IOT Based Smart Home Automation

Bhushan balu choudhary¹, Bhagyashree sanjay gahukar², Pragya pramod patil³, Manish kumar Tiwary⁴, Dr Amit Shrivastava⁵, Ms. Megha Purohit⁶

^{1,2,3,4} SAM Global University

⁵Guide, SAM Global University

⁶Co-Guide, SAM Global University

Abstract—This paper presents a comprehensive approach to designing and implementing an IoT-based smart home automation system that offers remote monitoring and control of household devices such as lights, fans, and door locks. The system leverages a Raspberry Pi microcontroller and Wi-Fi communication to connect with home appliances via the Blynk application. It also integrates safety features such as smoke detection and real-time notifications, providing enhanced security and convenience. A detailed review of literature highlights the evolution of IoT-based automation technologies. Furthermore, the paper provides circuit diagrams, code samples, and a detailed methodology for implementation, demonstrating a scalable and cost-effective smart home solution.

I. INTRODUCTION

With the growing adoption of Internet of Things (IoT) technologies, smart home automation has emerged as a transformative

innovation in enhancing home security, energy efficiency, and user convenience.

IoT enables the seamless interconnection of physical devices through internet-based control systems. In this project, the smart home system comprises a Raspberry Pi, relays, sensors (DHT11, PIR), and mobile integration through the Blynk application. The system allows users to control appliances remotely and monitor temperature, humidity, and security parameters through a web-based or mobile interface.

II. LITERATURE REVIEW

The following table summarizes and compares recent studies on IoT-based home automation systems, highlighting different methodologies, hardware platforms, and communication protocols.

S. No.	Title & Author(s)	Platform Used	Control Method	Features	Year
1	Atzori et al., 2010	Arduino, Zigbee	Web & Sensor	Home Monitoring, Energy Saving	2010
2	Abdul-Rahman & AlRousan, 2004	Java, PC Interface	Java App	Control Devices via Java GUI	2004
3	Alheraish, 2004	GSM + Microcontroller	SMS	GSM-based Device Control	2004
4	Elkamchouchi & Elhorbaty, 2012	GSM + PIC Microcontroller	SMS	Power Saving, GSM Alerts	2012
5	ElShafee & Hamed, 2012	Arduino + Wi-Fi	Android App	Remote Light & Fan Control	2012
6	Jain et al., 2014	Raspberry Pi	GUI, Email	Email-based Device Control	2014
7	Kumar et al., 2016	ESP8266 + Arduino	Mobile App	Voice-controlled Devices	2016

Discussion: While earlier systems depended on GSM and Java-based interfaces, modern implementations have shifted towards cloud-based and smartphonecentric control using Wi-Fi and platforms like Blynk. This project follows this trend by integrating real-time control and environmental monitoring through the internet, enhancing usability and scalability.

III. METHODOLOGY

System Architecture

The system is based on three major components:

Microcontroller: Raspberry Pi or NodeMCU ESP8266

for control logic

Communication Protocol: Wi-Fi using the Blynk IoT

platform

Control Devices: Lights, fans, door lock actuators,

sensors (PIR, DHT11)

Hardware Components

NodeMCU ESP8266

DHT11 Temperature & Humidity Sensor

PIR Motion Sensor

5V Relay Module

LCD Display (I2C)

Smoke Sensor (MQ-2)

Power Supply

Block Diagram

Circuit Diagram

Sample Code Snippet

срр

CopyEdit

#define BLYNK TEMPLATE ID

"TMPL3JKyRAlEB"

#define BLYNK_TEMPLATE_NAME "IOT BASE

HOME AUTOMATION"

#define BLYNK_AUTH_TOKEN

"Your Auth Token"

#include <ESP8266WiFi.h>

#include <BlynkSimpleEsp8266.h>

#include "DHT.h"

#define DHTPIN D5

#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);

char auth[] = BLYNK AUTH TOKEN;

char ssid[] = "your wifi ssid";

char pass[] = "your_wifi_password";

void setup() {

Serial.begin(9600);

Blynk.begin(auth, ssid, pass);

dht.begin();

pinMode(D0, OUTPUT); // Relay for light

void loop() {

Blynk.run();

float temp = dht.readTemperature();

float hum = dht.readHumidity();

Blynk.virtualWrite(V1, temp);

Blynk.virtualWrite(V2, hum);

}

200

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

System Features

Remote Appliance Control: Lights, fans, and doors via mobile app

Environmental Monitoring: Real-time temperature and humidity display

Security: Motion and smoke detection with alerts Visitor Entry Monitoring: RFID-based door access and counter system

Sample Pictures Hardware Setup ESP-12E Chip 3.3V Voltage Regulator Flash Button Micro USB Port Reset Button CP2102 USB to TTL Converter

IV. CONCLUSION

D0 Pin

The proposed IoT-based smart home automation system provides a reliable, scalable, and user-friendly solution for remote control and monitoring of home appliances. By integrating sensors and the Blynk cloud platform, users gain real-time insights and control, enhancing energy efficiency and home security. Future enhancements may include AI-based voice control, integration with smart assistants like Alexa or Google Assistant, and edge computing for local decision-making.

REFERENCES

- [1] Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.
- [2] Al-Ali, A. R., & AlRousan, M. (2004). Java-based home automation system. IEEE Transactions on Consumer Electronics, 50(2), 498–504.
- [3] Alheraish, A. (2004). Design and implementation of home automation system. IEEE Transactions on Consumer Electronics, 50(4), 1087–1092.
- [4] Elkamchouchi, H. M., & Elhorbaty, E. M. (2012). Smart Home Design using GSM and Internet.

- International Journal of Application or Innovation in Engineering & Management.
- [5] ElShafee, A., & Hamed, K. (2012). Design and Implementation of a WiFi Based Home Automation System. IJETT, 2(1), 13–18.
- [6] Jain, A., Vaibhav, A., & Goyal, L. (2014). Raspberry Pi based interactive home automation system through E-mail. International Conference on Reliability, Optimization and Information Technology.
- [7] Kumar, S., & Yadav, N. (2016). Voice Controlled Home Automation System using Artificial Intelligence. International Research Journal of Engineering and Technology (IRJET).