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Abstract- While high-performance deep learning models 

have been applied to banana leaf disease detection [1][3], 

their interpretability remains underexplored. In this 

study, we deliberately use a baseline Convolutional 

Neural Network (CNN) with moderate accuracy to 

demonstrate how Explainable AI (XAI) techniques—

such as Grad-CAM and SoftMax confidence analysis—

can validate and interpret model predictions. We train a 

Global Average Pooling (GAP)-based CNN on the 

Banana LSD dataset [4] and observe a test accuracy of 

74.7%. While more advanced models have reported 

higher performance [5], [6], our focus remains on 

interpretability and practical relevance. By integrating 

explainability techniques, we demonstrate that even a 

basic model can provide reliable support for disease 

diagnosis, especially in agricultural environments where 

transparency and resource efficiency are essential. 

 

1. INTRODUCTION 

 

Banana is an important crop in many tropical regions, 

but it’s vulnerable to leaf diseases that can seriously 

affect production [1].Convolutional neural networks 

(CNNs) and other deep learning methods have been 

used in plant disease detection because they’re good at 

picking up patterns in image data [2], [3].Still, one of 

the main problems with these models is that they don’t 

easily show how or why they make certain decisions, 

which can be a problem in areas where trust and 

understanding matter.  In one study, Ashoka et al. [5] 

worked with a deeper model called EfficientNetB0 

and got high accuracy, using Grad-CAM to show 

where the model was paying attention in the images. 

Even so, many studies tend to focus mainly on model 

performance, without paying much attention to how or 

why the model makes certain predictions [6], [7].To 

address this, our study explores how a simple CNN, 

when combined with explainable AI (XAI) techniques, 

can still provide meaningful interpretability—even if 

it does not match the performance of state-of-the-art 

networks. 

2. RELATED WORK 

 

Past research has explored the use of CNNs on the 

BananaLSD dataset [4]. Mohanty et al. [2] and 

Ferentinos [1], for example, demonstrated that these 

models can identify plant leaf diseases with notable 

accuracy. In a more recent study, Ashoka et al. [5] 

combined EfficientNetB0 with Grad-CAM and 

reached an accuracy of 99.22%, producing visual 

heatmaps that revealed the model’s attention regions.  

Even with such advancements, the use of 

explainability tools is still uncommon in much of the 

literature. Aghav Palwe et al. [8] applied Grad-CAM 

to plant images, but their work didn’t focus on banana 

leaves specifically. On top of that, high-complexity 

models like EfficientNet often require hardware that's 

not readily available in many farming setups.  

Our approach follows a different path rather than 

relying on complex architectures, we focus on a 

lightweight CNN model and use explainability 

techniques to better understand how it makes decisions. 

Our approach takes a different angle by focusing on a 

lightweight CNN and using explainability tools to 

understand its behavior. While many existing studies 

concentrate on high-performance models, simpler 

networks like ours are rarely explored in terms of their 

interpretability.  

3. METHODOLOGY 

 

3.1 Dataset the BananaLSD dataset [4] includes four 

categories: Healthy, Cordana, Pestalotiopsis, and 

Sigatoka. Each image was resized to 128×128 pixels 

and normalized before training. To deal with class 
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imbalance and help the model learn more effectively, 

we used a few basic augmentations—like flipping, 

rotating, and zooming [9].   

3.2 Baseline CNN Model The model we used had three 

convolutional layers. After each one, we added ReLU 

activation and a max-pooling step to reduce the feature 

map size. Toward the end, we included a Global 

Average Pooling (GAP) layer, which helped 

summarize the features without losing the main spatial 

cues. We took this approach partly from ideas 

mentioned by LeCun et al. [3], who highlighted the 

benefits of keeping models compact, especially for use 

on limited hardware. 

3.3 Hybrid CNN + SVM  To evaluate the viability of 

hybrid modeling, we first extracted high-dimensional 

features before the Global Average Pooling (GAP) 

layer and used them as input to an SVM classifier. As 

shown in Table 1, this configuration produced limited 

results, with a test accuracy of only 19.53% and a 

macro F1-score of 0.18. These metrics suggest that 

without end-to-end training, feature representations 

are not sufficiently discriminative for classical 

classifiers. 

Table 1. Classification report using high-dimensional features extracted before the GAP layer. 

Class Precision Recall F1-score Support 

Cordana 0.11 0.19 0.14 162 

Healthy 0.11 0.18 0.14 129 

Pestalotiopsis 0.14 0.20 0.17 173 

Sigatoka 0.47 0.20 0.28 473 

Accuracy   0.1953 937 

Macro Avg 0.21 0.19 0.18 937 

Weighted Avg 0.30 0.20 0.21 937 

 We tried using the SVM with features taken after the GAP layer, but the outcome wasn’t encouraging. Accuracy 

dropped to 5.34%, as shown in Table 2. It’s possible that the feature set at that point didn’t have enough detail for the 

classifier to make useful distinctions. 

 

Table 2. Classification report using low-dimensional features extracted after the GAP layer. 

Class Precision Recall F1-score Support 

Cordana 0.04 0.02 0.03 162 

Healthy 0.04 0.09 0.06 129 

Pestalotiopsis 0.02 0.06 0.03 173 

Sigatoka 0.16 0.05 0.08 473 

Accuracy   0.0534 937 

Macro Avg 0.07 0.06 0.05 937 

Weighted Avg 0.10 0.05 0.06 937 

  

3.4 Explainability Techniques We applied Grad-CAM 

[10] to visualize class-specific attention regions and 

used SoftMax confidence scores to quantify prediction 

certainty. These techniques helped reveal whether the 

model focuses on disease-relevant leaf regions or 

extraneous noise.    

4. RESULTS 

 

4.1 Performance The baseline model achieved 74.71% 

test accuracy on clean, non-augmented data. While 

lower than models like EfficientNet or ResNet [5], this 

result is consistent and suitable for applications 

requiring interpretability over peak performance. 

 

4.2 Grad-CAM Visualization  Looking at the Grad-

CAM outputs, we noticed the model was often paying 

attention to parts of the leaf that had visible 

symptoms—like dark areas, spots, or damaged tissue. 

The model sometimes highlighted the correct regions, 

despite making an incorrect prediction. Figure 1 shows 

examples where the CNN’s attention was concentrated 

in regions that are biologically relevant for identifying 

symptoms. 
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Figure 1. Grad-CAM heatmaps highlighting the CNN's attention on disease-relevant regions of banana leaves.  This 

observation is consistent with the work by Aghav Palwe et al. [8], who also used XAI methods to study stress indicators 

in plants.   
 

4.3 Confidence Analysis When we looked at 

predictions with low certainty, the SoftMax scores 

showed confusion between classes—particularly 

between Healthy and Pestalotiopsis. Figure 2, which 

presents the raw confusion matrix, reflects this pattern: 

the model often mixed up these two visually similar 

categories. 

 
Figure 2. Raw confusion matrix showing prediction 

distribution across the four banana leaf disease 

classes 

We used the normalized confusion matrix shown in 

Figure 3 to check how the model performed across the 

different classes. It showed that predictions for 

Cordana and Sigatoka were mostly correct. However, 

the model still made several mistakes when trying to 

separate Healthy from Pestalotiopsis. These results 

emphasize the value of incorporating visual 

interpretability and confidence metrics to better 

understand model behavior. 
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Figure 3. Normalized confusion matrix highlighting 

per-class prediction accuracy despite class imbalance.  

One of the samples was misclassified. The model gave 

56% confidence for Healthy and 39% for 

Pestalotiopsis. Figure 4 shows the SoftMax output, 

where the uncertainty between these two classes is 

clear. A case like this could be useful to flag during 

deployment so it can be checked by an expert. 

 
Figure 4. Example softmax output for a misclassified 

leaf image, showing uncertainty between Healthy and 

Pestalotiopsis. 

5. DISCUSSION 

 

5.1 Model Simplicity and XAI While most research 

focuses on improving accuracy through architectural 

complexity [2], [5], we take the opposite route 

demonstrating that interpretability can validate even 

modest models, making them more acceptable in real-

world deployments. 

 

5.2 Comparison with Prior Work Out of the available 

studies, it seems that only Ashoka et al. [5] 

investigated using XAI with the Banana LSD dataset. 

Their method used a more complex and powerful 

model, which also needed a lot of computing resources 

to run. In contrast, our work focuses on applying 

explainability tools to a simpler CNN, which hasn’t 

been examined much in earlier research.   

 

5.3 Practical Relevance In rural farming setups, 

models need to be efficient, explainable, and 

trustworthy. Our work highlights that XAI is a 

powerful equalizer—enabling lower-accuracy models 

to be trusted and understood, even when hardware 

limits prevent deployment of heavier networks [3], [7].    

 

6. CONCLUSION 

 

In this work, we used a simple CNN to detect diseases 

in banana leaves and looked at how explainable AI 

methods could make its decisions easier to follow. The 

model reached 74.71% accuracy, which isn't state-of-

the-art, but it was enough to explore how well it 

understood disease features.  The model was simple, 

but Grad-CAM and confidence scores still gave us 

some idea of where it was looking and how confident 

it seemed. That kind of output might be useful when 

working in places where small models are needed. 

Later, we want to test other types of models, like 

transformers, to check if they give clearer results 

without being too complex. 
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