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Abstract -Detecting insider threats is a significant 

cybersecurity challenge, as conventional systems often 

fail to identify the subtle behavioral clues of malicious 

actors. This research proposes a novel approach that 

treats user activity logs as a language, where harmful 

actions deviate from normal "grammatical" patterns. 

To effectively analyze this "language," the study 

introduces a deep learning framework centered on a 

Transformer architecture. Unlike models that process 

data sequentially, the Transformer's self-attention 

mechanism can examine an entire history of user actions 

at once, enabling it to capture complex, long-range 

relationships. 

The system processes a wide range of data, including 

logins, device usage, file access, and emails. It enhances 

this data by creating sessions, profiling individual user 

behavior, and incorporating anomaly scores from an 

unsupervised model. When tested on the public CERT 

Insider Threat r4.2 dataset, the model proved highly 

effective. It achieved 90% overall accuracy, a 71% 

precision rate in identifying threats, and a recall of 55%. 

This performance underscores the value of using 

Transformer-based models to build more intelligent, 

context-aware security systems for identifying insider 

threats. 

Keywords - Insider Threat Detection, Deep Learning, 

Transformer Model, User Behaviour Analytics, Sequence 
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I. INTRODUCTION  

The growing reliance on interconnected digital systems 

makes organizations vulnerable to insider threats, 

where individuals with legitimate access misuse their 

privileges. Detecting these threats is exceptionally 

challenging because malicious actions can be hard to 

distinguish from normal job functions. Traditional 

security systems, which rely on predefined rules, often 

fail to spot the subtle behavioral deviations that signal 

an impending threat, as they cannot grasp the user's 

intent. 

To address this, data-driven methods using machine 

learning have become more common. Early 

advancements with sequence-aware models, such as 

LSTMs, improved detection by analyzing user 

activities over time. However, these models process 

information sequentially, which makes it difficult for 

them to recognize important connections between 

events that are far apart in a long activity log. The 

influence of early, potentially critical, actions can fade 

before a malicious act is identified. 

This research proposes a new way of thinking: viewing 

user activity as a language. In this model, normal 

behavior follows a predictable "grammar," while 

malicious actions appear as unusual "phrases." To 

properly interpret this language, a system must be able 

to analyze the entire sequence of activities at once to 

understand the full context, rather than examining it 

piece by piece. 

The Transformer architecture, which has transformed 

natural language processing, is ideal for this task. Its 

self-attention mechanism allows it to weigh the 

significance of every action relative to all others in the 

sequence, regardless of when they occurred. This 

holistic processing capability enables the model to 

build a deep, context-aware understanding of user 

behavior and identify the complex patterns associated 

with insider threats. 

This research presents an integrated framework that 

leverages a Transformer-based approach for detecting 

insider threats. The system features a sophisticated 

feature engineering strategy that combines session-

based data with individual user baselines and anomaly 

scores from an unsupervised learning model. This 

enriched data is then used to train the model on the 

public CERT r4.2 dataset, demonstrating its 
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effectiveness in learning from complex activity 

sequences. 

Beyond standard metrics, the evaluation focuses on 

practical application. It identifies an optimal decision 

threshold to balance threat detection with the need to 

minimize false alarms. Furthermore, the framework 

includes an explainability feature that allows security 

analysts to see which specific activities contributed to 

a high-risk score, turning the model's output into 

actionable intelligence. 

This paper is organized as follows: Section 2 discusses 

previous research on insider threat detection, while 

Section 3 presents the proposed framework and its 

constituent parts. Section 4 describes the experimental 

setup, including the dataset and evaluation metrics. 

Section 5 presents and discusses the results. Finally, 

Section 6 concludes the paper and outlines directions 

for future work. 

III. RELATED WORK 

Homoliak et al. [7] provided a foundational survey 

highlighting the evolving nature of insider threats and 

the need for adaptable detection models. Earlier 

methods mainly relied on rule-based systems and 

traditional machine learning, which struggled with 

generalization and detecting novel behaviors [10], [11]. 

Graph-based techniques, such as those by Hong et al. 

[3] and Fei et al. [12], modeled user-system 

relationships using GNNs and GCNs, while Li et al. 

[17] improved adaptability with a dual-domain GCN. 

Deep learning approaches have demonstrated strong 

potential in capturing user behavior patterns. Pal et al. 

[7] proposed an LSTM-GRU model with attention to 

handle data imbalance and concept drift, whereas 

AlSlaiman et al. [2] incorporated sentiment analysis 

with LSTMs to reduce misclassification rates. Nasir et 

al. [5] applied deep learning on behavior-derived 

features, showing gains in precision and F1-score. 

Innovative image-based methods, as explored by 

Gayathri et al. [14] and Li et al. [16], transformed 

activity logs into visual formats for CNN-based 

analysis. Techniques like sampling and ensemble 

learning have also improved detection in imbalanced 

datasets [4], [7]. 

Advanced methods, including few-shot learning [19], 

Bayesian networks [9], and attention mechanisms [18], 

have enhanced early-stage detection and probabilistic 

reasoning. While some studies have utilized attention 

models [7], [18], Transformer architectures remain 

underexplored in this field. 

This study addresses that gap by leveraging a 

Transformer-based model to capture long-range 

behavioral dependencies and integrating anomaly 

scoring with domain-specific features. Multi-modal 

frameworks combining activity logs with contextual 

cues, as shown by Al-Mhiqani et al. [1] and Liu et al. 

[18], further support robust threat detection. 

IV. THE PROPOSED FRAMEWORK 

The proposed framework is a multi-stage, sequential 

pipeline designed to systematically transform raw, 

heterogeneous user activity logs into a structured 

format suitable for deep learning, ultimately yielding 

an actionable threat assessment. The entire process is 

architected to be end-to-end, beginning with raw data 

ingestion and concluding with final classification and 

an explainable report. The pipeline consists of four 

primary stages: (1) Data Ingestion and Preprocessing, 

(2) Ground Truth Labeling, (3) Hybrid Feature 

Engineering, and (4) Transformer-Based Threat 

Detection. Each stage builds upon the previous one, 

progressively refining the data to extract the most 

discriminative signals of malicious behavior. (A 

conceptual diagram of this pipeline is presented in 

Figure 1.) 

 
Fig 1: Work Flow  

 

A. Data Ingestion and Preprocessing 

The initial phase of the framework focuses on 

consolidating and cleaning data from diverse sources 

to form a single event timeline. The process begins by 

ingesting five types of data logs: logon activities, USB 

device connections, file access, emails, and user 

psychometric evaluations. 

Several preprocessing steps are then applied. First, 

column names are standardized across all files for 
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consistency. Next, a unified "activity type" field is 

created to uniformly label every event, such as 'Logon' 

or 'File Access'. All individual logs are then merged 

into one master table, which is sorted chronologically 

by user to build a sequential narrative of each person's 

actions. 

Finally, the data is cleaned by filling in any missing 

numerical values with zero and imputing absent 

psychometric scores with the median value for the 

entire group. This results in a comprehensive and clean 

event stream for each user, fully prepared for the 

subsequent stages of feature engineering and analysis. 

B. Ground Truth Labeling 

Since real-world data lacks clear labels for insider 

threats, a common heuristic was applied to generate 

them. The method assumes that employees who 

disappear from the company directory logs before the 

final month of data collection are potential threats. 

This disappearance could signify an abrupt departure, 

such as a firing or resignation after committing a 

malicious act. Consequently, these users were 

programmatically labeled as threats, while all 

employees remaining at the end of the period were 

labeled as non-threats. Although this is an estimation, 

it provides a logical and repeatable method for creating 

the labeled dataset needed for supervised machine 

learning. 

C. Hybrid Feature Engineering 

This stage transforms the raw event stream into a high-

dimensional feature space, providing the model with 

rich, discriminative signals beyond what raw logs 

alone can offer. A hybrid strategy was developed 

combining temporal analysis, user-specific baselining, 

and unsupervised machine learning. 

Tokenization: Categorical data such as activity_type 

and pc_id were converted into unique integer tokens, 

enabling processing by the model’s embedding layers. 

Sessionization: The continuous stream of events for 

each user was segmented into discrete "sessions." A 

session was defined as a sequence of activities where 

the time between consecutive events did not exceed a 

30-minute (1800-second) timeout. Session-based 

features were engineered, including session_id, 

events_in_session, and session_duration_seconds. 

Behavioral Baselining: To account for individual user 

habits, features that establish personalized baselines 

were engineered. For example, the 

hour_deviation_from_user_norm feature calculates 

the deviation between the current event hour and that 

user's historical average activity hour. Large deviations 

indicate behavior that is anomalous for that individual. 

Unsupervised Anomaly Detection: An unsupervised 

model was used to generate an explicit anomaly signal. 

An IsolationForest algorithm was trained on purely 

numerical, event-based features to detect rare and 

unusual patterns. An anomaly_score was calculated for 

each event, reflecting the probability of it being 

abnormal. This score was included as an additional 

input feature, enriching the dataset with a pre-analyzed 

anomaly indicator. 

D. Transformer-Based Detection Model 

At the core of the framework lies the Transformer 

model, tasked with classifying an entire sequence of a 

user’s activities as either benign or threatening. 

Input Representation: The final feature-engineered 

dataset, comprising a timeline of events for each user, 

was grouped by user_id. This created a batch of 

sequences, each representing a user's complete activity 

history. Sequences were padded with leading zeros or 

truncated to a fixed length (MAX_LEN = 512) to meet 

the input requirements of deep learning models. 

Model Architecture: 

Embedding Layers: Integer tokens for activity_type 

and pc_id were passed through separate Embedding 

layers, which learned dense vector representations that 

capture semantic relationships between activities. 

Concatenation: Learned embeddings were 

concatenated with scaled numerical features to form a 

single, rich feature vector for each event. 

Positional Encoding: As the Transformer processes 

events in parallel and lacks inherent sequence order, 

fixed sinusoidal positional encodings were added to 

each event vector to reintroduce temporal order. 

Transformer Blocks: Data passed through two 

Transformer blocks, each containing Multi-Head Self-

Attention and Feed-Forward layers. The self-attention 

mechanism allows the model to assess the relevance of 

each event in relation to others within the sequence, 
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effectively capturing long-term dependencies. Layer 

Normalization and Dropout were applied for stability 

and regularization. 

Classification Head: A Global Average Pooling layer 

condensed the sequence output into a single 

representative vector. This vector was passed through 

Dense layers with a sigmoid activation to output a 

probability score between 0 and 1, representing the 

likelihood of the user's activity sequence indicating a 

threat. 

V.  EXPERIMENTAL SETUP 

To rigorously evaluate the performance of the 

proposed Transformer-based framework, a set of 

experiments was designed using a public benchmark 

dataset. This section details the dataset, the specific 

metrics chosen to measure performance, and the full 

implementation and training configuration used to 

produce the results. 

 

A. Dataset 

This research utilized the CERT Insider Threat Dataset 

(r4.2), a widely used public benchmark from Carnegie 

Mellon University, chosen because it allows for 

comparison with previous studies. 

The synthetic dataset simulates the activity of 1,000 

users over 17 months, capturing data from sources like 

logon, device, and email logs. A key feature of this 

dataset is its significant class imbalance, which 

realistically mirrors the infrequent nature of true 

insider threats. 

For the experiment, the dataset was split by user, with 

80% (800 users) for training and 20% (200 users) for 

testing. This user-level separation is critical to prevent 

data leakage and ensure the model is evaluated on 

entirely new user profiles. The split was also stratified 

to maintain the same ratio of malicious to benign users 

in both the training and testing sets. 

 

B.  Evaluation Metrics 

Given the severe class imbalance inherent in the 

dataset, relying on a single metric like accuracy can be 

highly misleading. A naive model could achieve high 

accuracy by simply predicting every user as "not a 

threat." Therefore, to provide a comprehensive and 

robust assessment of the model's performance, a suite 

of evaluation metrics was employed. 

 

Area Under the ROC Curve (AUC): AUC was chosen 

as the main evaluation metric to assess the model’s 

overall ability to differentiate between threat and non-

threat categories across varying classification 

thresholds. An AUC score of 1.0 indicates flawless 

classification, whereas a score of 0.5 reflects 

performance equivalent to random guessing. Its 

threshold-independent nature makes it especially 

useful for evaluating models on imbalanced datasets. 

To evaluate the model's practical performance, three 

key metrics were used, all calculated at an optimal 

decision threshold. 

Recall indicates the percentage of actual threats that 

are accurately identified by the model. In 

cybersecurity, achieving high recall is essential to 

ensure no genuine threats go unnoticed. 

Precision indicates the proportion of alerts generated 

by the model that are actually accurate. Maintaining 

high precision helps minimize false positives, easing 

the burden on security analysts. 

The F1-Score, calculated as the harmonic mean of 

precision and recall, provides a balanced evaluation of 

the model's effectiveness—particularly useful when 

both missed detections and false alarms carry 

significant consequences. 

 

C. Implementation Details 

The entire framework was implemented in Python. For 

data manipulation and feature engineering, the Pandas 

library was used. The Isolation Forest model and the 

calculation of evaluation metrics were implemented 

using Scikit-learn. The core Transformer-based model 

was built and trained using the TensorFlow framework 

with the Keras API. 

 

The specific hyperparameters for the Transformer 

model were as follows: 

Embedding Dimension (EMBED_DIM): 64 

Number of Attention Heads (NUM_HEADS): 4 

Feed-Forward Network Dimension (FF_DIM): 64 

Number of Transformer Blocks: 2 

Dropout Rate (DROPOUT_RATE): 0.2 

Sequence Length (MAX_LEN): 512 events 

 

Training was conducted using the Adam optimizer 

with a learning rate of 0.001 and a batch size of 32. 

Binary cross-entropy, a commonly adopted loss 
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function for binary classification, was utilized during 

training. 

To manage the training process and prevent the model 

from overfitting, several key strategies were 

employed. 

First, an EarlyStopping mechanism was used to 

monitor the model's performance on a validation 

dataset. Training was stopped if there was no 

improvement in performance for ten consecutive 

epochs, and the version of the model with the best 

performance up to that point was preserved. 

Additionally, the learning rate was dynamically 

adjusted using ReduceLROnPlateau. This technique 

automatically reduced the learning rate whenever 

performance stagnated for five cycles, allowing for 

more refined adjustments as the model approached an 

optimal solution. 

Finally, to counteract the problem of class imbalance, 

where threat instances are rare, class weighting was 

applied during training. This method assigned a greater 

penalty for misclassifying the minority threat class, 

compelling the model to pay closer attention to 

detecting these critical events. 

 

VI.  RESULTS AND DISCUSSION 

 

The following section discusses the observed results 

from the experiments conducted in the preceding part. 

The analysis begins with the model's training 

dynamics, followed by a detailed evaluation of its 

classification performance on the unseen test set, and 

concludes with a case study that demonstrates the 

framework's explainability component. 

 

A. Model Training Performance 

The training history of the Transformer-based model 

provides insight into its learning process. The 

variations in loss and AUC across training epochs are 

presented in Figure 2. 

 

Fig 2: loss over epochs 

 

Fig 3: AUC over epochs 

The model's training progress demonstrated effective 

learning. The training performance (Training AUC) 

rapidly approached a perfect score, showing the 

model's capacity to fit the data. At the same time, its 

performance on unseen data (Validation AUC) also 

rose sharply, indicating it was learning generalizable 

patterns. 

The model achieved its best performance on the 

validation data at epoch 4. An automated 

"EarlyStopping" mechanism was used to identify this 

peak and halt the training process, restoring the model 

to this optimal state. This intervention was crucial for 

preventing overfitting, which was signaled by the 

divergence of training and validation scores, thereby 

preserving the model's most effective and 

generalizable version. 

 

B. Classification Performance 

The framework's final performance was assessed using 

a reserved test set of 200 users. Because a default 0.5 

decision threshold is often unsuitable for imbalanced 
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classification, an optimal threshold was determined 

first. 

Using Youden's J statistic to find the ideal point on the 

ROC curve, an optimal threshold of 0.11 was 

established. This low value is common for imbalanced 

problems and prioritizes the detection of potential 

threats, even those with lower probability scores. The 

ROC curve, shown in Figure 3, highlights this optimal 

point. 

The model attained an impressive AUC score of 0.794 

on the test dataset. This result confirms that the system 

can effectively separate malicious and benign users, 

validating that the engineered features and the patterns 

learned by the Transformer successfully indicate 

threatening behaviour. 

 

Fig 4: ROC Curve on Test Set 

The detailed classification metrics, calculated using 

the optimal threshold of 0.11, are presented in figure 5. 

 

Fig 5: Classification Report 

The results in figure 5 highlight the practical utility of 

the framework. The model achieved a threat recall of 

55%, meaning it successfully identified more than half 

of all the true insider threats present in the test data. In 

a security context where the cost of a missed threat is 

exceptionally high, this is a very strong outcome. 

Furthermore, this was balanced with a threat precision 

of 71%. This metric is equally important from an 

operational standpoint, as it means that when the 

system does generate an alert, it is correct 71% of the 

time. This high precision minimizes analyst fatigue by 

significantly reducing the number of false alarms that 

need to be investigated. The overall system accuracy 

reached 90%, which, supported by the strong AUC, 

precision, and recall, confirms the model's 

effectiveness. 

 

VII. CONCLUSION AND FUTURE WORK 

 

This paper presents a new deep learning framework 

that uses a Transformer architecture to successfully 

identify insider threats. By integrating data from 

multiple sources and employing a sophisticated feature 

engineering strategy, the system has proven effective at 

distinguishing between malicious and benign user 

behavior in complex activity logs. When evaluated on 

the CERT r4.2 dataset, the framework demonstrated a 

strong practical balance, achieving 71% precision in its 

alerts while successfully detecting 55% of threats. 

These results validate the use of Transformer networks 

in this security field. 

Future work can build on this foundation in several key 

directions. One path is to enrich the model by 

incorporating more diverse data sources, such as web 

browsing history or command-line activity, to create 

more detailed user profiles. Another is to explore more 

advanced model architectures, like the Longformer, 

which could improve performance on datasets with 

longer user histories. 

A significant advancement would be to adapt the 

system for real-time deployment, enabling continuous 

monitoring rather than periodic analysis of historical 

data. Finally, a more ambitious goal is to move beyond 

simply identifying anomalies and toward modeling 

causality to infer a user's intent. Pursuing these avenues 

can lead to the development of more intelligent, 

accurate, and context-aware security systems.  
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