This is, however, very

important to avoid (possibly expensive) runtime

failures and to provide a satisfactory user experience.

Hence, building on previous related work [4]–[6], I

consider a scheduling problem formulation that

takes memory sizes as explicit constraints into

account. Its objective is the very common makespan

[3], which acts as a proxy for the total execution time

of a workflow. However, to the best of my

knowledge, the only memory-aware heuristics that

would account for memory constraints are

partitioning the DAG and not reusing processors once

they have processed a part of the graph, leading to

high values of make span compared to a finer grain

solution that reuses processors.

While previous work with memory constraints has

been focusing on partitioning the graph, and not

reusing processors during execution, a seminal list

scheduling heuristic for workflows on heterogeneous

platforms without accounting for the memory

constraint, is HEFT (heterogeneous earliest finish

time) [7]. It has two phases: (i) each task is assigned a

priority, and (ii) the tasks in a priority-ordered list are

assigned to processors, where the “ready” task with

the highest priority is scheduled next on the

processor where it would complete its execution

first. HEFT has been extended (e.g., by Shi and

Dongarra [8]) and adjusted for a variety of different

scheduling problem formulations. Yet, none of them

adhere to memory constraints as I propose – see

discussion of related work in Section II.

Another limitation in the practice of HEFT (and many

other scheduling strategies) is their assumption that

the task running times provided to them are accurate.

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 67

InRACS 2025

In practice, this is not the case, and deviations from user

estimates or historical measurements are very common

[9]. As a consequence, one should adapt the schedule

when major deviations occur. However, the original list-

based schedulers, such as HEFT, are only defined in a

static setting with accurate task parameters.

The main contributions of this paper are both algorithmic

and experimental:

• I formalize the problem with memory constraints,

where communication buffers are used to evict data

from memory if it will be later used by another

processor.

• I design three HEFT-based heuristics that adhere to

memory size constraints: HEFTM-BL, HEFTM-BLC,

and HEFTM-MM (M behind HEFT for memory, BL

for bottom level, BLC for bottom level with

communication, and MM for minimum memory

traversal). The difference between the new heuristics is

the way they prioritize tasks (for processor

assignment).

• I implement a runtime system able to provide some

feedback to the scheduler when task requirements (in

terms of execution time and memory) differ from

the initial predictions, and I recompute a schedule,

based on the reported deviations.

• I perform extensive simulations, first in the static case

by comparing the schedules produced by these

heuristics with the classical HEFT as the baseline,

which however does not take memory sizes into

account; while HEFT returns invalid schedules that

exceed the processor memories and cannot execute

correctly, the new heuristics are able to schedule large

workflows with reasonable makespans successfully.

• In the dynamic setting, I use a runtime system that

allows us to simulate workflow executions,

introducing deviations in running times and memory

requirements of tasks that are communicated back to

the scheduler; the scheduler can then recompute a

schedule. Without these recomputations, most

schedules become invalid after deviations since the

memory constraint is exceeded for most workflows,

hence demonstrating the necessity of a dynamic

adjustment of the schedule.

I first review related work in Section II. Then, I formalize

the model in Section III and the algorithms in Section

VI. The adaptation of the heuristics in a dynamic setting

is discussed in Section VII, and experiment results are

presented in Section VIII. Finally, I conclude and

provide future working directions in Section IX.

II. RELATED WORK

First, I focus on HEFT-like scheduling heuristics

from the literature that do not necessarily consider

memory constraints. Then, I discuss memory-aware

scheduling algorithms. Finally, I move to related

work on dynamic or adaptive algorithms.

A. Static list schedulers, especially HEFT-based

algorithms

Introduced in 2002, HEFT [7] is a list-based

heuristic. It and all its successors consist of two

phases: task prioritization/ordering and task

assignment. In the first phase, the algorithms

compute the bottom levels of the tasks based on some

priorities (create the list) and then schedule tasks in

the order of these priorities. The modifications of

HEFT revolve around the way the priorities of the

tasks are computed and the logic of the processor

assignment. All such algorithms assume a

heterogeneous execution environment.

Hence, during the task prioritization phase in [10],

the standard deviation of the computation cost

(between processors) is computed, and added to the

mean value to account for the differences between

processor speeds. In the processor choice phase, the

entry task and the longest parent tasks are duplicated

during idle times on the processor.

PEFT (Predict earliest finish time) [11] is a HEFT

variant that computes an Optimistic Cost Table

(OCT). The OCT is computed per task-processor

pair and stores the longest shortest path from this task

to the target task if this processor is chosen for this

task. Ranking is based on OCT values. The processor

choice stage minimizes the optimistic EFT, which is

EFT plus the longest path to the exit node for each

task.

 The HSIP (Heterogeneous Scheduling with

Improved task Priorities) [12] has an improved first

step in comparison to HEFT. It combines the standard

deviation with the communication cost weight on the

tasks. In the second stage, the algorithm duplicates

the entry task if there is a need for it.

The TSHCS (Task Scheduling for Heterogeneous

Computing Systems) algorithm [13] improves on

HEFT by adding randomized decisions to the second

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 68

InRACS 2025

phase. The decision is whether the task should be

assigned to the processor with the lowest execution time

or to the processor that produces the lowest finish time.

The SDC algorithm [8] considers the percentage of

feasible processors in addition to the task’s average

execution cost in its weight. The selected task is then

assigned to a processor which minimizes its Adjusted

Earliest Finish Time (AEFT) that additionally notes how

large the communication between the current node and its

children will be on the average, provided that it is

scheduled on the current processor.

HEFT can also be adapted in cloud-oriented

environments [14] and even combined with

reinforcement learning techniques [15].

B. Memory-aware scheduling algorithms

Respecting processor memories adds a constraint to a

scheduling problem. Therefore, only specifically

memory- targeted algorithms address this issue.

Moreover, the way processor memories are represented in

the model has a decisive impact on the way the constraint

is formulated and addressed in the algorithm. Different

models of memory available on processors and memory

requirements of tasks have been presented.

Marchal et al. [16] assumes a memory model where each

processor has an individual memory available. Workflow

tasks have no memory requirements, but they have input

and output files that need to be stored in the memory. A

polynomial- time algorithm for computing the peak

memory needed for a parallel execution of such a DAG is

provided, as well as an ILP solution to the scheduling

problem. The memory model requires deleting all input

data upon starting the task and adding all output files

there.

In an assumed dual-memory systems [17], a processor

can have access to a memory of two different kinds (red

or blue), and each task can be executed on only one sort

of memory. The communications happen only between

these two kinds of processors (communications within

each group is ignored). The authors then formulate an ILP

solution for this problem formulation.

Yao et al. [18] consider that each processor has its own

internal memory and all processors share a common

external one. The internal (local) memory is used to store

the task files. The external memory is used to store

evicted files to make room for the execution of a task on

a processor. All processors, including the original one,

can access these files. Each edge has two weights – the

size of the files transferred along it and the time of

communication along this edge. The tasks

themselves have no memory requirements but need

to hold all their incoming and outgoing files.

In [19], there are connected processors with

individual limited memories. The collective set of

memories forms the global memory, to which each

processor has access, however, the access time to

global memory is different. Each memory access in

the graph is modeled as a memory access token

on the task, while the edges have no weights. The

solved problem is how to allocate initial input data in

processor memories so that the overall execution is

minimized and the memories are not exceeded. The

authors propose an integer linear programming

model.

In [20], the authors assume memory requirement on

tasks represented as tiles. Each processor has

individual memories to process the task, but only the

shared memories store the tiles containing memory

tiles occupied by memory tiles.

Finally, there are some cloud-oriented models that

include costs associated with memory usage [21].

Overall, there are a variety of memory models, but to

the best of my knowledge, the only study on a

multiprocessor platform that is fully heterogeneous,

with individual memories, is the one from [6], but

where a partition of the workflow is proposed, hence

preventing processor reuse. Hence, in [6], there is no

need of communication buffers to store data that

should be communicated between two processors

when tasks are ready to execute.

C. Dynamic/adaptive algorithms

I now review related work in a dynamic setting. With

no variation in task parameters, DVR HEFT [22]

rather considers that new tasks arrive in the system.

They use an almost unchanged HEFT algorithm in

the static step, executing three slightly varying

variants of task weighting and choosing the variant

that gives the best overall makespan. In the dynamic

phase, they receive new tasks and schedule them on

either idle processors or those processors that give

them the earliest finish time.

Rahman [23]’s dynamic critical path (DCP)

algorithm for grids maps tasks to machines by

calculating the critical path in the graph dynamically

at every step.

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 69

InRACS 2025

They schedule the first task on the critical path to the most

suitable processor and recompute the critical path.

The heuristic also uses the same processor to schedule

parent and children tasks, as to avoid data transfer

between processors. The approach is evaluated on

random workflows of the size of up to 300 tasks.

Garg [24] proposes a dynamic scheduling algorithm for

heterogeneous grids based on rescheduling. The

procedure in- volves building a first (static) schedule,

periodic resource monitoring, and rescheduling the

remaining tasks. The resource model contains resource

groups (small tightly-connected sub- clusters), connected

between each other. For each resource group, there is an

own scheduler and an overall global scheduler

responsible for distributing tasks to groups. The static

heuristic is HEFT, with the earliest start time as a priority.

Upon rescheduling, a new mapping is calculated from

scratch, and this mapping is accepted if the resulting

makespan is smaller than the previous one. The

experiments were conducted on a single workflow with

10 tasks.

Most dynamic or adaptive algorithms are formulated for

clouds, where the execution environment is not fixed, but

constrained by cost.

Wang et al. [25] propose a dynamic particle swarm

optimization algorithm to schedule workflows in a cloud.

Particles are possible solutions in the solution space.

However, the dynamic is only in the choice of

generation sizes, not in the changes in the execution

environment. Similarly, Singh et al. [26] address

dynamic provisioning of resources with a constraint

deadline.

De Olivera [27] propose a tri-criteria (makespan,

reliability, cost) adaptive scheduling algorithm for

clouds. They solve a set of linear equations that represent

the cost of an execution based on the criteria. The authors

test out 4 scenarios - one preferring each criteria, and a

balanced one. The algorithm chooses the best virtual

machine for each next task based on the cost given by the

model. The authors used workflows with less than 10

tasks but repeated them so that the execution had up to

200 tasks.

Daniels et al. [28] formalize the concept of robust

scheduling with variable processing times on a single

machine. The changes in runtimes of tasks are not due to

changing machine properties but are rather task-related

(that means that these runtime changes are unrelated to

each other). The authors formulate a decision space

of all permutations of n jobs, and the optimal

schedule in relation to a performance measure ϕ.

Then, they proceed to formulate the Absolute

Deviation Robust Scheduling Problem as a set of

linear constraints.

While several related works consider building a new

sched- ule once some variation has been observed, I

am not aware of work implementing a real runtime

system that interacts with the scheduler and is tested

on workflows with thousands of tasks, as I propose in

this paper. Furthermore, I am not aware of any

previous work discussing dynamic algorithms

combined with memory constraints.

III. MODEL

The model for the target applications, which are large

scientific workflows with incomplete prior

knowledge, is introduced in Section IV. Following

this, the execution environment is defined as a

heterogeneous system characterized by variations in

processor speed and memory capacity, detailed in

Section V. Finally, the optimization problem is

outlined in Section V-A, with key notations compiled

in Table I.

IV. WORKFLOW

A workflow is represented as a directed acyclic graph

G = (V, E), where V denotes the set of tasks

(vertices), and E represents directed edges of the form

e = (u, v), where u, v ∈ V, defining precedence

constraints between tasks. Each task u ∈ V executes

wu operations and requires memory mu for execution.

The cost associated with each edge e = (u, v) ∈ E,

denoted as cu,v, corresponds to the size of the

output file generated by task u and consumed by

task v.

The memory requirement of a task u, represented

as ru, is the maximum among its total memory

demand mu, the cumulative size of input files

received from its parent tasks, and the total size of

output files transmitted to its child tasks: The

parents of a task u ∈ V are the tasks that must

complete before u can begin, forming the set: Πu =

v ∈ V : (v, u) ∈ E. Tasks without parents are referred

to as source tasks. Similarly, the child tasks of u are

those directly succeeding u according to

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 70

InRACS 2025

si

precedence constraints: Cu = v ∈ V: (u, v) ∈ E. Tasks

TABLE I NOTATION

 Symbol Definition

G = (V, E) Workflow graph with vertices (tasks)

and edges

Πu, Cu Parents and children of task u mu

 Memory footprint of task u

wu Workload of task u (normalized

execution time)

cu,v Data transfer volume on edge (u, v) ∈

E F , F Partitioning function and resulting

partition

Vi Block number i

S, k Computing system and processor count

pj , proc(Vi) Processor j, processor of block Vi Mj

, MCj , sj Memory, buffer size, and speed of pj

without children are designated as target tasks. Each

task may have multiple parent and child tasks.

Furthermore, this work considers a scenario

where the task parameters (wu and mu) are not

precisely known prior

 β Bandwidth in compute system

lu Bottom-level weight of task u µG, µi

 Makespan of G and block Vi

Γ = (V, E) Quotient graph, nodes, and edges

ru, rVi
Memory need of task u and block Vi

 to execution, but only estimated [23], [24].

Consequently, scheduling decisions rely on these

estimated parameters and may be adjusted at runtime

upon the task’s execution when exact parameters become

available.

V. EXECUTION ENVIRONMENT

The computational workflow operates on a

heterogeneous computing architecture, referred to as C,

which comprises m processing units q1, . . . , qm. Each

processor qi (1 ≤ i ≤ m) is defined by its memory

capacity Mi, communication buffer limit MCi, and

computational speed si. Data eviction from primary

memory is permitted during data transfers to another

processor, where it is temporarily held in the

communication buffer until the transmission concludes.

The execution duration of a task x ∈ V on processor

qi is expressed as wx . It is assumed that all processors

operate with a uniform bandwidth β.

The system maintains records of the ready times for each

processor and communication link, denoted as rti and rti,i′

for each processor i and all processor pairs (i, i′).

Initially, these ready times are initialized to zero.

Furthermore, the available memory for each

processor and communication buffer is tracked

using availMi and availCi, respectively.

Additionally, PDi represents a priority queue that

holds pending data currently occupying memory Mi

but subject to eviction if extra memory is required on

qi. These pending data items, corresponding to values

cx,y, are organized in ascending order based on their

sizes.

The calculation of memory requirements is

performed using the MEMDAG algorithm, introduced

by Kayaaslan [29]. This method converts the

workflow into a series-parallel graph and Since tasks

are subject to variability, I aim at minimizing the

actual makespan achieved at the end of the execution,

while decisions may be taken building on the

estimated task parameters.

Note that the problem is already NP-hard, even in the

homogeneous case and without memory constraints,

because of the DAG structure of the application.

Hence, I focus on the design of efficient scheduling

heuristics.

VI. SCHEDULING HEURISTICS

I design variants of HEFT that account for memory

usage and aim at minimizing the makespan. First, I

present in Sec- tion VI-A the baseline HEFT heuristic

that does not account for the memory (and hence,

may return invalid schedules that will not be able to

run on the platform by running out of memory). Then,

Section VI-B focuses on the presentation of the novel

heuristics, including eviction strategies to move some

data in communication buffers in case there is not

enough memory available on some processors.

A. Baseline: original HEFT without memories

Original HEFT does not consider memory sizes. The

solutions it provides can be invalid if it schedules

tasks to processors without sufficient memories.

However, these solutions can be viewed as a “lower

bound” for an actual solution that considers memory

sizes.

HEFT works in two stages. In the first stage, it

computes the ranks of tasks by computing their non-

increasing bottom levels. The bottom level of a task

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 71

InRACS 2025

is defined as determines the optimal traversal strategy to

minimize memory usage.

 bl(u) = wu + max
(u,v)∈E

 {cu,v + bl(v)}

A. Optimization problem

The goal is to find a schedule of the DAG G for

the k processors so that the makespan (total execution

time) is minimized while respecting memory constraints.

If a processor runs out of memory to execute a task

mapped on it, the schedule is said to be invalid. (the max

is zero if there is no outgoing edge). The tasks are sorted

by non-decreasing ranks.

In the second stage, the algorithm iterates over the

ranks and tries to assign the task to the processor, where

it has the earliest finish time. I tentatively assign each

task v to each processor j. The task’s starting time stv

is dictated by the maximum between the ready time of

the processor rtj and all communications that must be

orchestrated from predecessor Step 2. Next, I

check the memory constraint on pj, by tasks u ∈/ T

(pj). The starting time is then: computing

Res = availMj − mv −

L
{cu,v} −

L
{cv,w}.

ST (v, pj) = max {rtj, max {FT (u) + cu,v/β, rtproc(u),pj

+ cu,v/β}}
 u∈Π(v)

Finally, its finish time on pj is FT (v, pj) = stv + wv .

 u∈Π(v),u∈/T (pj)

 w∈Succ(v)

Once I have computed all finish times for task v

 sj

, I keep the

T (pj) is the set of tasks already scheduled on pj; by

step 1,

their files are already in the memory of pj. However,

the files

 minimum FT (v, pj) and assign task v to processor

pj.

Assignment to the processor. When assigning the task, I

set the ready time rtj of processor j to be the finish

time of the task. For every predecessor of v that has

been assigned to another processor, I adjust ready times

on communication buffers rtj′,j for every predecessor

u’s processor j′: I increase them by the communication

time c(u, v)/β.

B. Memory-aware heuristics

Like the original HEFT, the memory-aware versions

of HEFT consist of two stages: first, they compute the

task ranks, and second, they assign tasks to processors

in the order defined in the first stage. I consider three

variants of HEFT accounting for memory usage

(HEFTM), which only differ in the order they

consider tasks to be scheduled in the first stage.

Compute task ranks.

I design three variants of memory-aware HEFT:

• HEFTM-BL orders tasks by non-increasing

bottom levels, where the bottom level is defined as

from the other predecessor tasks must be loaded in

memory before executing task v, as well as mv and

the data generated for all successor tasks. Res is

then checking whether there was enough memory;

if it is negative, it means that I have exceeded the

memory of pj with this tentative assignment.

In this case (Res < 0), I try evicting some data from

memory so that I have enough memory to execute

task v. I need to evict at least Res data. I propose a

greedy approach, evicting the largest files of PDj

until Res data has been evicted. A variant where the

smallest files are evicted first has been tested, and it

led to comparable results. While tentatively evicting

files, I remove them from the list of pending memories

and move them into a list of memories pending in

the communication buffer. I keep track of the

available buffer size, too – each time a file gets

moved into the pending buffer, the available buffer

size is reduced by its weight.

If I still do not have enough memory after having

tentatively evicted all files from PD j, or if, while

doing so, I exceeded the size of the available

buffer, I set the finish time to +∞ bl(u) = wu +

max
(u,v)∈E

 {cu,v + bl(v)}

 (invalid choice).

Step 3. I tentatively assign task v on pj. Its

starting time (the max is zero if there is no

outgoing edge).

• HEFTM-BLC is giving more priority to tasks with

potentially large incoming communications, hence

aiming at clearing the memory used by files as

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 72

InRACS 2025

soon as possible, stv is dictated by the maximum

between rtj, and all communications that must be

orchestrated from predecessor tasks u ∈/ T (pj). The

starting time is therefore:

 to have more free memory for remaining tasks to

be

 ST (v, pj) = max {rtj, max

u∈Π(v),u∈/T (pj)

 {FT (u), rtproc(u),pj
} + cu,v/β}.

 executed on the processor. Therefore, for each task,

I

Finally, its finish time on p is FT (v, p) = ST (v, p)

+ wv .

compute a modified bottom-level accounting for

communications:
 j j

Assignment of task v.

 j sj

 blc(u) = wu + max
(u,w)∈E

 {cu,w + blc(w)} + max
(v,u)∈E

 cv,u.

Once I have computed all finish times for task v, I keep

the minimum FT (v, pj) and assign task v to

processor pj. In

• Finally, HEFTM-MM orders tasks in the order

returned by the MEMDAG algorithm [29], which

corresponds to a traversal of the graph that minimizes

the peak memory usage.

Task assignment.

Then, the idea is to pick the next free task in the given

order and greedily assign it to a processor by trying all

possible options and keeping the most promising one.

I first detail how a task is tentatively assigned to a

processor by carefully accounting for memory usage.

Next, I explain the steps to be taken to assign a task to a

given processor effectively.

Tentative assignment of task v on pj.

Step 1. First, I need to check that for all predecessors u of

v that are mapped on pj, the data cu,v is still in the

memory of pj, i.e., cu,v ∈ PDj. Otherwise, the finish time

is set to +∞ (invalid choice).

 detail, we:

• Evict the file memories that correspond to edge

weights that need to be evicted to free the memory.

I remove these files from pending memories PDj,

add them to pending data in the communication

buffer, and reduce the available buffer size

accordingly.

• Calculate the new availMj on the processor. I

subtract the weights of all incoming files from

predecessors as- signed to the same processor, and

add the weights of outgoing files generated by the

currently assigned task.

• For every predecessor of v that has been assigned

to another processor, I adjust ready times on

communication buffers rtj′,j for the processor

j′that the predecessor u has been assigned to: I

increase them by the communication time c(u, v)/β.

I also remove the incoming files from either the

pending memories or pending data in buffers of

these other processors and increase the available

memories or available buffer sizes on these

processors.

• I compute the correct amount of available memory

for pj (for when the task is done). Then, for each

predecessor that is mapped to the same processor,

I remove the pending memory corresponding to the

weight of the incoming edge, also freeing the same

amount of available memory (increasing availMj).

For each successor, I would rather add the edge

weights to pending memories and reduce availMj

by the corresponding amount.

VII. DYNAMIC SCENARIO

In a workflow execution environment, the scheduling

method interacts with the runtime environment,

which pro- vides information such as resource

estimates. This information may include memory

usage, runtime, graph structures, or the status of the

underlying infrastructure. In order to ensure that the

information is up to date, a monitoring system

observes the workflow execution and collects

metrics for tasks and the underlying infrastructure.

By incorporating dynamic monitor- ing values, e.g.,

the resources a task consumed, the runtime

environment can incorporate the data into the

prediction model to provide more accurate resource

predictions. Also, the underlying infrastructure can

change during the workflow execution. Examples are

processor failures, node recoveries, or the acquisition

of new nodes. However, also when the hardware of

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 73

InRACS 2025

the infrastructure does not change, the set of nodes

provided as a scheduling target might change due to

release or occupation in shared cluster infrastructures. As

infrastructure information and resource predictions are

dynamically updated and provided to the scheduler

during the workflow runtime, the previous schedule

becomes invalid, and a new one must be calculated.

For state-of-the-art memory prediction methods, a cold-

start median prediction error for heterogeneous

infrastructures of approximately 15% is shown [30].

Online prediction methods were able to significantly

reduce the error during runtime, with the reduction

reaching up to one-third of the cold- start error [31],

[32]. Such a dynamic execution environment requires a

dynamic scheduling method where the schedule can be

recomputed during the workflow execution.

Retracing the effects of change on an existing schedule

After the monitoring system has reported changes, I need

to assess their impact on the existing schedule. These

changes can invalidate the schedule (e.g., if there is not

enough memory for some tasks to execute anymore), they

can lead to a later finishing time (e.g., if some tasks are

longer and they delay other tasks), or they can have no

effect (e.g., if new processors joined the cluster, but the

old schedule did not account for them). To assess the

impact, I need to retrace the schedule.

First, I find out if at least one processor that had assigned

tasks has exited - this instantly invalidates the entire

schedule. I then iterate over all tasks of the workflow in a

topological order - any of the orderings given by

rankings BL, BLC, or MM is a topological ordering. I

then repeat steps similar to those I did during the

tentative assignment in the heuristics, except that I do not

choose a processor anymore, but rather, I check whether

the current processor assigned to the task still fits.

For each task v, I first assess its current memory

constraint Res using Step 2 from the heuristic. The factors

that affect Res are possible changes in mv, in cu,v from

predecessors u or cv,w from successors w, available

memory availMj on the processor (due to either changed

Mj or changed memory requirements from other tasks). If

originally, Res was positive (no files were evicted from

memory into the communication buffer), then it has to

stay this way – otherwise, evicted files can invalidate the

next tasks. If the original Res was negative, then I need

to make sure that evicted files still fit into the

communication buffer. If either Res is newly negative,

or the communication buffer is not large enough, this

invalidates the schedule. I update the availMj and

availMCj values according to the new memory

constraints.

Then, I can re-calculate the finish time of the task on

its processor, like in Step 3. The factors that affect it

are changes in own execution time wv of the tasks,

changed ready time of the processor (after delayed

previous tasks), and changed communication buffer

availability.

Finally, after having updated the processor’s values, I

moved on to the next task.

VIII. EXPERIMENTAL EVALUATION

I first describe the experimental setup in Section VIII-

A. Then, I report results on static experiments to

assess the performance of the memory-aware

heuristics in Section VIII-B, before discussing the

heuristics behavior in a dynamic setting in Section

VIII-C. Finally, I report the running times of the

heuristics in Section VIII-D.

A. Experimental Setup

All algorithms were developed in C++ and compiled

using g++ (v.8.5.0). The experimental evaluations

were orchestrated with simexpal [33] and executed

on high-performance work- stations featuring 192

GB RAM, dual 12-Core Intel Xeon 6126 processors

running at 3.2 GHz, and operating on CentOS8. To

ensure reproducibility, the code, input datasets, and

experiment scripts are publicly available at

https://zenodo.org/ records/13919214 and

https://zenodo.org/records/13919302.

The subsequent sections describe the workflows

utilized for evaluation and the clusters designated for

their scheduling.

1) Workflow Instances: Experiments were

conducted on a dataset comprising real-world

workflows. Specifically, work- flows from [34] were

used, including atacseq, bacass, chipseq, eager, and

methylseq. Additionally, their scale was extended

using the WFGen generator [35].

a) Workflow Graphs: For the five real-world

workflows, their nextflow descriptions (refer to [36])

were obtained from the respective repositories and

converted into .dot format using the nextflow option

“-with-dag.” The resulting directed acyclic graphs

(DAGs) included multiple pseudo-tasks, which are

https://zenodo.org/records/13919214
https://zenodo.org/records/13919214
https://zenodo.org/records/13919302

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 74

InRACS 2025

internal representations in nextflow rather than actual

tasks.

These pseudo-tasks were subsequently removed to

maintain accuracy.

For the enlarged workflows, the WFGen generator was

utilized to construct graphs based on a model workflow

and a specified number of tasks. The real-world

workflows served as models, except for bacass, which

encountered errors in the generator. The number of tasks

considered in this study includes: 200, 1 000, 2 000, 4 000,

8 000, 10 000, 15 000, 18 000, 20 000, 25 000, and 30 000.

The workflows were categorized into four size groups:

tiny (up to 200 tasks), small (1 000 to 8 000 tasks),

medium (10 000 to 18 000 tasks), and large (20 000 to

30 000 tasks).

b) Task and Edge Weights: For real-world

workflows, historical data files provided by Bader [34]

were employed. These files contain Linux PS statistics

measured during the execution of a nextflow workflow,

with each row representing a single task execution on a

cluster node. Since the operating system does not

differentiate between (a) RAM used for computation and

(b) RAM allocated for storing transferred files, the

recorded values represent the total memory consumption,

including both computational and input/output file

memory requirements. Similarly, historical data from

[34] do not directly store edge weights between tasks but

instead provide the total file sizes transmitted by each task

to its successors.

For each task, historical data can contain multiple values

obtained from the runs with different input sizes. The

same workflow can require different memory capacities

and take different time to execute depending on the size

of its input. I simulate these various runs by obtaining

values corresponding to each input size. For each of

the four families, there are five input sizes, so I run each

workflow in five variants corresponding to these inputs

Not all tasks have historical runtime data stored in the

tables. In fact, for two workflows, Bader does not provide

data for more than 50% of the tasks. For two more, around

40% of tasks have no historical runtime data stored.

Hence, in the absence of historical data about a task, I

give it fixed weights. I give it an execution time of 1, a

memory requirement of 50MB, and files written and

received of 1KB. These values align with the findings of

[34] about small tasks.

2) Target Computing Systems: To leverage the

historical dataset effectively, the primary

experimental setup I employ is a cluster composed of

the same six categories of real-world machines

utilized in the performance assessment presented

in [34]. The configuration includes 12 nodes of each

type, resulting in a total of 72 processors.

Each machine is characterized by its (normalized)

CPU processing capability and available memory (in

GB). The machines are listed with their respective

attributes as follows: (L, 4, 16) representing low-

performance systems; (A1, 32, 32), (A2, 6, 64), (N1,

12, 16) for mid-range machines; (N2, 8, 8) with

minimal memory resources; and (C2, 32, 192) as a

high- end system with superior computational power

and extensive memory capacity (see Table II).

Processor

Name

CPU Speed

(GHz)

Memory Size (GB)

Standard Memory-Constrained

L 4 16 1.6

A1 32 32 3.2

A2 6 64 6.4

N1 12 16 1.6

N2 8 8 0.8

C2 32 192 19.2

TABLE II CLUSTER HARDWARE CONFIGURATION.

Additionally, an alternative experimental setting is

considered where the cluster operates under

constrained memory conditions. This setup maintains

the same 72 nodes (12 of each category) as the

standard configuration but with each node’s memory

reduced to one-tenth of its original capacity.

Consequently, the high-end C2 machine is assigned

19.2 GB of memory instead of 192 GB, while A2 is

allocated 6.4 GB rather than 64 GB, and so forth.

Notably, across both cluster configurations, the

communication buffer size is defined as ten times the

memory allocation per node.

3) Runtime system: To simulate the execution

of a work- flow, I implemented a runtime system. It

reads the historical data and builds weights for tasks,

as explained above. In the static case, these values are

being sent to the scheduler, which builds a schedule

according to these weights. However, in the

dynamic setting, the runtime system applies a

deviation function to the values. The deviation

function computes a normally distributed deviated

value, where the initial value is the mean and the

deviation is 10%. This scenario corresponds to the

real-life scenarios identified in [34] and other works

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 75

InRACS 2025

dedicated to predicting runtimes of tasks [37], [38].

Hence, the scheduler receives deviated values and makes

decisions based on them. This leads to several types of

possible issues:

• A processor is blocked by another task. If the scheduler

underestimates the execution time of a task, it will

block another one from starting.

• A predecessor has not yet finished. The scheduler may

request a task to start on its processor while some of

the predecessors of the tasks have, in fact not yet

completed their execution, and the task is, therefore,

not yet ready.

• Not enough memory. If the scheduler underestimated

the amount of memory a task requires, this task might

not be able to execute on a chosen processor.

• A task took less time than expected. I only consider this

case if a task took more than 10% less time than

expected. In this case, I want to exploit the newly

acquired free time by possibly starting other tasks

earlier.

B. Results in a static setting

I first study the heuristics behavior when the weights do

not change upon runtime, hence the scheduler has a

perfect knowledge of task memory requirements and

execution times.

Fig. 1. Success rates on the default cluster. Higher is better

Fig. 2. Relative makespans of heuristics normalized by

HEFT makespan, by workflow size, on default cluster.

Smaller is better.

Fig. 3. Memory usage on default cluster, including

invalid HEFT schedules.

Fig. 4. Memory usage on default cluster, including only valid

HEFT schedules.

I have compared two eviction strategies, starting with

large files first or small files first, and did not report

any significant changes in terms of validity of

schedule or makespan. Hence, I only present results

with the eviction of the largest files first.

1) Scheduling on the default cluster: On the

default cluster, the three memory-aware heuristics are

able to schedule all workflows (see Figure 1), while

the baseline HEFT has 24.2% success rate (75.7%

failure rate). Indeed, HEFT is only able to schedule

small workflows, but no workflow over the size of

4000 tasks can be scheduled correctly; some tasks run

out of memory. As soon as I am not in a setting with

abundant processing resources for small workflows, it

is hence necessary to adopt a memory-aware strategy

in order to produce valid schedules.

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 76

InRACS 2025

I also report in Figure 2 the relative makespan found

by the memory-aware heuristics, normalized to the

makespan achieved by HEFT, often through an invalid

over-optimistic schedule that exceeds the bound on

memory. On average, the makespans found by HEFTM-

BL are 7.8% worse than those found by the baseline, and

the makespans of HEFTM-BLC are 8% worse, and those

found by HEFTM-MM are 82.6% worse. These are still

very encouraging results, in particular for HEFTM-BL

and HEFTM-BLC, since the makespans of HEFT

correspond to invalid schedules.

Finally, I study the percentage of memory occupied by

the schedule, which is another good indicator of the

memory usage of the heuristic and its ability to produce

valid schedules. Figures 3 and 4 show the percentage of

memory occupied on average by the schedule produced

by the different heuristics for different workflow sizes,

first on all schedules (hence including HEFT schedules

that were not valid), and then only on valid schedules

(hence, no results for HEFT on large workflow sizes).

HEFTM-MM continuously outperforms other heuristics

in terms of memory usage, using from 46% less

memory on the smallest workflows to 4 times less

memory on the largest 30 000-task workflows. If I

consider the invalid HEFT schedules, too, I see that they

would require more and more memory on average, which

explains why these schedules rapidly become invalid.

This is because some assignments require more than

100% of memory (which makes them invalid). I can

assess the degree of invalidity by comparing HEFT

memory usage with the memory usage of HEFTM- BL.

HEFTM-BL differs from the baseline only in the sense

that it respects available memory on the processors. For

the largest workflows, HEFT schedules require almost

twice the memory of HEFTM-BL.

2) Scheduling on the memory-constrained cluster:

On the memory-constrained cluster, HEFT could produce

valid assignments in only 14 experiments out of 290

(4.8% success rate). The successful schedules were

achieved exclusively on the tiny workflows (with only

two 200-task size-increased workflow among them).

HEFTM-BL could successfully schedule 38% of

workflows, HEFTM-BLC could schedule 49% of them,

while HEFTM-MM could still schedule all the

workflows, including even the largest ones, see Figure 5.

As also observed on the normal cluster, HEFTM-MM

seems to be less affected by the size of the workflow

when scheduling it than the other heuristics.

Fig. 5. Success rates on the memory-constrained cluster. Higher

is better.

Fig. 6. Relative makespans on the memory-constrained cluster.

Smaller is better.

Similarly to the default cluster, I observe that the

relative makespan of HEFTM-MM is usually greater

than those of HEFT (see Fig. 6), but HEFT schedules

are almost all invalid. It is, therefore, very

interesting to resort to HEFTM-MM for large

workflows in a constrained cluster since tasks are

processed in an order that minimizes the memory

usage of the schedule.

Memory usages on the constrained cluster are

depicted in Fig. 7, and I observe that the memory

footprint of HEFTM- MM remains constant with

workflow size.

Fig. 7. Memory usage on the memory-constrained cluster.

C. Dynamic experiments

a) Memory-constrained cluster: The makespan, in

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 77

InRACS 2025

case of no recomputation, becomes invalid as soon as at

least one task finds itself in an invalid memory size

situation - that is if the scheduler assumed its memory to

be smaller than it actually was and assigned it to a

processor with not enough memory capacity. Due to an

extremely constrained memory in this cluster, only 134

experiments out of 1160 for all algorithm variants ended

with a valid makespan without recomputation. In the case

of HEFT, 14 valid initial makespans were computed. Out

of them, 13 managed to stay valid until the end after all

the update requests. The same 13 experiments ended with

a valid makespan in case of no recomputation. So, these

workflows required so few resources that there was no

point in re-scheduling them. In the case of HEFTM-MM,

all 290 workflows could be scheduled initially, and all the

schedules remained valid until the end. 16 experiments

ended with a successful makespan without

recomputation. The rate of successful schedules without

recomputation is, therefore, 5.5%. HEFTM-BLC could

produce 142 valid initial schedules and keep 141 of them

valid until the end. 50 experiments were successful

without recomputation, too, making it 35% out of all

successful final schedules. HEFTM-BL kept 105

schedules valid until the end out of 110 initial valid

schedules. 55 were able to be kept valid until the end even

without recomputation, roughly 50% of all successes.

HEFTM-BL and HEFTM-BLC were successful on

smaller workflows and failed on larger ones, the success

of the strategy without recomputation was limited to even

the smallest of these smaller workflows. So, the strategy

without recomputation delivered valid makespans

(independently of the algorithm) on 56 original

workflows with < 100 tasks, 47 200-task ones, 25 1000-

task ones and 6 2000-task ones.

Figure 8 shows the increase in makespan in case of no

recomputation for these experiments. With the growing

size of the workflow, the excess makespan of not

recomputing grows - from 13.9% to 20% for HEFTM-

BL, from 12.7% to 18.7% on HEFTM-BLC (but there is

no data for the 2000- task workflows in this case),

12.1% to 23.5% for HEFTM-MM. The larger

variations for HEFT can be explained by the small

amount of data – for instance, there were only 2 200-task

workflows for this case.

D. Running times of the heuristics

To be able to answer the runtime system without holding

it up for too long, the scheduler needs to be able to

compute a schedule rapidly. The bottom-level-based

heuristics HEFTM- BL and HEFTM-BLC provide

smaller running times than HEFTM-MM, and also

scale better with a growing workflow sizes (see Fig.

9). Their running times are similar and grow from

tens of milliseconds for the smallest workflows to

25−27 seconds for the largest workflows. HEFTM-

MM, however, needs to compute a memory-optimal

traversal of the entire workflow to compute the ranks

of the tasks, so its running time scales from also tens

of milliseconds for the smallest workflows to

thousands of seconds - 1172.7 for 20 000-task

Fig. 8. Relative (excess) makespan of HEFTM-BL, HEFTM-BLC

and HEFTM-MM. Smaller is better.

Fig. 9. Running times of the heuristics. The y-axis is logarithmic.

workflows and 2994.9 seconds for the largest, 30

000-task workflows. This increased running time is,

though, offset by the unique 100% success rate this

algorithm obtained when scheduling large workflows

in difficult (memory-constrained) setups.

IX. CONCLUSION

I have formalized a scheduling problem in memory-

constrained environments where tasks may exceed

the memory available on a processor and resort to

communication buffers to store and communicate

data between processors. In this context, I have

designed three memory-aware HEFT- based

heuristics, which account for memory constraints

while scheduling tasks.

Two heuristics rely on an ordering of tasks based on

the bottom level of tasks, with the objective of

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 78

InRACS 2025

minimizing the makespan and, hence, scheduling critical

tasks first. The third one, HEFTM-MM, goes one step

further and handles tasks in an order dictated by an

efficient traversal of the graph in terms of memory

requirements, hence reducing the memory used by the

schedule. Experimental results on a large set of

workflows coming from real-life applications

demonstrate that the memory-aware heuristics are

successfully producing valid schedules. In the most

memory-constrained setting, HEFTM- MM succeeds in

scheduling even the largest workflows, while other

heuristics return invalid schedules exceeding the memory

capacity of processors. It comes at the price of a

makespan that is not quite as good as the one obtained by

HEFTM-BL and HEFTM-BLC, which focuses on

makespan by ordering tasks by bottom level. As

expected, the baseline HEFT that is not memory aware

returns invalid schedules in almost all settings, except for

very small workflows.

Another key contribution is that I have adapted these

heuristics for a dynamic setting, where exact task

parameters (execution times and memory requirements)

are not known in advance. I have implemented a runtime

system that interacts with the scheduler, returning exact

parameter values once a task arrives in the system,

while only estimates are known for future tasks. Some

preliminary experiments have been conducted in this

setting, and demonstrated that it is necessary to adapt the

schedule on the fly in order to avoid an execution failure

because of a shortage of memory. To the best of my

knowledge, this is the first study of adaptive algorithms

accounting for memory constraints.

This work could be extended in several directions. First,

the model could be refined to include heterogeneous

bandwidths, while I consider a homogeneous

communication network. More importantly, it would be

interesting to consider other types of variability, for

instance if new tasks appear in the graph (or disappear),

or if there is variability in the platform, with processors

arriving and departing. I believe that I could adopt the

current approach by recomputing schedules on the fly,

and I plan to perform a new set of experiments to further

assess the impact of dynamic scheduling.

REFERENCE

[1] U. Leser, M. Hilbrich, C. Draxl, P. Eisert, L.

Grunske, P. Hostert, D. Kainmu¨ller, O. Kao, B. Kehr,

T. Kehrer, C. Koch, V. Markl, H. Mey- erhenke,

T. Rabl, A. Reinefeld, K. Reinert, K. Ritter, B.

Scheuermann, F. Schintke, N. Schweikardt, and

M. Weidlich, “The collaborative research center

FONDA,” Datenbank-Spektrum, vol. 21, no. 3,

pp. 255– 260, 2021.

[2] M. Adhikari, T. Amgoth, and S. N. Srirama, “A

survey on scheduling strategies for workflows in

cloud environment and emerging trends,” ACM

Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–

36, 2019.

[3] J. Liu, E. Pacitti, and P. Valduriez, “A survey of

scheduling frameworks in big data systems,”

International Journal of Cloud Computing, vol. 7,

no. 2, pp. 103–128, 2018.

[4] C. Gou, A. Benoit, and L. Marchal, “Partitioning

tree-shaped task graphs for distributed platforms

with limited memory,” IEEE Trans on Par and

Dist Systems, vol. 31, no. 7, pp. 1533–1544, 2020.

[5] S. He, J. Wu, B. Wei, and J. Wu, “Task tree

partition and sub- tree allocation for

heterogeneous multiprocessors,” in 2021 IEEE

Intl Conf on Par Distr Processing with Applic,

Big Data, Cloud Comp, Sustainable Comp,

Communications, Social Comp, Networking

(ISPA/BDCloud/SocialCom/SustainCom), pp.

571–577, 2021.

[6] S. Kulagina, H. Meyerhenke, and A. Benoit,

“Mapping large memory- constrained workflows

onto heterogeneous platforms,” in Proceedings of

the 53rd International Conference on Parallel

Processing, ICPP 2024, Gotland, Sweden,

August 12-15, 2024, pp. 305–316, ACM, 2024.

[7] H. Topcuoglu, S. Hariri, and M.-Y. Wu,

“Performance-effective and low-complexity task

scheduling for heterogeneous computing,” IEEE

transactions on parallel and distributed systems,

vol. 13, no. 3, pp. 260– 274, 2002.

[8] Z. Shi and J. J. Dongarra, “Scheduling workflow

applications on proces- sors with different

capabilities,” Future Generation Computer

Systems, vol. 22, no. 6, pp. 665–675, 2006.

[9] A. Hirales-Carbajal, A. Tchernykh, R. Yahyapour,

J. L. Gonza´lez-Garc´ıa, T. Ro¨blitz, and J. M.

Ram´ırez-Alcaraz, “Multiple workflow

scheduling strategies with user run time estimates

on a grid,” Journal of Grid Computing, vol. 10,

pp. 325–346, 2012.

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 79

InRACS 2025

[10] M. Sulaiman, Z. Halim, M. Waqas, and D. Aydın, “A

hybrid list-based task scheduling scheme for

heterogeneous computing,” The Journal of

Supercomputing, vol. 77, no. 9, pp. 10252–10288,

2021.

[11] H. Arabnejad and J. G. Barbosa, “List scheduling

algorithm for het- erogeneous systems by an

optimistic cost table,” IEEE Transactions on Parallel

and Distributed Systems, vol. 25, no. 3, pp. 682–694,

2014.

[12] G. Wang, Y. Wang, H. Liu, and H. Guo, “HSIP: A

Novel Task Schedul- ing Algorithm for

Heterogeneous Computing,” Scientific Programming,

vol. 2016, no. 1, p. 3676149, 2016.

[13] S. AlEbrahim and I. Ahmad, “Task scheduling for

heterogeneous com- puting systems,” The Journal of

Supercomputing, vol. 73, pp. 2313– 2338, 2017.

[14] Y. Samadi, M. Zbakh, and C. Tadonki, “E-HEFT:

Enhancement Hetero- geneous Earliest Finish Time

algorithm for Task Scheduling based on Load

Balancing in Cloud Computing,” in 2018

International Conference on High Performance

Computing & Simulation (HPCS), pp. 601–609,

2018.

[15] A. Yano and T. Azumi, “CQGA-HEFT: Q-learning-

based DAG schedul- ing algorithm using genetic

algorithm in clustered many-core platform,” Journal

of Information Processing, vol. 30, pp. 659–668,

2022.

[16] L. Marchal, H. Nagy, B. Simon, and F. Vivien,

“Parallel scheduling of dags under memory

constraints,” in 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pp.

204–213, IEEE, 2018.

[17] J. Herrmann, L. Marchal, and Y. Robert, “Memory-

aware list scheduling for hybrid platforms,” in 2014

IEEE international parallel & distributed processing

symposium workshops, pp. 689–698, IEEE, 2014.

[18] Y. Yao, Y. Song, Y. Huang, W. Ni, and D. Zhang, “A

memory-constraint- aware list scheduling algorithm

for memory-constraint heterogeneous multi-

processor system,” IEEE Transactions on Parallel

and Distributed Systems, vol. 34, no. 4, pp. 1082–

1099, 2022.

[19] J. Ding, L. Song, S. Li, C. Wu, R. He, Z. Su, and

Z. Lu¨, “A heuris- tic method for data allocation and

task scheduling on heterogeneous multiprocessor

systems under memory constraints,” in Algorithms

and Architectures for Parallel Processing (Z.

Tari, K. Li, and H. Wu, eds.), (Singapore), pp.

360–380, Springer Nature Singapore, 2024.

[20] C. F. Rodrigues, G. Riley, and M. Luja´n,

“Exploration of task-based scheduling for

convolutional neural networks accelerators under

memory constraints,” in Proceedings of the 16th

ACM International Conference on Computing

Frontiers, CF ’19, (New York, NY, USA), p.

366–372, Association for Computing Machinery,

2019.

[21] B. Liang, X. Dong, Y. Wang, and X. Zhang,

“Memory-aware resource management algorithm

for low-energy cloud data centers,” Future

Generation Computer Systems, vol. 113, pp. 329–

342, 2020.

[22] S. Sandokji and F. Eassa, “Dynamic Variant Rank

HEFT Task Scheduling Algorithm Toward

Exascale Computing,” Procedia Computer Sci-

ence, vol. 163, pp. 482–493, 2019. 16th Learning

and Technology Conference 2019Artificial

Intelligence and Machine Learning: Embedding

the Intelligence.

[23] M. Rahman, R. Hassan, R. Ranjan, and R. Buyya,

“Adaptive workflow scheduling for dynamic grid

and cloud computing environment,” Con-

currency and Computation: Practice and

Experience, vol. 25, no. 13, pp. 1816–1842,

2013.

[24] R. Garg and A. K. Singh, “Adaptive workflow

scheduling in grid computing based on dynamic

resource availability,” Engineering Science and

Technology, an International Journal, vol. 18, no.

2, pp. 256–269, 2015.

[25] Z.-J. Wang, Z.-H. Zhan, W.-J. Yu, Y. Lin, J.

Zhang, T.-L. Gu, and J. Zhang, “Dynamic group

learning distributed particle swarm optimiza- tion

for large-scale optimization and its application in

cloud workflow scheduling,” IEEE transactions

on cybernetics, vol. 50, no. 6, pp. 2715– 2729,

2019.

[26] V. Singh, I. Gupta, and P. K. Jana, “A novel cost-

efficient approach for deadline-constrained

workflow scheduling by dynamic provisioning of

resources,” Future Generation Computer

Systems, vol. 79, pp. 95–110, 2018.

[27] D. de Oliveira, K. A. Ocan˜a, F. Baia˜o, and M.

Mattoso, “A provenance- based adaptive

InRACS - International Conference on Recent Advancements in Computing ISSN: 2349-6002

and System Design

182986 © July 2025 | Volume 12 Issue 2 | IJIRT | www.ijirt.org 80

InRACS 2025

scheduling heuristic for parallel scientific workflows

in clouds,” Journal of grid Computing, vol. 10, pp.

521–552, 2012.

[28] R. L. Daniels and P. Kouvelis, “Robust scheduling to

hedge against processing time uncertainty in single-

stage production,” Management science, vol. 41, no.

2, pp. 363–376, 1995.

[29] E. Kayaaslan, T. Lambert, L. Marchal, and B. Uc¸ar,

“Scheduling series- parallel task graphs to minimize

peak memory,” Theoretical Computer Science, vol.

707, pp. 1–23, 2018.

[30] M. J. Malik, T. Fahringer, and R. Prodan, “Execution

time prediction for grid infrastructures based on

runtime provenance data,” in Proceedings of the 8th

Workshop on Workflows in Support of Large-Scale

Science,pp. 48–57, 2013.

[31] J. Bader, N. Diedrich, L. Thamsen, and O. Kao,

“Predicting dynamic memory requirements for

scientific workflow tasks,” in 2023 IEEE

International Conference on Big Data (BigData), pp.

182–189, 2023.

[32] C. Witt, J. van Santen, and U. Leser, “Learning low-

wastage memory allocations for scientific workflows

at icecube,” in 2019 International Conference on

High Performance Computing & Simulation

(HPCS), pp. 233–240, IEEE, 2019.

[33] E. Angriman, A. van der Grinten, M. von Looz,

H. Meyerhenke, M. No¨llenburg, M. Predari, and C.

Tzovas, “Guidelines for experimental algorithmics: A

case study in network analysis,” Algorithms, vol. 12,

no. 7, p. 127, 2019.

[34] J. Bader, F. Lehmann, L. Thamsen, J. Will, U. Leser,

and O. Kao, “Lotaru: Locally estimating runtimes of

scientific workflow tasks in het- erogeneous

clusters,” Proceedings of the 34th International

Conference on Scientific and Statistical Database

Management (SSDBM), 2022.

[35] T. Coleman, H. Casanova, L. Pottier, M. Kaushik,

E. Deelman, and R. Ferreira da Silva, “Wfcommons:

A framework for enabling scientific workflow

research and development,” Future Generation

Computer Systems, vol. 128, pp. 16–27, 2022.

[36] P. A. Ewels, A. Peltzer, S. Fillinger, H. Patel, J.

Alneberg, A. Wilm, M. U. Garcia, P. Di Tommaso,

and S. Nahnsen, “The nf-core framework for

community-curated bioinformatics pipelines,” Nature

biotechnology, vol. 38, no. 3, pp. 276–278, 2020.

[37] R. F. Da Silva, G. Juve, M. Rynge, E. Deelman, and

M. Livny, “Online task resource consumption

prediction for scientific workflows,” Parallel

Processing Letters, vol. 25, no. 03, p. 1541003,

2015.

[38] R. F. Da Silva, G. Juve, E. Deelman, T. Glatard,

F. Desprez, D. Thain, B. Tovar, and M. Livny,

“Toward fine-grained online task characteristics

estimation in scientific workflows,” in

Proceedings of the 8th workshop on workflows in

support of large-scale science, pp. 58–67, 2013.

